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EDITOR’S FOREWORD

s it right and proper today, in the year 2022

A.D., standing as we are on the brink of the
New Epoch of brotherhood of all mankind, to pub-
lish a monograph on Special and General Relativ-
ity, written by a physicist, who flourished nearly a
century ago? It is indeed. Sir Arthur Stanley Ed-
dington (1882-1944) was not “merely” the father
of modern stellar astrophysics, who started with
the scraps of uncoordinated patchwork of guesses
about the internal constitution of stars, which only
marginally differed from the idle speculations of
antiquity, and proceeded to build the entire body
of observationally verified knowledge, which serves
as the basis of all stellar astronomy today. Neither
was he “merely” a lone genius physicist, who for
the first time in history predicted theoretically the
value of the mass ratio of protons and electrons, as
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well as that of the fine structure constant—a feat
standing unrivalled to this day. No, he was, first
and foremost, the greatest God-knowing physicist
who ever lived on this planet.

Theoretical physics of the XX century, alas,
was not immune to the dangers besetting the eco-
nomico-political structure of the world at the time.
As is usually common in the poisoned atmosphere
permeated by the “spirit of democracy”, which, as
we know, fosters the election of base and igno-
rant rulers and glorifies mediocrity by placing the
universal suffrage in the hands of uneducated and
indolent majorities, the science was forced to pur-
sue the false materialistic goals of a few mediocre
(relatively speaking) men like Niels Bohr and Max
Born, forgetting for a season the direction of the
brilliant contributions made by the real lovers of
truth—men like Arthur Eddington, James Jeans,
Louis de Broglie in theoretical physics, Robert
Millikan in experimental physics, William Sadler
in medicine and psychology and others. And so,
through its neglect of unbiased approach to the
truth, theoretical physics has wallowed in the mire
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of purely materialistic attempts of the “interpre-
tation of Quantum Mechanics”, which inevitably
led to the greatest crisis since the days of Max
Planck in 1900. 'This crisis is indicated by the
fact that since 1930s there have been no major
discoveries in the field of theoretical physics—the
“progress” usually boasted of consisting almost en-
tirely of technological advances. No new substan-
tial knowledge of the material reality was attained
since the advent of General Relativity (1915) and
Quantum Mechanics (1927) and because of this
we now have no choice but to go back to those
glorious days of the true discoveries and peruse
the words uttered by the truth discoverers.

The chief value today of the work of men like
Eddington and Jeans is revealed by the recently
established (see [1] and [2]) fact, that these people
happened to be the pivotal individuals in the syn-
thesis of all humanly accessible factual knowledge
as well as the highest spiritual strivings,— the syn-
thesis, which culminated in the publication of the
Fifth Epochal Revelation, known also as The Uran-
tia Papers [2]. 'The very thoughts of those men, as
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well as their printed words, were used in compiling
and presentation of this great Revelation, which
undoubtedly will for a long time serve universally
as the common basis of elementary education for
all peoples and nations destined to survive into the
New Epoch. 1t devolves upon them to build the
new civilisation on the ruins made by those who
arrived at an impasse, which is an inexorable out-
come of evolutionary processes, whenever beauty
is substituted with ugliness, truth with falsehood
and goodness with evil and selfish deceit.

The monumental 1928-1939 trilogy on the
philosophy of science ([4], [5], [6]), written by
A.S Eddington, if re-issued today, might be
bound in a single volume and furnished with a not
inappropriate title “Becoming a Spirit”. Having
studied practically all of Eddington’s published
books and papers, as well as most books written
about him, I was almost tempted to write such
a book myself. However, being admonished by
Ecclesiastes 12:12 (‘of making many books there is
no end”) 1 chose to exercise the Editor’s prerogative
and attempted to make a clarification and qualifi-
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cation of the essence of Eddington’s fundamental
research in this Foreword.

A flesh and bones mortal, speaking authorita-
tively on the spirit state of being or how to become
one, will no doubt attract at least the following
two kinds of caustic criticisms.

The first critic is an unbelieving and unfriendly
type, who, on the first hearing of the word “spirit”
can think of nothing else but the desire to touch
you and see if you are made of flesh and bones.
And upon such “empirical confirmation” he will
gleefully declare you an impostor, who violated
the, in his opinion immutable, authority of the
Scriptures as expressed in Luke 24:35 (“.. for
a spirit hath not flesh and bones”). He is quick to
ridicule with disdain the very notion of a possibility
for a mortal to assert anything useful on the
“matters spiritual” and no matter how hard he
tries, every possible formulation of his objections
will betray how alien are the things of the spirit
to the wretched and doomed mind subservient to
matter. To such a critic I have nothing to answer,
except— come and see!”



EDITOR’S FOREWORD

The second type is a learned and cautious
scholar, who first studies the matter diligently, al-
beit not without deeply ingrained preconceptions
of the scope and utility of the “scientific method”,
and then proceeds to make the following tactful
enquiry: “We know of the reality of the spirit
world and, moreover, that the Universe is basically
spiritual, the material aspect thereof being merely
a shadow of the more abiding spirit reality. But
may we point out that during the long career
of the ascent of a typical evolutionary mortal of
animal origin, the attainment of even the first
stage of spirit is only possible after the sojourn on
the mansion worlds and on the other spheres of
the morontia realm, that being the intermediate
stage between matter and spirit? Would it not,
therefore, be a little premature to speak of this
‘becoming a spirit’ now, while we are not yet
even morontia beings, let alone spiritual?” Such
honest doubts and sincere questionings are not
to be despised and are not evil per se. 'Though
they may delay the progressive journey towards
perfection attainment, they can never inhibit it.



EDITOR’S FOREWORD

What follows may be considered an answer to
such a friendly critic.

‘Those who see in Eddington merely a physicist—
even a genius—completely miss both the potential
goal of his life and the actually and literally at-
tained levels of spirit insight as revealed in his
writings. I admit that I myself, at first, had
just such an attitude when I approached the
task of studying Eddington’s works more than a
decade ago. 'There is a certain preordained path
of studying one’s environment and what makes
the contribution of Eddington (and a few others)
unique is that he has walked this path to the
triumphant end. And the path is this—

Analysis of the material reality can be pursued until
it disappears from the sensory mechanism, yet remains
real to the mind. One can then continue this analysis
by ‘mind alone” and arrive at the epistemological
basis of the fundamental laws of science, but at some
point the reality placed under scruity vanishes to the
(material or morontia) mind also and yet remains
perceptible to the insight of the spirit in the form of

the supreme values af entirely spiritual nature. And
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this is the meaning in which it can be said, that “the
Universe is basically spiritual’.

Well, the critic says, this may all be well and
good, relating strictly to the abovementioned three
philosophical books, but what does it have to do
with the purely technical monograph on Gen-
eral Relativity that is supposed to be discussed
here? 'The division of knowledge into zechnical
and non-technical along the lines this is done to-
day will become obsolete in the New Epoch of
brotherhood. Not because the distinction will be
blurred and the two kinds of knowledge some-
how merge into one, but for precisely the opposite
reason: there is a clear demarcation line between
the structural knowledge and the knowledge of
the substance. 'The so-called technical knowledge,
that is expressible in mathematical language, is
nothing other than the knowledge of structure,
i.e. of the relations between entities, and is en-
tirely abstracted from the knowledge of the nature
or essence of the entities themselves,—their sub-
stance. Understanding this fundamental difterence
neither precludes the possibility nor obviates the
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need for specialists, who are skilled in one partic-
ular type of knowledge, more than in others, but
it certainly does remove all illusion of self-sufh-
ciency, which was giving origin to the arrogance
on the part of members of one profession towards
the others. And who is better qualified to teach us
about one particular kind of knowledge, than the
one who has discovered that this is not the only
kind and that there are others?

'The possibility of dissecting the two types of
knowledge should not be considered as something
ephemeral, because it has immediate practical im-
plications. In fact, the very reason I moved to the
United Kingdom in 1994 (from Armenia, then
in a state of ruin after the destruction of Soviet
Union) was due to one such application, made by
myself (then a postgraduate theoretical physicist)
independently and many years prior to learning
about Eddingtons research. Namely, I have at-
tempted and successfully performed a dissection
of the formalism of Quantum Mechanics into
“Information dynamics” (or infodynamics) and the
specific features of the microscopic world—these
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two being logically independent. Having separated
the purely infodynamical aspect of Quantum Me-
chanics as a self-consistent set of rules for manip-
ulation of structural knowledge, I then proceeded
to apply it to a completely unrelated domain of
human activity—economics. Given the functions
of demand pD(.r) and supply s(z.r), which regulate
the actual price of a commodity «() according to
i = D(a,t) - S(z,1) 1 constructed a “price momentum”
variable p(r) conjugated to «(1) and the correspond-
ing p-linear Hamiltonian, which upon canonical
quantisantion yielded a model for prediction of
the evolution of the probability distribution |i(x,t)?
of = as opposed to the “classical” actual frxed value
of » at the moment of time :. Moreover, this
model was free of all artificial constants (i.e. the
“Planck constant” equivalent) due to the p-linearity
of the Hamiltonian. I have also pointed out that
this approach is different from the well-known
“Quantum Economics” due to John von Neu-
mann. The resulting “New Quantum Economics”
scheme was described in a very brief paper, which

I called “On the New Method of Price Forecast-
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)

ing” and showed it to the two economists from
the UK, who visited Armenia and they were suf-
ficiently impressed to invite me to continue my

studies here in the UK.

I was pleasantly surprised when I discovered
that a newly typeset version of Eddington’s “The
Mathematical Theory of Relativity” has been pro-
duced recently by Andrew D. Hwang, a professor
of mathematics at College of the Holy Cross, who
made the fruits of his labours of love available
under Public Domain as part of the Gufenberg
Project [3]. However, seeing that Dr Hwang used
the early edition (1923) of this excellent book as
the basis of his work, I have decided to update his
sources to the latest edition. During the course of
editing, I decided to incorporate the material of
the Supplementary Notes into the body of the main
text. 'This is similar to the way it is done in the
Russian translation of this book as published in
1934. In the previous English editions this mate-
rial was delegated to the end in order to preserve
the pagination of the rest of the book. As there
is obviously no need to preserve the old pagina-
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tion in a freshly retypeset modern edition, moving
the material into the main body of text seemed
desirable to prevent interrupting the reading flow.

It is my hope that this edition will help those
who wish to understand the new and revolutionary
concepts of time and space as contained in both
the General Relativity of Albert Einstein and in
its unification with the electromagnetism by Her-
mann Weyl, masterfully presented by A.S. Ed-
dington.

Tigran Aivazian.

6 March 2022.
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PREFACE
AFIRST draft of this book was published in 1921

as a mathematical supplement to the French
Edition of Space, Time and Gravitation. During
the ensuing eighteen months I have pursued my
intention of developing it into a more systematic
and comprehensive treatise on the mathematical
theory of Relativity. The matter has been rewrit-
ten, the sequence of the argument rearranged
in many places, and numerous additions made
throughout; so that the work is now expanded
to three times its former size. It is hoped that,
as now enlarged, it may meet the needs of those
who wish to enter fully into these problems of
reconstruction of theoretical physics.
The reader is expected to have a general ac-
quaintance with the less technical discussion of
the theory given in Space, Time and Gravitation,
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although there is not often occasion to make direct
reference to it. But it is eminently desirable to
have a general grasp of the revolution of thought
associated with the theory of Relativity before
approaching it along the narrow lines of strict
mathematical deduction. In the former work we
explained how the older conceptions of physics
had become untenable, and traced the gradual as-
cent to the ideas which must supplant them. Here
our task is to formulate mathematically this new
conception of the world and to follow out the
consequences to the fullest extent.

The present widespread interest in the theory
arose from the verification of certain minute de-
viations from Newtonian laws. To those who are
still hesitating and reluctant to leave the old faith,
these deviations will remain the chief centre of in-
terest; but for those who have caught the spirit of
the new ideas the observational predictions form
only a minor part of the subject. It is claimed
for the theory that it leads to an understanding of
the world of physics clearer and more penetrating
than that previously attained, and it has been my
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aim to develop the theory in a form which throws
most light on the origin and significance of the
great laws of physics.

It is hoped that difficulties which are merely
analytical have been minimised by giving rather
fully the intermediate steps in all the proofs with
abundant cross-references to the auxiliary formulae
used.

For those who do not read the book consec-
utively attention may be called to the following
points in the notation. The summation convention
(§ 22) is used. German letters always denote the
product of the corresponding English letter by =4
(§ 49). v is the symbol for “Hamiltonian differen-
tiation” introduced on § 60. An asterisk is prefixed
to symbols generalised so as to be independent of
or covariant with the gauge (§ 86).

A selected list of original papers on the subject
is given in the Bibliography at the end, and many
of these are sources (either directly or at second-
hand) of the developments here set forth. To
fit these into a continuous chain of deduction
has involved considerable modifications from their
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original form, so that it has not generally been
found practicable to indicate the sources of the
separate sections. A frequent cause of deviation
in treatment is the fact that in the view of most
contemporary writers the Principle of Stationary
Action is the final governing law of the world; for
reasons explained in the text I am unwilling to
accord it so exalted a position. After the original
papers of Einstein, and those of de Sitter from
which I first acquired an interest in the theory, 1
am most indebted to Weyl's Raum, Zeit, Materie.
Weyl’s influence will be especially traced in §§ 49,
58, 59, 61, 63, as well as in the sections referring
to his own theory.

I am under great obligations to the officers and
staff of the University Press for their help and care
in the intricate printing.

A. S. E.
10 August 1922.



INTRODUCTION

HE subject of this mathematical treatise is not
pure mathematics but physics. The vocabulary
of the physicist comprises a number of words such
as length, angle, velocity, force, work, potential,
current, etc., which we shall call briefly “physical
quantities.” Some of these terms occur in pure
mathematics also; in that subject they may have
a generalised meaning which does not concern us
here. 'The pure mathematician deals with ideal
quantities defined as having the properties which
he deliberately assigns to them. But in an ex-
perimental science we have to discover properties
not to assign them; and physical quantities are
defined primarily according to the way in which
we recognise them when confronted by them in
our observation of the world around us.
Consider, for example, a length or distance
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between two points. It is a numerical quantity
associated with the two points; and we all know
the procedure followed in practice in assigning
this numerical quantity to two points in nature.
A definition of distance will be obtained by stat-
ing the exact procedure; that clearly must be the
primary definition if we are to make sure of us-
ing the word in the sense familiar to everybody.
'The pure mathematician proceeds differently; he
defines distance as an attribute of the two points
which obeys certain laws—the axioms of the ge-
ometry which he happens to have chosen—and he
is not concerned with the question how this “dis-
tance” would exhibit itself in practical observation.
So far as his own investigations are concerned, he
takes care to use the word self-consistently; but it
does not necessarily denote the thing which the
rest of mankind are accustomed to recognise as
the distance of the two points.

To find out any physical quantity we perform
certain practical operations followed by calcula-
tions; the operations are called experiments or
observations according as the conditions are more
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or less closely under our control. The physical
quantity so discovered is primarily the result of
the operations and calculations; it is, so to speak,
a manufactured article—manufactured by our oper-
ations. But the physicist is not generally content
to believe that the quantity he arrives at is some-
thing whose nature is inseparable from the kind of
operations which led to it; he has an idea that if
he could become a god contemplating the external
world, he would see his manufactured physical
quantity forming a distinct feature of the picture.
By finding that he can lay » unit measuring-rods
in a line between two points, he has manufactured
the quantity » which he calls the distance between
the points; but he believes that that distance « is
something already existing in the picture of the
world—a gulf which would be apprehended by a
superior intelligence as existing in itself without
reference to the notion of operations with mea-
suring-rods. Yet he makes curious and apparently
illogical discriminations. The parallax of a star is
found by a well-known series of operations and
calculations; the distance across the room is found
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by operations with a tape-measure. Both parallax
and distance are quantities manufactured by our
operations; but for some reason we do not expect
parallax to appear as a distinct element in the true
picture of nature in the same way that distance
does. Or again, instead of cutting short the astro-
nomical calculations when we reach the parallax,
we might go on to take the cube of the result, and
so obtain another manufactured quantity, a “cubic
parallax.” For some obscure reason we expect to
see distance appearing plainly as a gulf in the true
world-picture; parallax does not appear directly,
though it can be exhibited as an angle by a com-
paratively simple construction; and cubic parallax
is not in the picture at all. The physicist would
say that he finds a length, and manufactures a cubic
parallax; but it is only because he has inherited a
preconceived theory of the world that he makes
the distinction. We shall venture to challenge this
distinction.

Distance, parallax and cubic parallax have the
same kind of potential existence even when the op-
erations of measurement are not actually made—if’
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you will move sideways you will be able to de-
termine the angular shift, if you will lay measur-
ing-rods in a line to the object you will be able
to count their number. Any one of the three
is an indication to us of some existent condition
or relation in the world outside us—a condition
not created by our operations. But there seems
no reason to conclude that this world-condition
resembles distance any more closely than it resem-
bles parallax or cubic parallax. Indeed any notion
of “resemblance” between physical quantities and
the world-conditions underlying them seems to
be inappropriate. If the length s is double the
length ¢p, the parallax of B from 4 is half the
parallax of p from c¢; there is undoubtedly some
world-relation which is different for 45 and cb,
but there is no reason to regard the world-relation
of 4B as being better represented by double than
by half the world-relation of ¢p.

'The connection of manufactured physical quan-
tities with the existent world-condition can be
expressed by saying that the physical quantities are
measure-numbers of the world-condition. Mea-
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sure-numbers may be assigned according to any
code, the only requirement being that the same
measure-number always indicates the same world-
condition and that different world-conditions re-
ceive different measure-numbers. Two or more
physical quantities may thus be measure-numbers
of the same world-condition, but in different codes,
e.g. parallax and distance; mass and energy; stellar
magnitude and luminosity. The constant formulae
connecting these pairs of physical quantities give
the relation between the respective codes. But
in admitting that physical quantities can be used
as measure-numbers of world-conditions existing
independently of our operations, we do not al-
ter their status as manufactured quantities. The
same series of operations will naturally manufac-
ture the same result when world-conditions are
the same, and different results when they are dif-
ferent. (Differences of world-conditions which do
not influence the results of experiment and obser-
vation are ipso facto excluded from the domain of
physical knowledge.) The size to which a crystal

grows may be a measure-number of the tempera-
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ture of the mother-liquor; but it is none the less
a manufactured size, and we do not conclude that
the true nature of size is caloric.

'The study of physical quantities, although they
are the results of our own operations (actual or
potential), gives us some kind of knowledge of the
world-conditions, since the same operations will
give different results in different world-conditions.
It seems that this indirect knowledge is all that
we can ever attain, and that it is only through
its influences on such operations that we can
represent to ourselves a “condition of the world.”
Any attempt to describe a condition of the world
otherwise is either mathematical symbolism or
meaningless jargon. To grasp a condition of the
world as completely as it is in our power to grasp
it, we must have in our minds a symbol which
comprehends at the same time its influence on
the results of all possible kinds of operations.
Or, what comes to the same thing, we must
contemplate its measures according to all possible
measure-codes—of course, without confusing the
different codes. It might well seem impossible to
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realise so comprehensive an outlook; but we shall
find that the mathematical calculus of tensors does
represent and deal with world-conditions precisely
in this way. A tensor expresses simultaneously the
whole group of measure-numbers associated with
any world-condition; and machinery is provided
for keeping the various codes distinct. For this
reason the somewhat difficult tensor calculus is
not to be regarded as an evil necessity in this
subject, which ought if possible to be replaced
by simpler analytical devices; our knowledge of
conditions in the external world, as it comes to us
through observation and experiment, is precisely
of the kind which can be expressed by a tensor
and not otherwise. And, just as in arithmetic
we can deal freely with a billion objects without
trying to visualise the enormous collection; so the
tensor calculus enables us to deal with the world-
condition in the totality of its aspects without
attempting to picture it.

Having regard to this distinction between phys-
ical quantities and world-conditions, we shall not
define a physical quantity as though it were a fea-
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ture in the world-picture which had to be sought
out. A4 physical quantity is defined by the series of op-
erations and calculations of which it is the result. The
tendency to this kind of definition had progressed
far even in pre-relativity physics. Force had be-
come “mass x acceleration,” and was no longer an
invisible agent in the world-picture, at least so far
as its definition was concerned. Mass is defined
by experiments on inertial properties, no longer
as “quantity of matter.” But for some terms the
older kind of definition (or lack of definition) has
been obstinately adhered to; and for these the
relativity theory must find new definitions. In
most cases there is no great difficulty in fram-
ing them. We do not need to ask the physicist
what conception he attaches to “length”; we watch
him measuring length, and frame our definition
according to the operations he performs. There
may sometimes be cases in which theory outruns
experiment and requires us to decide between two
definitions, either of which would be consistent
with present experimental practice; but usually we
can foresee which of them corresponds to the ideal
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which the experimentalist has set before himself.
For example, until recently the practical man was
never confronted with problems of non-Euclidean
space, and it might be suggested that he would
be uncertain how to construct a straight line when
so confronted; but as a matter of fact he showed
no hesitation, and the eclipse observers measured
without ambiguity the bending of light from the
“straight line.” 'The appropriate practical definition
was so obvious that there was never any danger
of different people meaning different loci by this
term. Our guiding rule will be that a physical
quantity must be defined by prescribing operations
and calculations which will lead to an unambigu-
ous result, and that due heed must be paid to
existing practice; the last clause should secure that
everyone uses the term to denote the same guan-
tity, however much disagreement there may be as
to the conception attached to it.

When defined in this way, there can be no
question as to whether the operations give us the
real physical quantity or whether some theoreti-
cal correction (not mentioned in the definition)
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is needed. The physical quantity is the measure-
number of a world-condition in some code; we
cannot assert that a code is right or wrong, or that
a measure-number is real or unreal; what we re-
quire is that the code should be the accepted code,
and the measure-number the number in current
use. For example, what is the real difference of
time between two events at distant places? The op-
eration of determining time has been entrusted to
astronomers, who (perhaps for mistaken reasons)
have elaborated a regular procedure. If the times
of the two events are found in accordance with
this procedure, the difference must be the real dif-
ference of time; the phrase has no other meaning.
But there is a certain generalisation to be noticed.
In cataloguing the operations of the astronomers,
so as to obtain a definition of time, we remark
that one condition is adhered to in practice evi-
dently from necessity and not from design—the
observer and his apparatus are placed on the earth
and move with the earth. 'This condition is so
accidental and parochial that we are reluctant to
insist on it in our definition of time; yet it so
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happens that the motion of the apparatus makes
an important difference in the measurement, and
without this restriction the operations lead to no
definite result and cannot define anything. We
adopt what seems to be the commonsense solution
of the difficulty. We decide that time is relative
to an observer; that is to say, we admit that an
observer on another star, who carries out all the
rest of the operations and calculations as specified
in our definition, is also measuring time—not our
time, but a time relative to himself. The same
relativity affects the great majority of elementary
physical quantities*; the description of the oper-
ations is insufficient to lead to a unique answer
unless we arbitrarily prescribe a particular motion
of the observer and his apparatus.

In this example we have had a typical illustra-
tion of “relativity,” the recognition of which has
had far-reaching results revolutionising the out-
look of physics. Any operation of measurement

*The most important exceptions are number (of discrete
entities), action, and entropy.
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involves a comparison between a measuring-ap-
pliance and the thing measured. Both play an
equal part in the comparison and are theoretically,
and indeed often practically, interchangeable; for
example, the result of an observation with the
meridian circle gives the right ascension of the
star or the error of the clock indifferently, and
we can regard either the clock or the star as the
instrument or the object of measurement. Re-
membering that physical quantities are results of
comparisons of this kind, it is clear that they can-
not be considered to belong solely to one partner
in the comparison. It is true that we standardise
the measuring appliance as far as possible (the
method of standardisation being explained or im-
plied in the definition of the physical quantity) so
that in general the variability of the measurement
can only indicate a variability of the object mea-
sured. To that extent there is no great practical
harm in regarding the measurement as belonging
solely to the second partner in the relation. But
even so we have often puzzled ourselves needlessly
over paradoxes, which disappear when we realise
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that the physical quantities are not properties of
certain external objects but are relations between
these objects and something else. Moreover, we
have seen that the standardisation of the measur-
ing-appliance is usually left incomplete, as regards
the specification of its motion; and rather than
complete it in a way which would be arbitrary and
pernicious, we prefer to recognise explicitly that
our physical quantities belong not solely to the
objects measured but have reference also to the
particular frame of motion that we choose.

The principle of relativity goes still further.
Even if the measuring-appliances were standard-
ised completely, the physical quantities would still
involve the properties of the constant standard.
We have seen that the world-condition or object
which is surveyed can only be apprehended in our
knowledge as the sum total of all the measure-
ments in which it can be concerned; any intrinsic
property of the object must appear as a unifor-
mity or law in these measures. When one partner
in the comparison is fixed and the other partner
varied widely, whatever is common to all the mea-
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surements may be ascribed exclusively to the first
partner and regarded as an intrinsic property of it.
Let us apply this to the converse comparison; that
is to say, keep the measuring-appliance constant
or standardised, and vary as widely as possible the
objects measured—or, in simpler terms, make a
particular kind of measurement in all parts of the
field. Intrinsic properties of the measuring-ap-
pliance should appear as uniformities or laws in
these measures. We are familiar with several such
uniformities; but we have not generally recognised
them as properties of the measuring-appliance.
We have called them /Jaws of nature!

'The development of physics is progressive, and
as the theories of the external world become crys-
tallised, we often tend to replace the elementary
physical quantities defined through operations of
measurement by theoretical quantities believed to
have a more fundamental significance in the ex-
ternal world. Thus the vis viva m?, which is im-
mediately determinable by experiment, becomes
replaced by a generalised energy, virtually de-
fined by having the property of conservation; and
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our problem becomes inverted—we have not to
discover the properties of a thing which we have
recognised in nature, but to discover how to recog-
nise in nature a thing whose properties we have
assigned. 'This development seems to be inevitable;
but it has grave drawbacks especially when theo-
ries have to be reconstructed. Fuller knowledge
may show that there is nothing in nature having
precisely the properties assigned; or it may turn
out that the thing having these properties has en-
tirely lost its importance when the new theoretical
standpoint is adopted*.When we decide to throw
the older theories into the melting-pot and make a
clean start, it is best to relegate to the background
terminology associated with special hypotheses of

physics. Physical quantities defined by opera-

*We shall see in § 59 that this has happened in the case
of energy. 'The dead-hand of a superseded theory continues to
embarrass us, because in this case the recognised terminology
still has implicit reference to it. This, however, is only a slight
drawback to set oft against the many advantages obtained
from the classical generalisation of energy as a step towards
the more complete theory.
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tions of measurement are independent of theory,
and form the proper starting-point for any new
theoretical development.

Now that we have explained how physical quan-
tities are to be defined, the reader may be surprised
that we do not proceed to give the definitions of
the leading physical quantities. But to catalogue
all the precautions and provisos in the operation
of determining even so simple a thing as length,
is a task which we shirk. We might take refuge
in the statement that the task though laborious
is straightforward, and that the practical physicist
knows the whole procedure without our writing it
down for him. But it is better to be more cau-
tious. I should be puzzled to say off-hand what is
the series of operations and calculations involved in
measuring a length of 10-%5 cm.; nevertheless I shall
refer to such a length when necessary as though it
were a quantity of which the definition is obvious.
We cannot be forever examining our foundations;
we look particularly to those places where it is re-
ported to us that they are insecure. I may be laying
myself open to the charge that I am doing the very
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thing I criticise in the older physics—using terms
that have no definite observational meaning, and
mingling with my physical quantities things which
are not the results of any conceivable experimental
operation. I would reply—

By all means explore this criticism if you regard
it as a promising field of inquiry. I here assume
that you will probably find me a justification for
my 10-* cm.; but you may find that there is an
insurmountable ambiguity in defining it. In the
latter event you may be on the track of something
which will give a new insight into the fundamental
nature of the world. Indeed it has been suspected
that the perplexities of quantum phenomena may
arise from the tacit assumption that the notions
of length and duration, acquired primarily from
experiences in which the average effects of large
numbers of quanta are involved, are applicable in
the study of individual quanta. There may need to
be much more excavation before we have brought
to light all that is of value in this critical con-
sideration of experimental knowledge. Meanwhile
I want to set before you the treasure which has
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already been unearthed in this field.



CHAPTERI
ELEMENTARY PRINCIPLES

1. Indeterminateness of the space-time frame.

T has been explained in the early chapters of
I Space, Time and Gravitation that observers with
different motions use different reckonings of space
and time, and that no one of these reckonings is
more fundamental than another. Our problem is
to construct a method of description of the world
in which this indeterminateness of the space-time
frame of reference is formally recognised.

Prior to Einstein’s researches no doubt was en-
tertained that there existed a “true even-flowing
time” which was unique and universal. The mov-
ing observer, who adopts a time-reckoning differ-
ent from the unique true time, must have been
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deluded into accepting a fictitious time with a
fictitious space-reckoning modified to correspond.
'The compensating behaviour of electromagnetic
forces and of matter is so perfect that, so far as
present knowledge extends, there is no test which
will distinguish the true time from the fictitious.
But since there are many fictitious times and, ac-
cording to this view, only one true time, some
kind of distinction is implied although its nature
is not indicated.

Those who still insist on the existence of a
unique “true time” generally rely on the possi-
bility that the resources of experiment are not
yet exhausted and that some day a discriminating
test may be found. But the off-chance that a
future generation may discover a significance in
our utterances is scarcely an excuse for making
meaningless noises.

Thus in the phrase zrue time, “true” is an epithet
whose meaning has yet to be discovered. It is a
blank label. We do not know what is to be writ-
ten on the label, nor to which of the apparently
indistinguishable time-reckonings it ought to be
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attached. There is no way of progress here. We re-
turn to firmer ground, and note that in the mass of
experimental knowledge which has accumulated,
the words #ime and space refer to one of the “fic-
titious” times and spaces—primarily that adopted
by an observer travelling with the earth, or with
the sun—and our theory will deal directly with
these space-time frames of reference, which are
admittedly fictitious or, in the more usual phrase,
relative to an observer with particular motion.

The observers are studying the same external
events, notwithstanding their different space-time
frames. 'The space-time frame is therefore some-
thing overlaid by the observer on the external
world; the partitions representing his space and
time reckonings are imaginary surfaces drawn in
the world like the lines of latitude and longitude
drawn on the earth. They do not follow the natural
lines of structure of the world, any more than the
meridians follow the lines of geological structure
of the earth. Such a mesh-system is of great
utility and convenience in describing phenomena,
and we shall continue to employ it; but we must
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endeavour not to lose sight of its fictitious and
arbitrary nature.

It is evident from experience that a four-fold
mesh-system must be used; and accordingly an
event is located by four coordinates, generally
taken as , y, z, t. 1o understand the significance
of this location, we first consider the simple case
of two dimensions. If we describe the points of a
plane figure by their rectangular coordinates =, y,
the description of the figure is complete and would
enable anyone to construct it; but it is also more
than complete, because it specifies an arbitrary
element, the orientation, which is irrelevant to the
intrinsic properties of the figure and ought to be
cast aside from a description of those properties.
Alternatively we can describe the figure by stating
the distances between the various pairs of points
in it; this description is also complete, and it has
the merit that it does not prescribe the orientation
or contain anything else irrelevant to the intrinsic
properties of the figure. The drawback is that it is
usually too cumbersome to use in practice for any
but the simplest figures.
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Similarly our four coordinates , y, =, + may be
expected to contain an arbitrary element, analo-
gous to an orientation, which has nothing to do
with the properties of the configuration of events.
A different set of values of «, y, -, + may be chosen
in which this arbitrary element of the description
is altered, but the configuration of events remains
unchanged. It is this arbitrariness in coordinate
specification which appears as the indeterminate-
ness of the space-time frame. The other method of
description, by giving the distances between every
pair of events (or rather certain relations between
pairs of events which are analogous to distance),
contains all that is relevant to the configuration of
events and nothing that is irrelevant. By adopting
this latter method we can strip away the arbitrary
part of the description, leaving only that which
has an exact counterpart in the configuration of
the external world.

To put the contrast in another form, in our
common outlook the idea of position or /location
seems to be fundamental. From it we derive
distance or extension as a subsidiary notion, which
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covers part but not all of the conceptions which we
associate with location. Position is looked upon
as the physical fact—a coincidence with what is
vaguely conceived of as an identifiable point of
space—whereas distance is looked upon as an
abstraction or a computational result calculable
when the positions are known. The view which
we are going to adopt reverses this. Extension
(distance, interval) is now fundamental; and the
location of an object is a computational result
summarising the physical fact that it is at certain
intervals from the other objects in the world.
Any idea contained in the concept location which
is not expressible by reference to distances from
other objects, must be dismissed from our minds.
Our ultimate analysis of space leads us not to a
“here” and a “there,” but to an extension such
as that which relates “here” and “there.” To put
the conclusion rather crudely—space is not a lot
of points close together; it is a lot of distances
interlocked.

Accordingly our fundamental hypothesis is
that—
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Everything connected with location which enters
into observational knowledge—everything we can
know about the configuration of events—is contained
in a relation of extension between pairs of events.

'This relation is called the inferval, and its mea-
sure is denoted by ds.

If we have a system s consisting of events
A, B, C, D, ..., and a system s consisting of
events A, B, ¢, D, ..., then the fundamental
hypothesis implies that the two systems will be
exactly alike observationally if, and only if, all
pairs of corresponding intervals in the two systems
are equal, 4B = a'p, ac=ac, .... In that case if
s and s are material systems they will appear to
us as precisely similar bodies or mechanisms; or if
s and s correspond to the same material body at
different times, it will appear that the body has not
undergone any change detectable by observation.
But the position, motion, or orientation of the
body may be different; that is a change detectable
by observation, not of the system s, but of a wider
system comprising s and surrounding bodies.

Again let the systems s and s be abstract co-
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ordinate-frames of reference, the events being the
corners of the meshes; if all corresponding inter-
vals in the two systems are equal, we shall recog-
nise that the coordinate-frames are of precisely
the same kind—rectangular, polar, unaccelerated,
rotating, etc.

2. The fundamental quadratic form.

We have to keep side by side the two methods
of describing the configurations of events by coor-
dinates and by the mutual intervals, respectively—
the first for its conciseness, and the second for
its immediate absolute significance. It is therefore
necessary to connect the two modes of description
by a formula which will enable us to pass readily
from one to the other. The particular formula
will depend on the coordinates chosen as well as
on the absolute properties of the region of the
world considered; but it appears that in all cases
the formula is included in the following general
form—

'The interval ds between two neighbouring events
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with coordinates (z1,2s,25,21) and (z, + da1, s + dis, x5 +
drs, x4 +dzy) in any coordinate-system is given by

ds® = g11 da? + gao a3 + gs3 daj + gaa da}
+ 2912 dry dre + 2913 dxqidrs + 2914 dry dzy

+ 2go3 dxo drs + 2904 dxo dry + 2934 dx3 dy, (2.1)

where the coefficients 4, etc. are functions of
w1y w2y w3, 75 1hat is to say, ds? is some quadratic
function of the differences of coordinates.

This is, of course, not the most general case
conceivable; for example, we might have a world in
which the interval depended on a general quartic
function of the a’s. But, as we shall presently
see, the quadratic form (2.1) is definitely indicated
by observation as applying to the actual world.
Moreover near the end of our task (§ 97) we shall
find in the general theory of relation-structure a
precise reason why a quadratic function of the
coordinate-differences should have this paramount
importance.

Whilst the form of the right-hand side of (2.1)

is that required by observation, the insertion of ds?
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on the left, rather than some other function of ds,
is merely a convention. The quantity ds is a mea-
sure of the interval. It is necessary to consider
carefully how measure-numbers are to be affixed
to the different intervals occurring in nature. We
have seen in the last section that equality of in-
tervals can be tested observationally; but so far as
we have yet gone, intervals are merely either equal
or unequal, and their differences have not been
further particularised. Just as wind-strength may
be measured by velocity, or by pressure, or by a
number on the Beaufort scale, so the relation of
extension between two events could be expressed
numerically according to many different plans. To
conform to (2.1) a particular code of measure-num-
bers must be adopted; the nature and advantages
of this code will be explained in the next section.

'The pure geometry associated with the general
formula (2.1) was studied by Riemann, and is gen-
erally called Riemannian geometry. It includes
Euclidean geometry as a special case.
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3. Measurement of intervals.

Consider the operation of proving by measure-
ment that a distance 43 is equal to a distance cp.
We take a configuration of events rmnor..., viz.
a measuring-scale, and lay it over 4B, and observe
that 4 and B coincide with two particular events
P, @ (scale-divisions) of the configuration. We find
that the same configuration* can also be arranged
so that ¢ and p coincide with p and ¢ respectively.
Further we apply all possible tests to the measur-
ing-scale to see if it has “changed” between the
two measurements; and we are only satisfied that
the measures are correct if no observable difference
can be detected. According to our fundamental
axiom, the absence of any observable difference
between the two configurations (the structure of
the measuring-scale in its two positions) signifies
that the intervals are unchanged; in particular the
interval between p and ¢ is unchanged. It follows

*The logical point may be noticed that the measuring-scale
in two positions (necessarily at different times) represents the
same conﬁgumz‘z'on of events, not the same events.



CH. I MEASUREMENT OF INTERVALS

that the interval 4 to B is equal to the interval
¢ to p. We consider that the experiment proves
equality of distance; but it is primarily a test of
equality of interval.

In this experiment time is not involved; and we
conclude that in space considered apart from time
the test of equality of distance is equality of inter-
val. There is thus a one-to-one correspondence of
distances and intervals. We may therefore adopt
the same measure-number for the interval as is in
general use for the distance, thus settling our plan
of afhixing measure-numbers to intervals. It fol-
lows that, when time is not involved, the interval
reduces to the distance.

It is for this reason that the quadratic form (2.1)
is needed in order to agree with observation, for it
is well known that in three dimensions the square
of the distance between two neighbouring points
is a quadratic function of their infinitesimal coor-
dinate-differences—a result depending ultimately
on the experimental law expressed by Euclid 1, 47.

When time is involved other appliances are used
for measuring intervals. If we have a mechanism
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capable of cyclic motion, its cycles will measure
equal intervals provided the mechanism, its laws
of behaviour, and all relevant surrounding circum-
stances, remain precisely similar. For the phrase
“precisely similar” means that no observable dif-
ferences can be detected in the mechanism or its
behaviour; and that, as we have seen, requires that
all corresponding intervals should be equal. In
particular the interval between the events marking
the beginning and end of the cycle is unaltered.
Thus a clock primarily measures equal intervals;
it is only under more restricted conditions that it
also measures the time-coordinate :.

In general any repetition of an operation un-
der similar conditions, but for a different time,
place, orientation and velocity (attendant circum-
stances which have a relative but not an absolute
significance*), tests, equality of interval.

It is obvious from common experience that in-
tervals which can be measured with a clock cannot

*They express relations to events which are not concerned
in the test, e.g. to the sun and stars.
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be measured with a scale, and vice versa. We have
thus two varieties of intervals, which are provided
for in the formula (2.1), since 45> may be positive
or negative and the measure of the interval will
accordingly be expressed by a real or an imagi-
nary number. The abbreviated phrase “imaginary
interval” must not be allowed to mislead; there is
nothing imaginary in the corresponding relation;
it is merely that in our arbitrary code an imaginary
number is assigned as its measure-number. We
might have adopted a different code, and have
taken, for example, the antilogarithm of 42 as the
measure of the interval; in that case space-intervals
would have received code-numbers from 1 to o,
and time-intervals numbers from o to 1. When we
encounter -1 in our investigations, we must re-
member that it has been introduced by our choice
of measure-code, and must not think of it as
occurring with some mystical significance in the
external world.
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4. Rectangular coordinates and time.

Suppose that we have a small region of the
world throughout which the ¢'s can be treated as
constants*. In that case the right-hand side of (2.1)
can be broken up into the sum of four squares,
admitting imaginary coefficients if necessary. Thus
writing

Y1 = a1%1 + a2%2 + a3x3 + a4y,

Yo = b1x1 + baxo + bsxs + baxy, CtC.,
so that

dy1 = a1 dxy + as drs + az drs + ag dxy, CtC.,

we can choose the constants ay, 5, ... so that
(2.1) becomes

ds® = dy? + dy3 + dyz + dy3. (4.1)

*[t will be shown in § 36 that it is always possible to
transform the coordinates so that the first derivatives of
the ¢’s vanish at a selected point. We shall suppose that this
preliminary transformation has already been made, in order
that the constancy of the ¢g’s may be a valid approximation
through as large a region as possible round the selected point.
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For, substituting for the 4’s and comparing coef-
ficients with (2.1, we have only 10 equations to be
satisfied by the 16 constants. There are thus many
ways of making the reduction. Note, however,
that the reduction to the sum of four squares of
complete difterentials is not in general possible for
a large region, where the s have to be treated as
functions, not constants.

Consider all the events for which 4, has some
specified value. These will form a three-dimen-
sional world. Since ay, is zero for every pair of
these events, their mutual intervals are given by

ds? = dyi + dy3 + dy3. (4.2)

But this is exactly like familiar space in which the
interval (which we have shown to be the same as
the distance for space without time) is given by

ds* = da* + dy? + dz2?, (4.3)

where «, y, - are rectangular coordinates.
Hence a section of the world by v, = const. will
appear to us as space, and y, v, y;» Will appear
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to us as rectangular coordinates. The coordinate-
frames yi, ., v, and «, y, 2, are examples of the
systems s and s of § 1, for which the intervals
between corresponding pairs of mesh-corners are
equal. The two systems are therefore exactly alike
observationally; and if one appears to us to be
a rectangular frame in space, so also must the
other. One proviso must be noted; the coordinates
i, 12, ys fOr real events must be real, as in familiar
space, otherwise the resemblance would be only
formal.

Granting this proviso, we have reduced the
general expression to

ds® = dz® + dy? + d2* + dy3, (4.4)

where =, y, - will be recognised by us as rectangular
coordinates in space. Clearly y, must involve the
time, otherwise our location of events by the four
coordinates would be incomplete; but we must not
too hastily identify it with the time .

I suppose that the following would be generally
accepted as a satisfactory (pre-relativity) definition
of equal time-intervals:—if we have a mechanism
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capable of cyclic motion, its cycles will measure
equal durations of time anywhere and anywbhen,
provided the mechanism, its laws of behaviour,
and all outside influences remain precisely similar.
To this the relativist would add the condition
that the mechanism (as a whole) must be at rest
in the space-time frame considered, because it is
now known that a clock in motion goes slow in
comparison with a fixed clock. The non-relativist
does not disagree in fact, though he takes a slightly
different view; he regards the proviso that the
mechanism must be at rest as already included in
his enunciation, because for him motion involves
progress through the aether, which (he considers)
directly affects the behaviour of the clock, and is
one of those “outside influences” which have to be
kept “precisely similar.”

Since then it is agreed that the mechanism as
a whole is to be at rest, and the moving parts
return to the same positions after a complete
cycle, we shall have for the two events marking



CH. I RECTANGULAR COORDINATES AND TIME

the beginning and end of the cycle
dz, dy, dz=0.
Accordingly (4.4) gives for this case
ds* = dy3.

We have seen in § 3 that the cycles of the mech-
anism in all cases correspond to equal intervals as;
hence they correspond to equal values of ay,. But
by the above definition of time they also corre-
spond to equal lapses of time dr; hence we must
have 4y, proportional to 4, and we express this
proportionality by writing

dys = icdt, (4.5)

where i = v~1, and ¢ is a constant. It is, of course,
possible that  may be an imaginary number, but
provisionally we shall suppose it real. Then @.)
becomes

ds® = do® + dy? + dz* — Adt*. (4.6)

A further discussion is necessary before it is
permissible to conclude that (4.6) is the most general
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possible form for 4s? in terms of ordinary space and
time coordinates. If we had reduced (21) to the
rather more general form

ds® = da® + dy? + dz* — Adt* — 2cadr dt — 2cBdy dt — 2cydzdt, (4.7)

this would have agreed with 6 in the only
two cases yet discussed, viz. (1) when a =0, and
(2) when dz, dy, d¢z=o0. To show that this more gen-
eral form is inadmissible we must examine pairs
of events which differ both in time and place.

In the preceding pre-relativity definition of :
our clocks had to remain stationary and were
therefore of no use for comparing time at different
places. What did the pre-relativity physicist mean
by the difference of time 4 between two events
at different places? I do not think that we can
attach any meaning to his hazy conception of
what a signified; but we know one or two ways in
which he was accustomed to determine it. One
method which he used was that of transport of
chronometers. Let us examine then what happens
when we move a clock from (z1,0,0) at the time ¢
to another place (x..0,0) at the time ¢,.
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We have seen that the clock, whether at rest or
in motion, provided it remains a precisely similar
mechanism, records equal intervals; hence the
difference of the clock-readings at the beginning
and end of the journey will be proportional to the
integrated interval

2

/ ds. (4.81)

1

If the transport is made in the direct line (ay = o,
dz=0), we shall have according to (4.7)
g g ap i 2edr L (dr]
ds® = c*dt” + 2cadx dt —dx” = c* dt {1+ e 02<dt .

Hence the difterence of the clock-readings (4.81) is

proportional to
to 3
2
/dtﬁH%—Z—z, (4.82)
t1

where u = dz/dt, i.e. the velocity of the clock. The
integral will not in general reduce to «, —; so that
the difference of time at the two places is not given
correctly by the reading of the clock. Even when
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o« =0, the moving clock does not record correct
time.

Now introduce the condition that the velocity «
is very small, remembering that « -+ will then
become very large. Neglecting 2/, (4.82) becomes
approximately

to

/dt (1+i‘$) = (tg—tl)—i-%(mg—xl).

t
The clock, if moved sufficiently slowly, will record
the correct time-difference if, and only if, o = o.
Moving it in other directions, we must have,
similarly, =0, v=0. Thus (46) is the most general
formula for the interval, when the time at different
places is compared by slow transport of clocks from
one place to another.

I do not know how far the reader will be
prepared to accept the condition that it must be
possible to correlate the times at different places
by moving a clock from one to the other with
infinitesimal velocity. 'The method employed in
accurate work is to send an electromagnetic signal
from one to the other, and we shall see in § 11
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that this leads to the same formulae. We can
scarcely consider that either of these methods of
comparing time at different places is an essential
part of our primitive notion of time in the same
way that measurement at one place by a cyclic
mechanism is; therefore they are best regarded as
conventional. Let it be understood, however, that
although the relativity theory has formulated the
convention explicitly, the usage of the word #ime-
difference for the quantity fixed by this convention
is in accordance with the long established practice
in experimental physics and astronomy.

Setting « =0 in (4.82), we see that the accurate
formula for the clock-reading will be

/df\/1—“2=\/ s(tg—tl) (4.9)

for a uniform velocity «. Thus a clock travelling
with finite velocity gives too small a reading—the
clock goes slow compared with the time-reckoning
conventionally adopted.

To sum up the results of this section, if we
choose coordinates such that the general quadratic
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form reduces to
ds® = dyf + dy% + dy§ + dyi7 (4.95)

then vy, 4, » and yv=1 will represent ordinary
rectangular coordinates and time. If we choose
coordinates for which

ds® = dy} + dys + dy3 + dy} + 2a dyy dys + 28 dys dya + 2y dys dya, (4.96)

these coordinates also will agree with rectangular
coordinates and time so far as the more primitive
notions of time are concerned; but the reckoning
by this formula of differences of time at different
places will not agree with the reckoning adopted
in physics and astronomy according to long es-
tablished practice. For this reason it would only
introduce confusion to admit these coordinates as
a permissible space and time system.

We who regard all coordinate-frames as equally
fictitious structures have no special interest in
ruling out the more general form (4.9). It is
not a question of ascribing greater significance to
one frame than to another, but of discovering
which frame corresponds to the space and time
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reckoning generally accepted and used in standard
works such as the Nautical Almanac.

As far as § 14 our work will be subject to
the condition that we are dealing with a region
of the world in which the /s are constant, or
approximately constant. A region having this
property is called flaz. The theory of this case
is called the “special” theory of relativity; it was
discussed by Einstein in 1905—some ten years
before the general theory. But it becomes much
simpler when regarded as a special case of the
general theory, because it is no longer necessary
to defend the conditions for its validity as being
essential properties of space-time. For a given
region these conditions may hold, or they may
not. The special theory applies only if they hold;

other cases must be referred to the general theory.
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5. The Lorentz transformation.

Make the following transformation of coordi-
nates

=0 —ut), y=vy, =2, t =Bt —ua'/c?), (5.1)

where « is any real constant not greater than .

We have by (.1)

dz® — ¢ dt* = p*{(da’ — udt')® — *(dt' — uda’/c*)*}

— 52 {(1 o ’lL2) dle o (62 u?)dtIQ}
c2

=dz"? — 2 dt’”.
Hence from (4.6)
ds? = da® + dy* + d2* — A2dt? = da’? + dy? + d2* — Pdt’. (5.2)

The accented and unaccented coordinates give
the same formula for the interval, so that the inter-
vals between corresponding pairs of mesh-corners
will be equal, and therefore in all observable re-
spects they will be alike. We shall recognise
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«y ¢,  as rectangular coordinates in space, and
v as the associated time. We have thus arrived
at another possible way of reckoning space and
time—another fictitious space-time frame, equiv-
alent in all its properties to the original one. For
convenience we say that the first reckoning is that
of an observer s and the second that of an ob-
server s', both observers being at rest in their
respective spaces*.

'The constant « is easily interpreted. Since s is
at rest in his own space, his location is given by
»=const. By (5.1) this becomes, in s’s coordinates,
o —ut’ = const.; that is to say, s is travelling in
the »/-direction with velocity «. Accordingly the

#This is partly a matter of nomenclature. A sentient
observer can force himself to “recollect that he is moving” and
so adopt a space in which he is not at rest; but he does not so
readily adopt the time which properly corresponds; unless he
uses the space-time frame in which he is at rest, he is likely
to adopt a hybrid space-time which leads to inconsistencies.
'There is no ambiguity if the “observer” is regarded as merely
an involuntary measuring apparatus, which by the principles
of § 4 naturally partitions a space and time with respect to
which it is at rest.
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constant « is interpreted as the velocity of s relative
to 5.

It does not follow immediately that the velocity
of s relative to s is —u; but this can be proved
by algebraical solution of the equations (1) to
determine »/, v, », ¥. We find

o =Be+ut), Y=y, =z A =pt+uz/d), (5.3)

showing that an interchange of s and s merely
reverses the sign of «.

The essential property of the foregoing trans-
formation is that it leaves the formula for ds? unal-
tered (5.2), so that the coordinate-systems which it
connects are alike in their properties. Looking at
the matter more generally, we have already noted
that the reduction to the sum of four squares can
be made in many ways, so that we can have

ds? = dyf + dy5 + dy3 + dyi = dyi® + dyy’ + dyi? + dyi. (5.4)

'The determination of the necessary connection be-
tween any two sets of coordinates satisfying this
equation is a problem of pure mathematics; we
can use freely the conceptions of four-dimensional
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geometry and imaginary rotations to find this con-
nection, whether the conceptions have any physical
significance or not. We see from (5.4) that as is
the distance between two points in four-dimen-
sional Euclidean space, the coordinates (y,ys,ys, 1)
and (4,454, being rectangular systems (real or
imaginary) in that space. Accordingly these coor-
dinates are related by the general transformations
from one set of rectangular axes to another in four
dimensions, viz. translations and rotations. Trans-
lation, or change of origin, need not detain us; nor
need a rotation of the space-axes (y,y..y5) leaving
time unaffected. The interesting case is a rotation

in which y, is involved, typified by
y1 =yycosf —y,sinf,  yy=1y)sinb + y cosb.

Writing u = ictan6, so that g = cos, this leads to the
Lorentz transformation (5.1).

Thus, apart from obvious trivial changes of
axes, the Lorentz transformations are the only
ones which leave the form (4.6) unaltered.

Historically this transformation was first ob-
tained for the particular case of electromagnetic
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equations. Its more general character was pointed

out by Einstein in 1905.

6. The velocity of light.

Consider a point moving along the »-axis whose
velocity measured by s’ is v, so that

/
, _dx

== (6.1)

v

'Then by (5.1) its velocity measured by s is

_dx B(dz’ —udt)

YT B(dt' —udx’/c?)
v —u

-~ by . (6.2)

1—uv'/c?

In non-relativity kinematics we should have taken
it as axiomatic that v =+ — u.

If two points move relatively to s with equal
velocities in opposite directions +» and -v, their
velocities relative to s are

v —u v 4u
_v-%  gnd - Y%
1—uv'/c? 14+ uwv'/c?

As we should expect, these speeds are usually
unequal; but there is an exceptional case when
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v =c. The speeds relative to s are then also equal,
both in fact being equal to c.
Again it follows from (5.2) that when

da'\ 2 cly’2 dz'\? 9
w) ) T\ ) =

ds =0, and hence

BRENE
Thus when the resultant velocity relative to s’ is «,
the velocity relative to s is also ¢, whatever the
direction. We see that the velocity ¢ has a unique
and very remarkable property.

According to the older views of absolute time
this result appears incredible. Moreover we have
not yet shown that the formulae have practical
significance, since  might be imaginary. But
experiment has revealed a real velocity with this
remarkable property, viz. 299,860 km. per sec. We
shall call this the fundamental velocity.

By good fortune there is an entity—light—
which travels with the fundamental velocity. It
would be a mistake to suppose that the existence
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of such an entity is responsible for the prominence
accorded to the fundamental velocity ¢ in our
scheme; but it is helpful in rendering it more
directly accessible to experiment. The Michelson-
Morley experiment detected no difference in the
velocity of light in two directions at right angles.
Six months later the earth’s orbital motion had
altered the observer’s velocity by 60 km. per sec.,
corresponding to the change from s to s, and there
was still no difference. Hence the velocity of light
has the distinctive property of the fundamental
velocity.

Strictly speaking the Michelson-Morley exper-
iment did not prove directly that the velocity of
light was constant in all directions, but that the
average to-and-fro velocity was constant in all di-
rections. 'The experiment compared the times of a
journey “there-and-back.” If () is the velocity of
light in the direction ¢, the experimental result is

=const. =C

v(@) vl + ) 6.3)

1 /
vt v - const.=¢
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for all values of ¢. The constancy has been estab-
lished to about 1 part in 10%.

It is exceedingly unlikely that the first equation
could hold unless

v(0) = v(0 + ) = const.;

and it is fairly obvious that the existence of the
second equation excludes the possibility altogether.
However, on account of the great importance of
the identification of the fundamental velocity with
the velocity of light, we give a formal proof.

Let a ray travelling with velocity » traverse a
distance r in a direction ¢, so that

dt:E, dx = Rcos#, dy = Rsin§.

v

Let the relative velocity of s and s be small so
that «2/2 is neglected. Then by (5.3)

dt' = dt +udx/c®, di’ =dx+udt, dy =dy.

Writing sr, s, sv for the change in &, 9, » when a
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transformation is made to s’s system, we obtain

R uRR cos 6
(=) =dt —dt = ——=
& s

uR

d(Rcos) = dx’ — dx = .

§(Rsinf) = dy' — dy = 0.

Whence the values of sr, s, 5(1/») are found as
follows:

SR — uRcosH,

v

50 — _usmﬁ,

v
1 11
5(=) =ucost (= — = ).
<U> 1 cos (CQ U2>
Here s(1/v) refers to a comparison of velocities in
the directions ¢ in §’s system and ¢ in s’s system.

Writing a(1/v) for a comparison when the direction
is 6 in both systems

1 1 0 (1
a()=0(1) - (2) o
= gcos¢9f£cos€+ usinf 2 (1>

c? v2 v 00 \v

_u 1 .3, 0 1
—C—zcos0+§us1n 9% (1}251r120>
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Hence

2 wwrar) = 2o g s (g~ ) )

By (6.3) the left-hand side is independent of s,
and equal to the constant ¢'—-c. We obtain on
integration

1 1 c'-C, .
PO PErm - w N0 logran - cosh),

or

1 1 c-c 1, ,
- - 2 (sin20 -1 1g_ _
O TS c u(sm ¢ - logtan 56 — cos 0))

It is clearly impossible that the difference of 1/» in
opposite directions should be a function of ¢ of this
form; because the origin of ¢ is merely the direction
of relative motion of s and s, which may be
changed at will in different experiments, and has
nothing to do with the propagation of light relative
to s. Hence ¢/~ c =0, and v(6) = (6 + r). Accordingly
by (6.3) »(6) is independent of 4; and similarly v() is
independent of 4. 'Thus the velocity of light is

uniform in all directions for both observers and
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is therefore to be identified with the fundamental
velocity.

When this proof is compared with the state-
ment commonly (and correctly) made that the
equality of the forward and backward velocity of
light cannot be deduced from experiment, regard
must be paid to the context. The use of the
Michelson-Morley experiment to fill a particu-
lar gap in a generally deductive argument must
not be confused with its use (e.g. in Space, Time
and Grawvitation) as the basis of a pure induction
from experiment. Here we have not even used
the fact that it is a second-order experiment. We
have deduced the Lorentz transformation from the
fundamental hypothesis of § 1, and have already
introduced a conventional system of time-reckon-
ing explained in § 4. The present argument shows
that the convention that time is defined by the
slow transport of chronometers is equivalent to
the convention that the forward velocity of light
is equal to the backward velocity. 'The proof of
this equivalence is mainly deductive except for one
hiatus—the connection of the propagation of light
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and the fundamental velocity—and for that step
appeal is made to the Michelson-Morley experi-
ment.

'The law of composition of velocities (6.2) is well
illustrated by Fizeau’s experiment on the propaga-
tion of light along a moving stream of water. Let
the observer s travel with the stream of water,
and let s be a fixed observer. The water is at
rest relatively to s and the velocity of the light
relative to him will thus be the ordinary velocity
of propagation in still water, viz. v = ¢/u, where , is
the refractive index. 'The velocity of the stream
being w, —w is the velocity of s relative to s/; hence
by (6.2) the velocity » of the light relative to s is

v 4w e/ w
v — _

= = ~ 1—1/p°
1+wv'/c2 14 w/uc ¢/t /i)

neglecting the square of w/c.

Accordingly the velocity of the light is not
increased by the full velocity of the stream in
which it is propagated, but by the fraction (1-1/4?)w.
For water this is about o44w. The effect can be
measured by dividing a beam of light into two
parts which are sent in opposite directions round
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a circulating stream of water. 'The factor (1 -1/u?)
is known as Fresnel’s convection-coefficient; it was
confirmed experimentally by Fizeau in 1851.

If the velocity of light in wvacuo were a con-
stant ¢ differing from the fundamental velocity «,
the foregoing calculation would give for Fresnel’s
convection-coefficient

/2
1- %2 : %
Thus Fizeau’s experiment provides independent
evidence that the fundamental velocity is at least
approximately the same as the velocity of light.
In the most recent repetitions of this experiment
made by Zeeman* the agreement between theory
and observation is such that ¢ cannot differ from «

by more than 1 part in 500.

7. Timelike and spacelike intervals.

We make a slight change of notation, the quan-
tity hitherto denoted by ds* being in all subsequent

*Amsterdam Proceedings, vol. xvii1, pp. 398 and 1240.
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formulae replaced by —ds?, so that (4.6) becomes
ds® = c*dt* — da® — dy* — dz*. (7.1)

There is no particular advantage in this change
of sign; it is made in order to conform to the
customary notation.

'The formula may give either positive or negative
values of 4s?, so that the interval between real
events may be a real or an imaginary number. We
call real intervals timelike, and imaginary intervals
spacelike.

From (7.1

@ 2 _a dj 2 - @ 2 - % 2
dat ) dt dt dt
=c? - (7.2)

where v is the velocity of a point describing the
track along which the interval lies. The interval is
thus real or imaginary according as v is less than or
greater than .. Assuming that a material particle
cannot travel faster than light, the intervals along
its track must be timelike. We ourselves are
limited by material bodies and therefore can only
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have direct experience of timelike intervals. We are
immediately aware of the passage of time without
the use of our external senses; but we have to
infer from our sense perceptions the existence of
spacelike intervals outside us.

From any event 4, y, =, , intervals radiate in
all directions* to other events; and the real and
imaginary intervals are separated by the cone

0=c*dt?* — dz? — dy* — dz?,

which is called the nwu//-come. Since light trav-
els with velocity ¢, the track of any light-pulse
proceeding from the event lies on the null-cone.
When the s are not constants and the funda-
mental quadratic form is not reducible to (7.1,
there is still a null-surface, given by ds =0 in (2.1),
which separates the timelike and spacelike inter-
vals. There can be little doubt that in this case
also the light-tracks lie on the null-surface, but
the property is perhaps scarcely self-evident, and

*[t should be noted that a four-dimensional “direction”
corresponds to velocity in space zyz, for such a direction can
be defined by the expression dx : dy : dz : dt, or u: v :w: 1.
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we shall have to justify it in more detail later.

'The formula (6.2) for the composition of veloci-
ties in the same straight line may be written

tanh ™' v/c = tanh ™' v/ /¢ — tanh ™" w/c. (7.3)

'The quantity wnh'v/c has been called by Robb the
rapidity corresponding to the velocity «. Thus
(7.3) shows that relative rapidities in the same
direction compound according to the simple ad-
dition-law. Since tnh'1 = , the velocity of light
corresponds to infinite rapidity. We cannot reach
infinite rapidity by adding any finite number of
finite rapidities; therefore we cannot reach the ve-
locity of light by compounding any finite number
of relative velocities less than that of light.

There is an essential discontinuity between
speeds greater than and less than that of light
which is illustrated by the following example.
If two points move in the same direction with
velocities

V] = C+ €, Vg =C—€
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respectively, their relative velocity is by (6.2)

vy —v2 2€ _202
1—vwe/c2  1—(c2—€2)/c2 ¢’

which tends to infinity as ¢ is made infinitely small!
If the fundamental velocity is exactly 300,000 km.
per sec., and two points move in the same di-
rection with speeds of 300,001 and 299,999 km.
per sec., the speed of one relative to the other
is 180,000,000,000 km. per sec. The barrier at
300,000 km. per sec. is not to be crossed by ap-
proaching it. A particle which is aiming to reach
a speed of 300,001 km. per sec. might naturally
hope to attain its object by continually increasing
its speed; but when it has reached 299,999 km.
per sec., and takes stock of the position, it sees its
goal very much farther off than when it started.
A particle of matter is a structure whose linear
extension is timelike. We might perhaps imagine
an analogous structure ranged along a spacelike
track. That would be an attempt to picture a par-
ticle travelling with a velocity greater than that of
light; but since the structure would differ funda-
mentally from matter as known to us, there seems
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no reason to think that it would be recognised by
us as a particle of matter, even if its existence were
possible. For a suitably chosen observer a spacelike
track can lie wholly in an instantaneous space. The
structure would exist along a line in space at one
moment; at preceding and succeeding moments
it would be non-existent. Such instantaneous in-
trusions must profoundly modify the continuity
of evolution from past to future. In default of
any evidence of the existence of these spacelike
particles we shall assume that they are impossible
structures.

8. Immediate consciousness of time.

Our minds are immediately aware of a “flight of
time” without the intervention of external senses.
Presumably there are more or less cyclic processes
occurring in the brain, which play the part of a
material clock, whose indications the mind can
read. The rough measures of duration made by the
internal time-sense are of little use for scientific
purposes, and physics is accustomed to base time-
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reckoning on more precise external mechanisms.
It is, however, desirable to examine the relation of
this more primitive notion of time to the scheme
developed in physics.

Much confusion has arisen from a failure to
realise that time as currently used in physics and
astronomy deviates widely from the time recog-
nised by the primitive time-sense. In fact the time
of which we are immediately conscious is not in
general physical time, but the more fundamental
quantity which we have called interval (confined,
however, to timelike intervals).

Our time-sense is not concerned with events
outside our brains; it relates only to the linear
chain of events along our own track through the
world. We may learn from another observer
similar information as to the time-succession of
events along his track. Further we have inanimate
observers—clocks—from which we may obtain
similar information as to their local time-succes-
sions. The combination of these linear successions
along different tracks into a complete ordering of
the events in relation to one another is a problem
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that requires careful analysis, and is not correctly
solved by the haphazard intuitions of pre-relativity
physics. Recognising that both clocks and time-
sense measure ds between pairs of events along
their respective tracks, we see that the problem
reduces to that which we have already been study-
ing, viz. to pass from a description in terms of
intervals between pairs of events to a description
in terms of coordinates.

The external events which we see appear to fall
into our own local time-succession; but in reality it
is not the events themselves, but the sense-impres-
sions to which they indirectly give rise, which take
place in the time-succession of our consciousness.
'The popular outlook does not trouble to discrim-
inate between the external events themselves and
the events constituted by their light-impressions
on our brains; and hence events throughout the
universe are crudely located in our private time-
sequence. Through this confusion the idea has
arisen that the instants of which we are conscious
extend so as to include external events, and are
world-wide; and the enduring universe is supposed
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to consist of a succession of instantaneous states.
'This crude view was disproved in 1675 by Rémer’s
celebrated discussion of the eclipses of Jupiter’s
satellites; and we are no longer permitted to locate
external events in the instant of our visual percep-
tion of them. The whole foundation of the idea of
world-wide instants was destroyed 250 years ago,
and it seems strange that it should still survive
in current physics. But, as so often happens, the
theory was patched up although its original raison
d étre* had vanished. Obsessed with the idea that
the external events had to be put somehow into the
instants of our private consciousness, the physicist
succeeded in removing the pressing difficulties by
placing them not in the instant of visual percep-
tion but in a suitable preceding instant. Physics
borrowed the idea of world-wide instants from
the rejected theory, and constructed mathematical
continuations of the instants in the consciousness
of the observer, making in this way time-partitions
throughout the four-dimensional world. We need

*ground for existence. (Ed.)



CH. I IMMEDIATE CONSCIOUSNESS OF TIME

have no quarrel with this very useful construction
which gives physical time. We only insist that
its artificial nature should be recognised, and that
the original demand for a world-wide time arose
through a mistake. We should probably have had
to invent universal time-partitions in any case in
order to obtain a complete mesh-system; but it
might have saved confusion if we had arrived at
it as a deliberate invention instead of an inherited
misconception. If it is found that physical time
has properties which would ordinarily be regarded
as contrary to common sense, no surprise need be
felt; this highly technical construct of physics is
not to be confounded with the time of common
sense. It is important for us to discover the exact
properties of physical time; but those properties
were put into it by the astronomers who invented
it.

It is clear from current debates on the relativity
theory that the distinction between the time of
consciousness and the scheme of time in physical
and astronomical reckoning is not always appre-
ciated. 'The word “time” is in common use for
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two distinct quantities which are translated into
mathematical language by different symbols 4 and
ds. 'They present an important contrast, viz.

ds 18 an invariant; dt 18 not;
dr is a perfect differential; ds 18 not;

Naturally confusion will arise when we try to an-
swer such ambiguious questions as whether #ime is
absolute or whether two observers have necessarily
existed for the same #ime between two meetings.
Great prominence has been given to the fol-
lowing deduction from the theory, which is an
example of equation (4.9). An observer B leaves the
earth with a velocity about 15 km. per sec. less
than the velocity of light; after a while his motion
is suddenly reversed and he returns to the earth.
His journey has lasted 1 year as judged by his
consciousness, his physiological growth, or by a
chronometer travelling with him; but he finds that
an observer 4, who has remained on the earth, has
aged 100 years as judged by similar criteria. So
far there is no real difficulty. Proper-time or “time
lived” is ds; the time of physics and astronomy
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or “time represented” is 4. 'The world-lines of 4
and B are different tracks which intersect at the
beginning and end of the journey, say at p, and p..
Since ds is not a perfect differential, ’as will be
different for the two tracks, i.e. the time lived will
be different. Moreover since the world-line of an
undisturbed observer is such that this integral is a
maximum (15.7) the time lived by 4 is greater than
that lived by B whose motion was disturbed by
reversal. On the other hand j?a is the same for
both*, and physical time was purposely introduced
in order to have a reckoning which would secure
this consistency.

It is urged, however, that 5 is entitled to regard
himself as at rest all the time, and that he will
observe 4 to have a large velocity relative to him
which undergoes a sudden reversal. From his
point of view 4 is the disturbed person and ought
to have lived the shorter time. We cannot admit
this; disturbance (in the sense here used) is not a

*[.e., for both as objects observed, not as observers (since dt
is not invariant).
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question of point of view; it is absolute. B could
if he wished detect the molecular bombardment
or electromagnetic pressure which reversed his
motion; he can learn observationally that it is he
who has been disturbed, not 4. But if 5 knows
that he has undergone an absolute disturbance,
is he still entitled to regard himself as at rest?
I do not think we can forbid him, since he is
following our own example. On the surface of the
earth we are disturbed by molecular bombardment
of the ground, yet we consider ourselves at rest;
whereas an undisturbed stone is considered to
be accelerated. Thus B may consider 4 to be
accelerated, but he may not consider him to be
disturbed. It is because the kinematical acceleration
is not generally coordinated with the physical
disturbance that acceleration is relative; if the two
were coordinated the disturbance would become
an absolute acceleration.

The problem may be modified by supposing
that B reverses his motion by travelling like a
comet round a massive star. In that case both 4
and B have “undisturbed” tracks (geodesies), and
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we cannot immediately predict which will have
lived the longer proper-time. There is, however,
no reason to expect their lives to be equal; in
particular, there is no support for the idea that B
must live through the lost 99 years in the brief
time (dt) occupied by the reversal of his motion. It
is easy to deduce from (3ss8) that the proper time
for B is not appreciably altered by substituting a
gravitational field for a supernatural reversal, so
that the conclusions of the elementary theory as
to the respective ages of 4 and B are upheld.

9. The “3+ 1 dimensional” world.

The constant  in (7.1) is positive according to
experiments made in regions of the world ac-
cessible to us. 'The 3 minus signs with 1 plus
sign particularise the world in a way which we
could scarcely have predicted from first principles.
H. Weyl expresses this specialisation by saying that
the world is 3+1 dimensional. Some entertainment
may be derived by considering the properties of a
242 or a 4+0 dimensional world. A more serious
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question is, Can the world change its typer Is
it possible that in making the reduction of (2.1) to
the sum or difference of squares for some region
remote in space or time, we might have 4 minus
signs? 1 think not; because if the region exists
it must be separated from our 3+1 dimensional
region by some boundary. On one side of the
boundary we have

ds* = —dz® — dy? — d2? + Adt?,
and on the other side
ds® = —dz® — dy? — dz* — c3dt*>.

'The transition can only occur through a boundary
where
ds? = —dz® — dy® — dz* + 0dt?,

so that the fundamental velocity is zero. Nothing
can move at the boundary, and no influence can
pass from one side to another. 'The supposed
region beyond is thus not in any spatio-temporal
relation to our own universe—which is a somewhat
pedantic way of saying that it does not exist.
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This barrier is more formidable than that which
stops the passage of light round the world in
de Sitter’s spherical space-time (Space, Time and
Gravitation, p. 160). 'The latter stoppage was
relative to the space and time of a distant observer;
but everything went on normally with respect to
the space and time of an observer at the region
itself. But here we are contemplating a barrier
which does not recede as it is approached.

'The passage to a 2+2 dimensional world would
occur through a transition region where

ds* = —da? — dy?® + 0dz* + 2dt*.

Space here reduces to two dimensions, but there
does not appear to be any barrier. The conditions
on the far side, where time becomes two-dimen-
sional, defy imagination.

10. The FitzGerald contraction.

We shall now consider some of the conse-
quences deducible from the Lorentz transforma-
tion.
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'The first equation of (5.3) may be written
' /B =z + ut,

which shows that s, besides making the al-
lowance w for the motion of his origin, divides
by s all lengths in the »-direction measured by s
On the other hand the equation y =y shows that
s accepts s”s measures in directions transverse to
their relative motion. Let s’ take his standard me-
tre (at rest relative to him, and therefore moving
relative to s) and point it first in the transverse
direction y and then in the longitudinal direc-
tion »/. For s its length is 1 metre in each position,
since it is his standard; for s the length is 1 metre
in the transverse position and 1/s metres in the
longitudinal position. Thus s finds that a moving
rod contracts when turned from the transverse to
the longitudinal position.

The question remains, How does the length
of this moving rod compare with the length of
a similarly constituted rod at rest relative to s?
The answer is that the transverse dimensions are
the same whilst the longitudinal dimensions are
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contracted. We can prove this by a reductio ad
absurdum. For suppose that a rod moving trans-
versely were longer than a similar rod at rest. Take
two similar transverse rods 4 and 4’ at rest rela-
tively to s and s’ respectively. Then s must regard
A as the longer, since it is moving relatively to
him; and s must regard 4 as the longer, since it
is moving relatively to him. But this is impossible
since, according to the equation y -y, s and s
agree as to transverse measures.

We see that the Lorentz transformation (5.1) re-
quires that (z,y.2,1) and ',y ~,#) should be measured
with standards of identical material constitution,
but moving respectively with s and s. 'This was
really implicit in our deduction of the transfor-
mation, because the property of the two systems
is that they give the same formula (5.2) for the
interval; and the test of complete similarity of the
standards is equality of all corresponding intervals
occurring in them.

'The fourth equation of (5.1) is

t =Bt —ux'/c?).
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Consider a clock recording the time v, which
accordingly is at rest in s’s system (« = const.).
Then for any time-lapse by this clock, we have

5t = Bot,

since s’ = 0. 'That is to say, s does not accept
the time as recorded by this moving clock, but
multiplies its readings by s, as though the clock
were going slow. This agrees with the result already
found in (4.9).

It may seem strange that we should be able to
deduce the contraction of a material rod and the
retardation of a material clock from the general
geometry of space and time. But it must be
remembered that the contraction and retardation
do not imply any absolute change in the rod and
clock. The “configuration of events” constituting
the four-dimensional structure which we call a rod
is unaltered; all that happens is that the observer’s
space and time partitions cross it in a different
direction.

Further we make no prediction as to what
would happen to the rod set in motion in an
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actual experiment. There may or may not be an
absolute change of the configuration according to
the circumstances by which it is set in motion.
Our results apply to the case in which the rod
after being set in motion is (according to all
experimental tests) found to be similar to the rod
in its original state of rest*.

When a number of phenomena are connected
together it becomes somewhat arbitrary to decide
which is to be regarded as the explanation of the
others. To many it will seem easier to regard
the strange property of the fundamental velocity
as explained by these differences of behaviour of
the observers’ clocks and scales. 'They would say
that the observers arrive at the same value of the
velocity of light because they omit the corrections
which would allow for the different behaviour of
their measuring-appliances. 'That is the relative

*[t may be impossible to change the motion of a rod
without causing a rise of temperature. Our conclusions will
then not apply until the temperature has fallen again, i.e. until
the temperature-test shows that the rod is precisely similar to
the rod before the change of motion.
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point of view, in which the relative quantities,
length, time, etc., are taken as fundamental. From
the absolute point of view, which has regard to
intervals only, the standards of the two observers
are equal and behave similarly; the so-called ex-
planations of the invariance of the velocity of light
only lead us away from the root of the matter.

Moreover the recognition of the FitzGerald
contraction does not enable us to avoid paradox.
From (5.3) we found that s’s longitudinal measur-
ing-rods were contracted relatively to those of s.
From (1) we can show similarly that ss rods
are contracted relatively to those of . 'There is
complete reciprocity between s and s'. This para-
dox is discussed more fully in Space, Time and
Gravitation, p. 55.

11. Simultaneity at different places.

It will be seen from the fourth equation of (5.1),
Viz.

t =Bt —ua'/c?),
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that events at different places which are simulta-
neous for s are not in general simultaneous for s.
In fact, if a = o,

dt = —Budz’/c?. (11.1)

It is of some interest to examine in detail
how this difference of reckoning of simultaneity
arises. It has been explained in § 4 that by
convention the time at two places is compared by
transporting a clock from one to the other with
infinitesimal velocity. Our formulae are based on
this convention; and, of course, (11.1) will only be
true if the convention is adhered to. The fact that
infinitesimal velocity relative to s’ is not the same
as infinitesimal velocity relative to s, leaves room
for the discrepancy of reckoning of simultaneity
to creep in. Consider two points 4 and B at
rest relative to s, and distant » apart. Take a
clock at 4 and move it gently to B by giving it an
infinitesimal velocity 4w for a time «//av. Owing to
the motion, the clock will by 4.9) be retarded in
the ratio (1-du?/c2)-%; this continues for a time «'/dv’
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and the total loss is thus
{1-(1- 011/2/02)%}:10’/du'7

which tends to zero when av is infinitely small.
s may accordingly accept the result of the com-
parison without applying any correction for the
motion of the clock.

Now consider s’s view of this experiment. For
him the clock had already a velocity «, and ac-
cordingly the time indicated by the clock is only
(1-u?/c%)% of the true time for s. By differentiation,
an additional velocity du* causes a supplementary
loss

(1 -2/ 3udu/® clock seconds (11.2)

per true second. Owing to the FitzGerald contrac-
tion of the length 4s, the distance to be travelled
is 2//8, and the journey will occupy a time

#'/3du true seconds. (11.3)

Multiplying (11.2) and (11.3), the total loss due to the
journey 1is
w' /e clock seconds,

*Note that du will not be equal to du/'.
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or

suz' /¢ true seconds for s. (11.4)

‘Thus, whilst s accepts the uncorrected result of
the comparison, s has to apply a correction gua’/c?
for the disturbance of the chronometer through
transport. 'This is precisely the difference of their
reckonings of simultaneity given by (11.1).

In practice an accurate comparison of time
at different places is made, not by transporting
chronometers, but by electromagnetic signals—
usually wireless time-signals for places on the
earth, and light-signals for places in the solar
system or stellar universe. Take two clocks at
A and B, respectively. Let a signal leave 4 at
clock-time «, reach B at time s by the clock
at B, and be reflected to reach 4 again at time s.
'The observer s, who is at rest relatively to the
clocks, will conclude that the instant 5 at B was
simultaneous with the instant 1(, +1,) at 4, because
he assumes that the forward velocity of light is
equal to the backward velocity. But for s the

two clocks are moving with velocity «; therefore
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he calculates that the outward journey will occupy

a time z/(c-«) and the homeward journey a time
/(c+u). Now

x r(c+u) Bz

c—u  2—u? 02(+u)
x z(c—u) px
c—l—u: 2—u2 2 = letu)

Thus the instant ¢ of arrival at 5 must be taken
as prru/c? later than the half-way instant ¢, + ).
'This correction applied by s, but not by s, agrees
with (11.4) when we remember that owing to the
FitzGerald contraction = = +//5.

Thus the same difference in the reckoning of
simultaneity by s and s appears whether we use
the method of transport of clocks or of light-
signals. In either case a convention is introduced
as to the reckoning of time-differences at different
places; this convention takes in the two methods
the alternative forms—

(1) A clock moved with infinitesimal velocity
from one place to another continues to read the
correct time at its new station, or

(2) The forward velocity of light along any line
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is equal to the backward velocity*.

Neither statement is by itself a statement of
observable fact, nor does it refer to any intrinsic
property of clocks or of light; it is simply an
announcement of the rule by which we propose
to extend fictitious time-partitions through the
world. But the mutual agreement of the two
statements is a fact which could be tested by
observation, though owing to the obvious practical
difficulties it has not been possible to verify it
directly. We have here given a theoretical proof
of the agreement, depending on the truth of the
fundamental axiom of § 1.

'The two alternative forms of the convention are
closely connected. In general, in any system of

¥The chief case in which we require for practical purposes
an accurate convention as to the reckoning of time at places
distant from the earth, is in calculating the elements and
mean places of planets and comets. In these computations the
velocity of light in any direction is taken to be 300,000 km.
per sec., an assumption which rests on the convention (2).
All experimental methods of measuring the velocity of light
determine only an average to-and-fro velocity.
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time-reckoning, a change 4« in the velocity of a
clock involves a change of rate proportional to du,
but there is a certain turning-point for which the
change of rate is proportional to 4.2. In adopting
a time-reckoning such that this stationary point
corresponds to his own motion, the observer is
imposing a symmetry on space and time with
respect to himself, which may be compared with
the symmetry imposed in assuming a constant
velocity of light in all directions. Analytically we
imposed the same general symmetry by adopting
(4.6) instead of (4.7) as the form for ds>, making
our space-time reckoning symmetrical with respect
to the interval and therefore with respect to all
observational criteria.

12. Momentum and mass.

Besides possessing extension in space and time,
matter possesses inertia. We shall show in due
course that inertia, like extension, is expressible in
terms of the interval relation; but that is a devel-
opment belonging to a later stage of our theory.
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Meanwhile we give an elementary treatment based
on the empirical laws of conservation of momen-
tum and energy rather than on any deep-seated
theory of the nature of inertia.

For the discussion of space and time we have
made use of certain ideal apparatus which can only
be imperfectly realised in practice—rigid scales and
perfect cyclic mechanisms or clocks, which always
remain similar configurations from the absolute
point of view. Similarly for the discussion of
inertia we require some ideal material object, say
a perfectly elastic billiard ball, whose condition as
regards inertial properties remains constant from
an absolute point of view. 'The difficulty that
actual billiard balls are not perfectly elastic must
be surmounted in the same way as the difficulty
that actual scales are not rigid. To the ideal
billiard ball we can affix a constant number, called
the invariant mass*, which will denote its absolute
inertial properties; and this number is supposed
to remain unaltered throughout the vicissitudes of

*Or proper-mass.
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its history, or, if temporarily disturbed during a
collision, is restored at the times when we have to
examine the state of the body.
With the customary definition of momentum,
the components
dx @ " dz

M — M

dat’ dt’ dt (12.1)

cannot satisfy a general law of conservation of
momentum unless the mass i is allowed to vary
with the velocity. But with the slightly modified

definition
dx dy dz

meo—, meos, Mo (12.2)
the law of conservation can be satisfied simul-
taneously in all space-time systems, m being an
invariant number. This was shown in Space, Time
and Gravitation, p. 142.

Comparing (12.1) and (12.2), we have

dt

M=mZ. (12.3)

We call n the invariant mass, and v the relative
mass, or simply the mass.



CH. I MOMENTUM AND MASS 112

'The term “invariant” signifies unchanged for any
transformation of coordinates, and, in particular,
the same for all observers; constancy during the
life-history of the body is an additional property
of m attributed to our ideal billiard balls, but not
assumed to be true for matter in general.

Choosing units of length and time so that the
velocity of light is unity, we have by (7.2)

ds
dt

ST

=(1- UQ) .
Hence by (12.3)
M =m(l—v?)"2. (12.4)

'The mass increases with the velocity by the same
factor as that which gives the FitzGerald contrac-
tion; and when v =0,  =m. 'The invariant mass is
thus equal to the mass at rest.

It is natural to extend (12.2) by adding a fourth
component, thus

dx dy dz dt

By @23) the fourth component is equal to .
Thus the momenta and mass (relative mass) form
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together a symmetrical expression, the momenta
being space-components, and the mass the time-
component. We shall see later that the expres-
sion (12.5) constitutes a vector, and the laws of
conservation of momentum and mass assert the
conservation of this vector.

The following is an analytical proof of the law
of variation of mass with velocity directly from the
principle of conservation of mass and momentum.
Let a,, m; be the mass of a body as measured by
s and s respectively, v, +; being its velocity in the
»~direction. Writing

Br=(0—-v}/A)73,  B=01-v/)E,  B=01-u?P)E,
we can easily verify from (6.2) that
Brv1 = BB (V] — u). (12.6)

Let a number of such particles be moving in
a straight line subject to the conservation of mass
and momentum as measured by s/, viz.

S m; and Y amju;  are conserved.
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Since s and « are constants it follows that
S M{B(v; —u) is conserved.
Therefore by (12.6)
S Mipie/s;  is conserved. (12.71)

But since momentum must also be conserved for
the observer s

S M, is conserved. (12.72)
The results (12.71) and (12.72) will agree if
My /By = M /B,

and it is easy to see that there can be no other
general solution. Hence for different values of v,
M, is proportional to g, or

M=m(1- 1}2/02)7%,

where m is a constant for the body.

It requires a greater impulse to produce a given
change of velocity sv in the original direction of
motion than to produce an equal change sw at



CH. 1 ENERGY 115

right angles to it. For the momenta in the two
directions are initially

mv(lfvz/cz)*%, 0,

and after a change sv, sw, they become

_1
2

m(v+ 6v)[1 — {(v+ 6v)* + (dw)?}/c?] 2,
miw[l — {(v+6v)? + (dw)?} /]~

1
2

Hence to the first order in 6, 6w the changes of
momentum are

m(l—v2/02)_%6v, m(l—v2/02)_% dw,

or

M B? v, M dw,

where s is the FitzGerald factor for velocity «. The
coefhicient 152 was formerly called the longitudinal
mass, M being the fransverse mass; but the longi-
tudinal mass is of no particular importance in the
general theory, and the term is dropping out of
use.
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13. Energy.

When the units are such that =1, we have

M =m(l—v%)"2

— m+ imv® approximately, (13.1)

if the speed is small compared with the velocity of
light. The second term is the kinetic energy, so
that the change of mass is the same as the change
of energy, when the velocity alters. This suggests
the identification of mass with energy. It may be
recalled that in mechanics the total energy of a
system is left vague to the extent of an arbitrary
additive constant, since only changes of energy are
defined. In identifying energy with mass we fix
the additive constant m» for each body, and m may
be regarded as the internal energy of constitution
of the body.

'The approximation used in (13.1) does not inval-
idate the argument. Consider two ideal billiard
balls colliding. The conservation of mass (relative
mass) states that

Y m(1-+*)"% is unaltered.
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'The conservation of energy states that
S m(1+ 10?) is unaltered.

But if both statements were exactly true we should
have two equations determining unique values of
the speeds of the two balls; so that these speeds
could not be altered by the collision. The two
laws are not independent, but one is an approxi-
mation to the other. The first is the accurate law
since it is independent of the space-time frame
of reference. Accordingly the expression lme? for
the kinetic energy in elementary mechanics is only
an approximation in which terms in ¢, etc. are
neglected.

When the units of length and time are not re-
stricted by the condition ¢=1, the relation between
the mass i and the energy £ is

M =E/c. (13.2)

'Thus the energy corresponding to a gram is 9-10%
ergs. 'This does not affect the identity of mass and
energy—that both are measures of the same world-
condition. A world-condition can be examined by
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different kinds of experimental tests, and the units
gram and erg are associated with different tests of
the mass-energy condition. But when once the
measure has been made it is of no consequence to
us which of the experimental methods was chosen,
and grams or ergs can be used indiscriminately as
the unit of mass. In fact, measures made by
energy-tests and by mass-tests are convertible like
measures made with a yard-rule and a metre-rule.

'The principle of conservation of mass has thus
become merged in the principle of conservation
of energy. But there is another independent phe-
nomenon which perhaps corresponds more nearly
to the original idea of Lavoisier when he enunci-
ated the law of conservation of matter. I refer to
the permanence of invariant mass attributed to our
ideal billiard balls but not supposed to be a general
property of matter. The conservation of m is an
accidental property like rigidity; the conservation
of m is an invariable law of nature.

When radiant heat falls on a billiard ball so
that its temperature rises, the increased energy
of motion of the molecules causes an increase
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of mass »m. 'The invariant mass m also increases
since it is equal to u for a body at rest. There
is no violation of the conservation of m, because
the radiant heat has mass » which it transfers
to the ball; but we shall show later that the
electromagnetic waves have no invariant mass, and
the addition to m is created out of nothing. Thus
invariant mass is not conserved in general.

To some extent we can avoid this failure by
taking the microscopic point of view. The billiard
ball can be analysed into a very large number
of constituents—electrons and protons—each of
which is believed to preserve the same invariant
mass for life. But the invariant mass of the billiard
ball is not exactly equal to the sum of the invariant
masses of its constituents*. The permanence and
permanent similarity of all electrons seems to be
the modern equivalent of Lavoisier’s “conservation
of matter.” It is still uncertain whether it expresses

*This is because the invariant mass of each electron is its
relative mass referred to axes moving with it; the invariant
mass of the billiard ball is the relative mass referred to axes at
rest in the billiard ball as a whole.
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a universal law of nature; and we are willing
to contemplate the possibility that occasionally a
positive and negative electron may coalesce and
annul one another. In that case the mass » would
pass into the electromagnetic waves generated by
the catastrophe, whereas the invariant mass m
would disappear altogether. Again if ever we are
able to synthesise helium out of hydrogen, 0.8% of
the invariant mass will be annihilated, whilst the
corresponding proportion of relative mass will be
liberated as radiant energy.

It will thus be seen that although in the special
problems considered the quantity m is usually sup-
posed to be permanent, its conservation belongs
to an altogether different order of ideas from the
universal conservation of .

14. Density and temperature.

Consider a volume of space delimited in some
invariant way, e.g. the content of a material box.
The counting of a number of discrete particles
continually within (i.e. moving with) the box is
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an absolute operation; let the absolute number
be ~. 'The volume v of the box will depend on
the space-reckoning, being decreased in the ratio s
for an observer moving relatively to the box and
particles, owing to the FitzGerald contraction of
one of the dimensions of the box. Accordingly the
particle-density o = n/v satisfies

o' =08, (14.1)

where o is the particle-density for an observer in
relative motion, and o the particle-density for an
observer at rest relative to the particles.
It follows that the mass-density , obeys the
equation
P =pB, (14.2)

since the mass of each particle is increased for the
moving observer in the ratio s.

Quantities referred to the space-time system
of an observer moving with the body considered
are often distinguished by the prefix proper- (Ger-
man, Eigen-), e.g. proper-length, proper-volume,
proper-density, proper-mass - invariant mass.
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'The transformation of temperature for a moving
observer does not often concern us. In general the
word obviously means proper-temperature, and
the motion of the observer does not enter into
consideration. In thermometry and in the theory
of gases it is essential to take a standard with
respect to which the matter is at rest on the
average, since the indication of a thermometer
moving rapidly through a fluid is of no practical
interest. But thermodynamical temperature is

defined by

ds = dM/T, (14.3)

where as is the change of entropy for a change
of energy av. The temperature 7 defined by this
equation will depend on the observer’s frame of
reference. Entropy is clearly meant to be an
invariant, since it depends on the probability of
the statistical state of the system compared with
other states which might exist. Hence 7 must be
altered by motion in the same way as du, that is
to say

T’ = BT. (14.4)
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But it would be useless to apply such a transfor-
mation to the adiabatic gas-equation

T=kp™ ",

for, in that case, 7 is evidently intended to signify
the proper-temperature and , the proper-density.

In general it is unprofitable to apply the Lorentz
transformation to the constitutive equations of a
material medium and to coefficients occurring in
them (permeability, specific inductive capacity,
elasticity, velocity of sound). Such equations nat-
urally take a simpler and more significant form for
axes moving with the matter. The transformation
to moving axes introduces great complications
without any evident advantages, and is of little
interest except as an analytical exercise.

15. General transformations of coordinates.

We obtain a transformation of coordinates by
taking new coordinates a4, «, 4, «; which are any
four functions of the old coordinates 1, ., =3, .
Conversely, 1, w2, 23, =, are functions of 4, a5, 4, «.
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It is assumed that multiple values are excluded, at
least in the region considered, so that values of
(1,22, 23,24) ANA (2}, 25,24, 24) correspond one to one.

It

r = fi(2), 2h, 2%, 2));  xe = fo(ah, @b, 2h, 2)); €tC.,
ofr , , 5f1 ofr ., , 0fi ,,
dr, = dz dx! dx etC 15.1
LT G ST gy T p s T gy 40 (15.1)

or it may be written simply,

Jrq 81:1 0x1 x4
dx dr) dx,
o, “ T By T2 gy 5 By,

dxl =

dz}; etc., (15.2)

Substituting from (15.2) in (21) we see that as? will
be a homogeneous quadratic function of the dif-
ferentials of the new coordinates; and the new
coefficients ¢/, 45, etc. could be written down in
terms of the old, if desired.

For an example consider the usual transfor-
mation to axes revolving with constant angular
velocity v, viz.

T = x| coswrl — xhsinwrl

y = o) sinwxy + 4 cosw)y
(15.3)
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Hence

dr = dx| coswzly — dxlysinwz), + w(—2) sinwz!, — x4 coswal)) daly,
dy = dz} sinwz), + dzfy coswzl, + w(z) coswal — x4 sinwzy) drly,

/
dz = dxs,

dt = dzy.

Taking units of space and time so that -1, we
have for our original fixed coordinates by (7.1)

ds* = —da?® — dy® — dz* + dt*.
Hence, substituting the values found above,

ds* = —dz'? — daf — daff + {1 — (2} + 2F) } daff

+ 2wah do') doy — 2wx'| doby dx)y.  (15.4)

Remembering that all observational difterences
of coordinate-systems must arise via the interval,
this formula must comprise everything which dis-
tinguishes the rotating system from a fixed system
of coordinates.

In the transformation (15.3) we have paid no
attention to any contraction of the standards of
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length or retardation of clocks due to motion with
the rotating axes. The formulae of transformation
are those of elementary kinematics, so that «;, «,
o4, o, are quite strictly the coordinates used in the
ordinary theory of rotating axes. But it may be
suggested that elementary kinematics is now seen
to be rather crude, and that it would be worth
while to touch up the formulae (153) so as to take
account of these small changes of the standards.
A little consideration shows that the suggestion is
impracticable. It was shown in § 4 that if 4, a,
o4, o, represent rectangular coordinates and time as
partitioned by direct readings of scales and clocks,
then

ds* = —dz'? — dal} — dalf + Pdal?, (15.45)

so that coordinates which give any other formula
for the interval cannot represent the immediate
indications of scales and clocks. As shown at
the end of §5, the only transformations which
give (1545) are Lorentz transformations. If we
wish to make a transformation of a more general
kind, such as that of (15.3), we must necessarily
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abandon the association of the coordinate-system
with uncorrected scale and clock readings. It is
useless to try to “improve” the transformation to
rotating axes, because the supposed improvement
could only lead us back to a coordinate-system
similar to the fixed axes with which we started.

'The inappropriateness of rotating axes to scale
and clock measurements can be regarded from
a physical point of view. We cannot keep a
scale or clock at rest in the rotating system un-
less we constrain it, i.e. subject it to molecular
bombardment—an “outside influence” whose ef-
fect on the measurements must not be ignored.

In the «, 4, 2, ¢ system of coordinates the
scale and clock are the natural equipment for
exploration. In other systems they will, if uncon-
strained, continue to measure ds; but the reading
of ds is no longer related in a simple way to
the differences of coordinates which we wish to
determine; it depends on the more complicated
calculations involved in (2.1). The scale and clock
to some extent lose their pre-eminence, and since
they are rather elaborate appliances it may be bet-



CH. I GENERAL TRANSFORMATIONS OF COORDINATES 128

ter to refer to some simpler means of exploration.
We consider then two simpler test-objects—the
moving particle and the light-pulse.

In ordinary rectangular coordinates and time
z, y, 7, t an undisturbed particle moves with uniform
velocity, so that its track is given by the equations

r=a+bt, y=c-+dt, z=-e+ ft, (15.5)

i.e. the equations of a straight line in four dimen-
sions. By substituting from (15.3) we could find
the equations of the track in rotating coordinates;
or by substituting from (152) we could obtain the
differential equations for any desired coordinates.
But there is another way of proceeding. 'The
differential equations of the track may be written

A’z d?y d?z d*t B

— = 15.
ds?’ ds?’ ds?’ ds? ’ (15.6)

which on integration, having regard to the condi-
tion (7.1), give equations (15.5).
'The equations (15.6) are comprised in the single
statement
/ ds 1S stationary (15.7)
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for all arbitrary small variations of the track which
vanish at the initial and final limits—a well-known
property of the straight line.

In arriving at (15.7) we use freely the geometry of
the «, y, =z, ¢ system given by (7.1); but the final result
does not allude to coordinates at all, and must be
unaltered whatever system of coordinates we are
using. To obtain explicit equations for the track
in any desired system of coordinates, we substitute
in (15.7) the appropriate expression (2.1) for ¢s and
apply the calculus of variations. The actual analysis
will be given in § 28.

The track of a light-pulse, being a straight line
in four dimensions, will also satisfy (15.7); but the
light-pulse has the special velocity « Wthh gives
the additional condition obtained in § 7, viz.

ds = 0. (15.8)

Here again there is no reference to any coordinates
in the final result.

We have thus obtained equations (15.7) and (15.8)
for the behaviour of the moving particle and light-
pulse which must hold good whatever the coor-
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dinate-system chosen. The indications of our two
new test-bodies are connected with the interval,
just as in § 3 the indications of the scale and
clock were connected with the interval. It should
be noticed however that whereas the use of the
older test-bodies depends only on the truth of the
fundamental axiom, the use of the new test-bod-
ies depends on the truth of the empirical laws of
motion and of light-propagation. In a deductive
theory this appeal to empirical laws is a blemish
which we must seek to remove later.

16. Fields of force.

Suppose that an observer has chosen a definite
system of space-coordinates and of time-reckoning
(1,22, 73,2,) and that the geometry of these is given
by

ds* = g11 da? + goodai + ... 4+ 2g10day dxy + . . .. (16.1)

Let him be under the mistaken impression that
the geometry is

dst = —da? — da? — da? + da?, (16.2)
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that being the geometry with which he is most
familiar in pure mathematics. We use ds to
distinguish his mistaken value of the interval.
Since intervals can be compared by experimental
methods, he ought soon to discover that his as
cannot be reconciled with observational results,
and so realise his mistake. But the mind does not
so readily get rid of an obsession. It is more likely
that our observer will continue in his opinion,
and attribute the discrepancy of the observations
to some influence which is present and affects
the behaviour of his test-bodies. He will, so to
speak, introduce a supernatural agency which he
can blame for the consequences of his mistake.
Let us examine what name he would apply to this
agency.

Of the four test-bodies considered the moving
particle is in general the most sensitive to small
changes of geometry, and it would be by this test
that the observer would first discover discrepancies.
'The path laid down for it by our observer is

/ ds, 18 stationary,
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i.e. a straight line in the coordinates (u,zz, s 1.).
'The particle, of course, pays no heed to this, and
moves in the different track

/ ds 1s stationary.

Although apparently undisturbed it deviates from
“uniform motion in a straight line.” 'The name
given to any agency which causes deviation from
uniform motion in a straight line is force according
to the Newtonian definition of force. Hence the
agency invoked through our observer’s mistake is
described as a “field of force.”

'The field of force is not always introduced by
inadvertence as in the foregoing illustration. It is
sometimes introduced deliberately by the mathe-
matician, e.g. when he introduces the centrifugal
force. There would be little advantage and many
disadvantages in banishing the phrase “field of
force” from our vocabulary. We shall therefore
regularise the procedure which our observer has
adopted. We call (16.2) the abstract geometry of the
system of coordinates (z1,z2,25,24); it may be chosen
arbitrarily by the observer. 'The natural geometry
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1S (16.1).

A field of force represents the discrepancy between
the natural geometry of a coordinate-system and the
abstract geometry arbitrarily ascribed to it.

A field of force thus arises from an attitude of
mind. If we do not take our coordinate-system to
be something different from that which it really is,
there is no field of force. If we do not regard our
rotating axes as though they were non-rotating,
there is no centrifugal force.

Coordinates for which the natural geometry is

ds* = —da? — dai — dai + da?

are called Galilean coordinates. They are the same
as those we have hitherto called ordinary rectan-
gular coordinates and time (the velocity of light
being unity). Since this geometry is familiar to
us, and enters largely into current conceptions
of space, time and mechanics, we usually choose
Galilean geometry when we have to ascribe an
abstract geometry. Or we may use slight modifi-
cations of it, e.g. substitute polar for rectangular
coordinates.
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It has been shown in § 4 that when the /s
are constants, coordinates can be chosen so that
Galilean geometry is actually the natural geometry.
There is then no need to introduce a field of force
in order to enjoy our accustomed outlook; and if
we deliberately choose non-Galilean coordinates
and attribute to them abstract Galilean geometry,
we recognise the artificial character of the field of
force introduced to compensate the discrepancy.
But in the more general case it is not possible to
make the reduction of § 4 accurately throughout
the region explored by our experiments; and no
Galilean coordinates exist. In that case it has been
usual to select some system (preferably an approx-
imation to a Galilean system) and ascribe to it
the abstract geometry of the Galilean system. The
field of force so introduced is called “Gravitation.”

It should be noticed that the rectangular co-
ordinates and time in current use can scarcely be
regarded as a close approximation to the Galilean
system, since the powerful force of terrestrial grav-
itation is needed to compensate the error.
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'The naming of coordinates (e.g. time) usually
follows the abstract geometry attributed to the sys-
tem. In general the natural geometry is of some
complicated kind for which no detailed nomencla-
ture is recognised. Thus when we call a coordinate ¢
the “time,” we may either mean that it fulfils the
observational conditions discussed in § 4, or we
may mean that any departure from those condi-
tions will be ascribed to the interference of a field
of force. In the latter case “time” is an arbi-
trary name, useful because it fixes a consequential
nomenclature of velocity, acceleration, etc.

To take a special example, an observer at a
station on the earth has found a particular set
of coordinates u,, ., x;, z, best suited to his
needs. He calls them «, 4, -, ¢+ in the belief that
they are actually rectangular coordinates and time,
and his terminology—straight line, circle, density,
uniform velocity, etc.—follows from this identifi-
cation. But, as shown in § 4, this nomenclature
can only agree with the measures made by clocks
and scales provided (16.2) is satisfied; and if (16.2) is
satisfied, the tracks of undisturbed particles must
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be straight lines. Experiment immediately shows
that this is not the case; the tracks of undisturbed
particles are parabolas. But instead of accepting
the verdict of experiment and admitting that ,,
s, w3, x4 are not what he supposed they were,
our observer introduces a field of force to explain
why his test is not fulfilled. A certain part of
this field of force might have been avoided if he
had taken originally a different set of coordinates
(not rotating with the earth); and in so far as the
field of force arises on this account it is generally
recognised that it is a mathematical fiction—the
centrifugal force. But there is a residuum which
cannot be got rid of by any choice of coordinates;
there exists no extensive coordinate-system having
the simple properties which were ascribed to «, v,
z, t. The intrinsic nature of space-time near the
earth is not of the kind which admits coordinates
with Galilean geometry. 'This irreducible field of
force constitutes the field of terrestrial gravitation.
The statement that space-time round the earth
is “curved”—that is to say, that it is not of the
kind which admits Galilean coordinates—is not
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an hypothesis; it is an equivalent expression of the
observed fact that an irreducible field of force is
present, having regard to the Newtonian defini-
tion of force. It is this fact of observation which
demands the introduction of non-Galilean space-
time and non-Euclidean space into the theory.

17. 'The Principle of Equivalence.

In § 15 we have stated the laws of motion of
undisturbed material particles and of light-pulses
in a form independent of the coordinates chosen.
Since a great deal will depend upon the truth
of these laws it is desirable to consider what
justification there is for believing them to be both
accurate and universal. Three courses are open:

(@) It will be shown in Chapters IV and VI
that these laws follow rigorously from a more
fundamental discussion of the nature of matter
and of electromagnetic fields; that is to say, the
hypotheses underlying them may be pushed a stage
further back.

) The track of a moving particle or light-pulse
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under specified initial conditions is unique, and it
does not seem to be possible to specify any unique
tracks in terms of intervals only other than those
given by equations (15.7) and (15.8).

(0 We may arrive at these laws by induction
from experiment.

If we rely solely on experimental evidence we
cannot claim exactness for the laws. It goes with-
out saying that there always remains a possibility of
small amendments of the laws too slight to affect
any observational tests yet tried. Belief in the per-
fect accuracy of (15.7) and (15.8) can only be justified
on the theoretical grounds (s) or (). But the more
important consideration is the universality, rather
than the accuracy, of the experimental laws; we
have to guard against a spurious generalisation ex-
tended to conditions intrinsically dissimilar from
those for which the laws have been established
observationally.

We derived (15.7) from the equations (15.5) which
describe the observed behaviour of a particle mov-
ing under no field of force. We assume that the
result holds in all circumstances. The risky point
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in the generalisation is not in introducing a field
of force, because that may be due to an attitude
of mind of which the particle has no cognizance.
The risk is in passing from regions of the world
where Galilean coordinates (z,y,z,1) are possible to
intrinsically dissimilar regions where no such coor-
dinates exist—from flat space-time to space-time
which is not flat.

'The Principle of Equivalence asserts the legiti-
macy of this generalisation. It is essentially an
hypothesis to be tested by experiment as oppor-
tunity offers. Moreover it is to be regarded as a
suggestion, rather than a dogma admitting of no
exceptions. It is likely that some of the phenomena
will be determined by comparatively simple equa-
tions in which the components of curvature of the
world do not appear; such equations will be the
same for a curved region as for a flat region. It is to
these that the Principle of Equivalence applies. It
is a plausible suggestion that the undisturbed mo-
tion of a particle and the propagation of light are
governed by laws of this specially simple type; and

accordingly (15.7) and (15.8) will apply in all circum-
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stances. But there are more complex phenomena
governed by equations in which the curvatures of
the world are involved; terms containing these
curvatures will vanish in the equations summaris-
ing experiments made in a flat region, and would
have to be reinstated in passing to the general
equations. Clearly there must be some phenom-
ena of this kind which discriminate between a flat
world and a curved world; otherwise we could
have no knowledge of world-curvature. For these
the Principle of Equivalence breaks down.

'The Principle of Equivalence thus asserts that
some of the chief differential equations of physics
are the same for a curved region of the world as
for an osculating flat region*. 'There can be no
infallible rule for generalising experimental laws;
but the Principle of Equivalence offers a sugges-

¥The correct equations for a curved world will necessarily
include as a special case those already obtained for a flat
world. The practical point on which we seek the guidance of
the Principle of Equivalence is whether the equations already
obtained for a flat world will serve as they stand or will require
generalisation.
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tion for trial, which may be expected to succeed
sometimes, and fail sometimes.

'The Principle of Equivalence has played a great
part as a guide in the original building up of the
generalised relativity theory; but now that we have
reached the new view of the nature of the world it
has become less necessary. Our present exposition
is in the main deductive. We start with a general
theory of world-structure and work down to the
experimental consequences, so that our progress is
from the general to the special laws, instead of
vice versa.

18. Retrospect.

The investigation of the external world in
physics is a quest for structure rather than sub-
stance. A structure can best be represented as a
complex of relations and relata; and in conformity
with this we endeavour to reduce the phenomena
to their expressions in terms of the relations which
we call intervals and the relata which we call
events.
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If two bodies are of identical structure as regards
the complex of interval relations, they will be
exactly similar as regards observational properties¥,
if our fundamental hypothesis is true. By this we
show that experimental measurements of lengths
and duration are equivalent to measurements of
the interval relation.

To the events we assign four identification-
numbers or coordinates according to a plan which
is arbitrary within wide limits. The connection be-
tween our physical measurements of interval and
the system of identification-numbers is expressed
by the general quadratic form (2.1). In the particu-
lar case when these identification-numbers can be
so assigned that the product terms in the quadratic
form disappear leaving only the four squares, the
coordinates have the metrical properties belonging
to rectangular coordinates and time, and are ac-
cordingly so identified. If any such system exists

*At present this is limited to extensional properties (in
both space and time). It will be shown later that all mechan-
ical properties are also included. Electromagnetic properties
require separate consideration.



CH. I RETROSPECT 143

an infinite number of others exist connected with
it by the Lorentz transformation, so that there
is no unique space-time frame. The relations of
these different space-time reckonings have been
considered in detail. It is shown that there must
be a particular speed which has the remarkable
property that its value is the same for all these
systems; and by appeal to the Michelson-Morley
experiment or to Fizeau’s experiment it is found
that this is a distinctive property of the speed of
light.

But it is not possible throughout the world to
choose coordinates fulfilling the current definitions
of rectangular coordinates and time. In such cases
we usually relax the definitions, and attribute the
failure of fulfilment to a field of force pervading
the region. We have now no definite guide in
selecting what coordinates to take as rectangular
coordinates and time; for whatever the discrepancy,
it can always be ascribed to a suitable field of force.
'The field of force will vary according to the system
of coordinates selected; but in the general case it
is not possible to get rid of it altogether (in a
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large region) by any choice of coordinates. This
irreducible field of force is ascribed to gravitation.
It should be noticed that the gravitational influence
of a massive body is not properly expressed by a
definite field of force, but by the property of
irreducibility of the field of force. We shall find
later that the irreducibility of the field of force is
equivalent to what in geometrical nomenclature is
called a curvature of the continuum of space-time.

For the fuller study of these problems we require
a special mathematical calculus which will now be
developed ab initio.



CHAPTERII
THE TENSOR CALCULUS

19. Contravariant and covariant vectors.

E consider the transformation from one sys-
V V tem of coordinates z, ., z;, x4 to another
system xhy Thy Thy The
'The differentials (dxy,dss, dus, dzy) are transformed
according to the equations (15.2), viz.

ox ox o) ox)

oxy dzo v O3

r_
dry =

which may be written shortly

4
, 53:&
dr, = g 3 dxq,
a=1 Lo

four equations being obtained by taking . =1, 2, 3,
4, successively.
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Any set of four quantities transformed accord-
ing to this law is called a contravariant vector.
Thus if (a1, 42 43 4*) becomes (4", 42 4% 4% in the
new coordinate-system, where

4
oz’

AM = i 19.1
;axa , (19.1)

then (4!, 42 43 a4, denoted briefly as a+, is a con-
travariant vector. 'The upper position of the suffix
(which is, of course, not an exponent) is reserved
to indicate contravariant vectors.

If 4 is an invariant function of position, i.e. if it
has a fixed value at each point independent of the
coordinate-system employed, the four quantities

(‘% 99 09 5¢>

axl ’ 8.1327 81‘37 6334
are transformed according to the equations

90 _0n 99 s 99 0ry 00 0ri 06 oo
oxh O Oxy O Oxy O Oxs O Oxy’ )

which may be written shortly

00 <= Ora ¢

/T ! '
83% —= 837# 0xq
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Any set of four quantities transformed according
to this law is called a covariant vector. Thus if 4, is
a covariant vector, its transformation law is

, 1 0y
A, =" % Ao (19.2)

H ox!
X
a=1 ©

We have thus two varieties of vectors which
we distinguish by the upper or lower position of
the suffix. The first illustration of a contravariant
vector, dz,, forms rather an awkward exception to
the rule that a lower suffix indicates covariance
and an upper suffix contravariance. There is no
other exception likely to mislead the reader, so that
it is not difficult to keep in mind this peculiarity
of dx,; but we shall sometimes find it convenient
to indicate its contravariance explicitly by writing

dz, = (dz)". (19.3)

A vector may either be a single set of four
quantities associated with a special point in space-
time, or it may be a set of four functions varying
continuously with position. Thus we can have an
e » (44 »

isolated vector” or a “vector-field.



CH. II THE MATHEMATICAL NOTION OF A VECTOR 148

For an illustration of a covariant vector we
considered the gradient of an invariant, a¢/0,; but
a covariant vector is not necessarily the gradient of
an invariant.

The reader will probably be already familiar
with the term vector, but the distinction of covari-
ant and contravariant vectors will be new to him.
This is because in the elementary analysis only
rectangular coordinates are contemplated, and for
transformations from one rectangular system to
another the laws (19.1) and (19.2) are equivalent to
one another. From the geometrical point of view,
the contravariant vector is the vector with which
everyone is familiar; this is because a displace-
ment, or directed distance between two points, is
regarded as representing (da,dr,, dzs)* Which, as we
have seen, is contravariant. The covariant vector
is a new conception which does not so easily lend
itself to graphical illustration.

*The customary resolution of a displacement into compo-
nents in oblique directions assumes this.
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20. The mathematical notion of a vector.

'The formal definitions in the preceding section
do not help much to an understanding of what the
notion of a vector really is. We shall try to explain
this more fully, taking first the mathematical no-
tion of a vector (with which we are most directly
concerned) and leaving the more difficult physical
notion to follow.

We have a set of four numbers (4,4, 45, Ay
which we associate with some point (s, 25, 24)
and with a certain system of coordinates. We
make a change of the coordinate-system, and we
ask, What will these numbers become in the new
coordinates? The question is meaningless; they do
not automatically “become” anything. Unless we
interfere with them they stay as they were. But
the mathematician may say “When I am using the
coordinates u;, ., =3, 21, 1 want to talk about the
numbers 4,, 4., 43, A;; and when I am using ,
w4, a4, o4, 1 find that at the corresponding stage of
my work I shall want to talk about four different
numbers 4;, 45, 43, 4;. So for brevity I propose to
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call both sets of numbers by the same symbol 2.”
We reply “That will be all right, provided that you
tell us just what numbers will be denoted by 2 for
each of the coordinate-systems you intend to use.
Unless you do this we shall not know what you
are talking about.”

Accordingly the mathematician begins by giving
us a list of the numbers that o will signify in the
different coordinate-systems. ~We here denote
these numbers by letters. 2 will mean*

X, v, z for certain rectangular coordinates «, y, -,
R, 0, @ for certain polar coordinates r, 0, ¢,
A, M, N for certain ellipsoidal coordinates A, 4, v.

“But,” says the mathematician, “I shall never finish
at this rate. 'There are an infinite number of
coordinate-systems which I want to use. I see that
I must alter my plan. I will give you a general rule
to find the new values of « when you pass from
one coordinate-system to another; so that it is
only necessary for me to give you one set of values

*For convenience I take a three-dimensional illustration.
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and you can find all the others for yourselves.”

In mentioning a ru/e the mathematician gives
up his arbitrary power of making 2 mean anything
according to his fancy at the moment. He binds
himself down to some kind of regularity. Indeed
we might have suspected that our orderly-minded
friend would have some principle in his assign-
ment of different meanings to 2. But even so, can
we make any guess at the rule he is likely to adopt
unless we have some idea of the problem he is
working at in which 2 occurs? I think we can; it is
not necessary to know anything about the nature
of his problem, whether it relates to the world of
physics or to something purely conceptual; it is
sufficient that we know a little about the nature of
a mathematician.

What kind of rule could he adopt? Let us
examine the quantities which can enter into it.
There are first the two sets of numbers to be con-
nected, say, x, v, z and R, o, . Nothing has been
said as to these being analytical functions of any
kind; so far as we know they are isolated numbers.
Therefore there can be no question of introducing
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their derivatives. They are regarded as located at
some point of space (z,y,2) and (r6,¢), otherwise the
question of coordinates could scarcely arise. They
are changed because the coordinate-system has

changed at this point, and that change is defined
or 0%

8z’ 9z dy oy’
coordinates themselves, =, 4, =, r, 6, ¢, cannot be
involved; because they express relations to a dis-
tant origin, whereas we are concerned only with
changes at the spot where (x,v,2) is located. Thus
the rule must involve only the numbers x, v, z,

R, ©, ® combined with the mutual derivatives of

by quantities like and so on. The integral

Ty Yy Zy Ty By @
One such rule would be
8r or or

89 89 80
- IZx+Z2v+7 .
0= 5 o (20.1)
¢ ¢ <15
= axX+?Y+F

Applying the same rule to the transformation from
(r,0,0) tO (A uv) We have

ON 0N OA
A= R+ 7550+ 500, (20.2)
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whence, substituting for r, e, & from (20.1) and
collecting terms,

O N PO AN T
Oor Ox 00 0xr 0¢ Ox or 0y 00 0y 0¢ Oy
(D2, 220,02 00)
or 0z 00 0z 0¢ 0z

L on.  ox.  OA
X+ —Y Z, 20.
o toayt T (20.3)

which is the same formula as we should have
obtained by applying the rule to the direct trans-
formation from (z,4,2) to (\pu»). Tlhe rule is thus
self-consistent. But this is a happy accident, per-
taining to this particular rule, and depending on
the formula

Or _oxor 0r09  0Xo¢

Ox Or Ox 90 dx  0¢ Ox’
and amid the apparently infinite choice of formulae
it will not be easy to find others which have this
self-consistency.

The above rule is that already given for the
contravariant vector (19.1). lhe rule for the covari-
ant vector is also self-consistent. There do not
appear to be any other self-consistent rules for the
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transformation of a set of three numbers (or four
numbers for four coordinates)*.

We see then that unless the mathematician dis-
regards the need for self-consistency in his rule,
he must inevitably make his quantity « either a
contravariant or a covariant vector. The choice
between these is entirely at his discretion. He
might obtain a wider choice by disregarding the
property of self-consistency—by selecting a par-
ticular coordinate-system, =, y, =, and insisting that
values in other coordinate-systems must always
be obtained by applying the rule immediately to
X, v, z, and not permitting intermediate transfor-
mations. In practice he does not do this, perhaps
because he can never make up his mind that any

*Except that we may in addition multiply by any power
of the Jacobian of the transformation. This is self-consistent
because

Oz,y,z) O(r,0,¢) d(z,y, z)

o(r,0,6) O\ p,v) O\ p,v)

Sets of numbers transformed with this additional multiplica-
tion are degenerate cases of tensors of higher rank considered

later. See §§ 48, 49.
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particular coordinates are deserving of this special
distinction.

We see now that a mathematical vector is a
common name for an infinite number of sets
of quantities, each set being associated with one
of an infinite number of systems of coordinates.
'The arbitrariness in the association is removed by
postulating that some method is followed, and
that no one system of coordinates is singled out
for special distinction. In technical language the
transformations must form a Group. The quantity
(R.0,®) 1§ in no sense the same quantity as (X,Y,Z),
they have a common name and a certain analytical
connection, but the idea of anything like identity
is entirely excluded from the mathematical notion
of a vector.

21. The physical notion of a vector.

'The components of a force (x,v,2), (x'.v". 2, etc.
in different systems of Cartesian coordinates, rect-
angular or oblique, form a contravariant vector.
'This is evident because in elementary mechanics
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a force is resolved into components according to
the parallelogram law just as a displacement dz,, is
resolved, and we have seen that 4z, is a contravari-
ant vector. So far as the mathematical notion
of the vector is concerned, the quantities (x,v,2)
and (x'.v’,z) are not to be regarded as in any way
identical; but in physics we conceive that both
quantities express some kind of condition or rela-
tion of the world, and this condition is the same
whether expressed by (x,v,2) or by (x,v,z). 'The
physical vector is this vaguely conceived entity,
which is independent of the coordinate-system,
and is at the back of our measurements of force.

A world-condition cannot appear directly in a
mathematical equation; only the measure of the
world-condition can appear. Any number or set
of numbers which can serve to specify uniquely a
condition of the world may be called a measure
of it. In using the phrase “condition of the
world” I intend to be as non-committal as possible;
whatever in the external world determines the
values of the physical quantities which we observe,
will be included in the phrase.
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'The simplest case is when the condition of the
world under consideration can be indicated by a
single measure-number. Take two such conditions
underlying respectively the wave-length » and pe-
riod 7 of a light-wave. We have the equation

A=3-10""T. (21.1)

'This equation holds only for one particular plan
of assigning measure-numbers (the c.G.s. system).
But it may be written in the more general form

A =T, (21.2)

where ¢ is a velocity having the value 3.10% in
the c.c.s. system. 'This comprises any number of
particular equations of the form (211). For each
measure-plan, or system of units, « has a different
numerical value. The method of determining the
necessary change of ¢ when a new measure-plan
is adopted, is well known; we assign to it the
dimensions length + time, and by a simple rule we
know how it must be changed when the units of x
and 7 are changed. For any general equation the
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total dimensions of every term ought to be the
same.

'The tensor calculus extends this principle of di-
mensions to changes of measure-code much more
general than mere changes of units. There are con-
ditions of the world which cannot be specified by
a single measure-number; some require 4, some 1s,
some 64, etc., measure-numbers. Their variety is
such that they cannot be arranged in a single serial
order. Consider then an equation between the
measure-numbers of two conditions of the world
which require 4 measure-numbers. The equation,
if it is of the necessary general type, must hold for
every possible measure-code; this will be the case
if, when we transform the measure-code, both
sides of the equation are transformed in the same
way, i.e. if we have to perform the same series of
mathematical operations on both sides.

We can here make use of the mathematical
vector of § 20. Let our equation in some measure-

code be

A17A2>A37A4 :BI7B27B37B4' (213)
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Now let us change the code so that the left-
hand side becomes any four numbers 4;, 45, 4,
A, We identify this with the transformation of
a covariant vector by associating with the change
of measure-code the corresponding transformation
of coordinates from =z, to =/, as in (19.2). But since
(21.3) 1s to hold in all measure-codes, the transfor-
mation of the right-hand side must involve the
same set of operations; and the change from B, B,
Bs, By to B, B,, B, B, will also be the transforma-
tion of a covariant vector associated with the same
transformation of coordinates from z, to «,.

We thus arrive at the result that in an equa-
tion which is independent of the measure-plan
both sides must be covariant or both contravariant
vectors. We shall extend this later to conditions
expressed by 16, 64, ..., measure-numbers; the gen-
eral rule is that both sides of the equation must
have the same elements of covariance and con-
travariance. Covariance and contravariance are a
kind of generalised dimension, showing how the
measure of one condition of the world is changed
when the measure of another condition is changed.
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'The ordinary theory of change of units is merely
an elementary case of this.

Coordinates are the identification-numbers of
the points of space-time. ‘There is no funda-
mental distinction between measure-numbers and
identification-numbers, so that we may regard the
change of coordinates as part of the general change
applied to all measure-numbers. The change of
coordinates no longer leads the way, as it did in
§ 20; it is placed on the same level with the other
changes of measure.

When we applied a change of measure-code
to (213) we associated with it a change of coor-
dinates; but it is to be noted that the change of
coordinates was then ambiguous, since the two
sides of the equation might have been taken as
both contravariant instead of both covariant; and
further the change did not refer explicitly to co-
ordinates iz the world—it was a mere entry in
the mathematician’s note-book in order that he
might have the satisfaction of calling 4, and s,
vectors consistently with his definition. Now if
the measure-plan of a condition 4, is changed the
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measures of other conditions and relations associ-
ated with it will be changed. Among these is a
certain relation of two events which we may call
the aspect* of one from the other; and this rela-
tion requires four measure-numbers to specify it.
Somewhat arbitrarily we decide to make the aspect
a contravariant vector, and the measure-numbers
assigned to it are denoted by (ax)«. That settles the
ambiguity once for all. For obscure psychological
reasons the mind has singled out this transcenden-
tal relation of aspect for graphical representation,
so that it is conceived by us as a displacement or
difference of location in a frame of space-time.
Its measure-numbers (dr)» are represented graphi-
cally as coordinate-differences dz,, and so for each
measure-code of aspect we get a corresponding
coordinate-frame of location. 'This “real” coor-

¥The relation of aspect (or in its graphical conception
displacement) with four measure-numbers seems to be derived
from the relation of interval with one measure-number, by
taking account not only of the mutual interval between the
two events but also of their intervals from all surrounding
events.
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dinate-frame can now replace the abstract frame
in the mathematician’s note-book, because as we
have seen in (19.1) the actual transformation of co-
ordinates resulting in a change of dz, is the same as
the transformation associated with the change of a,
according to the law of a contravariant vector.

I do not think it is too extravagant to claim that
the method of the tensor calculus, which presents
all physical equations in a form independent of
the choice of measure-code, is the only possible
means of studying the conditions of the world
which are at the basis of physical phenomena.
'The physicist is accustomed to insist (sometimes
quite unnecessarily) that all equations should be
stated in a form independent of the units em-
ployed. Whether this is desirable depends on the
purpose of the formulae. But whatever additional
insight into underlying causes is gained by stating
equations in a form independent of units, must be
gained to a far greater degree by stating them in a
form altogether independent of the measure-code.
An equation of this general form is called a zensor
equation.
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When the physicist is attacking the everyday
problems of his subject, he may use any form
of the equations—any specialised measure-plan—
which will shorten the labour of calculation; for in
these problems he is concerned with the outward
significance rather than the inward significance of
his formulae. But once in a while he turns to con-
sider their inward significance—to consider that
relation of things in the world-structure which is
the origin of his formulae. The only intelligible
idea we can form of such a structural relation is
that it exists between the world-conditions them-
selves and not between the measure-numbers of a
particular code. A law of nature resolves itself into
a constant relation, or even an identity, of the two
world-conditions to which the different classes of
observed quantities forming the two sides of the
equation are traceable. Such a constant relation in-
dependent of measure-code is only to be expressed
by a tensor equation.

It may be remarked that if we take a force (x,v,2)
and transform it to polar coordinates, whether as
a covariant or a contravariant vector, in neither
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case do we obtain the quantities called polar com-
ponents in elementary mechanics. The latter are
not in our view the true polar components; they
are merely rectangular components in three new
directions, viz. radial and transverse. In general
the elementary definitions of physical quantities
do not contemplate other than rectangular com-
ponents, and they may need to be supplemented
before we can decide whether the physical vector is
covariant or contravariant. Thus if we define force
as “mass x acceleration,” the force turns out to be
contravariant; but if we define it by “work - force
« displacement,” the force is covariant. With the
latter definition, however, we have to abandon
the method of resolution into ob/igue components
adopted in elementary mechanics.

In what follows it is generally sufficient to
confine attention to the mathematical notion of
a vector. Some idea of the physical notion will
probably give greater insight, but is not necessary
for the formal proofs.
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22. The summation convention.

We shall adopt the convention that whenever a
literal suffix appears twice in a term that term is
to be summed for values of the suffix 1, 2, 3, 4. For
example, (2.1) will be written

ds? = Guw dxy, d, (Gop = Gur)- (22.1)

Here, since , and » each appear twice, the sum-
mation
4 4
22
p=1v=1
is indicated; and the result written out in full
gives (2.1).

Again, in the equation
0%q,

Al =22
122 /
(935“

Aa,
the summation on the right is with respect to
o only (i appearing only once). The equation is
equivalent to (19.2).

'The convention is not merely an abbreviation
but an immense aid to the analysis, giving it an
impetus which is nearly always in a profitable
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direction. Summations occur in our investigations
without waiting for our tardy approval.

A useful rule may be noted—

Any literal suffix appearing twice in a term is
a dummy suffix, which may be changed freely
to any other letter not already appropriated in
that term. Two or more dummy suffixes can be
interchanged*. For example

OPrq Oxg Dxg Oz,
Job Ox), Ox;, Oz = Job Ox), Ox;, Oz

(22.2)

by interchanging the dummy suffixes « and g,
remembering that gz, = gas.
For a further illustration we shall prove that

! .
Oz, &L‘Oé:clﬂcﬂzo7 lf,u;zéu

, ifuzy

=1

The left-hand side written in full is

Oz, Oz Oz, Ozy Oz, Ozf Oz, Oz
oz Ox,  Ozb Ox, Ozf Ox, Oz} Ox,’

*At first we shall call attention to such changes when
we employ them; but the reader will be expected gradually
to become familiar with the device as a common process of
manipulation.
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which by the usual theory gives the change d,
consequent on a change dz,. But 2, and z, are
coordinates of the same system, so that their
variations are independent; hence dz, is zero unless
z, and =, are the same coordinate, in which case,

of course, dr, = dz,. Thus the theorem is proved.
Oz, Oz,
Ox!, Ox,
operator. That is to say if A(u) is any expression

involving the suffix x

acts as a substitution-

'The multiplier

Oz, Oz,

ox!, Ox,

A(p) = A(v). (22.4)

For on the left the summation with respect to .
gives four terms corresponding to the values 1, 2,
3, 4 of u. One of these values will agree with ».
Denote the other three values by o, , ». Then
by (22.3) the result is

1 A(v)+0-A(c) +0-A(1) +0- A(p)
= A(v).

'The multiplier accordingly has the effect of substi-
tuting » for , in the multiplicand.
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23. Tensors.

The two laws of transformation given in § 19
are now written—
Contravariant vectors

ox’
A = 2t ga 23.11
Dz, (23.11)
Covariant vectors
, 0xq

We can denote by 4,, a quantity with 16 compo-
nents obtained by giving » and » the values from 1
to 4 independently. Similarly 4., has 61+ com-
ponents. By a generalisation of the foregoing
transformation laws we classify quantities of this

kind as follows—

Contravariant tensors

A — (23.21)

al'a 6@3

Covariant tensors

o 8.730( 8565
" O, Ox

Aap. (23.22)

!
v
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Mixed tensors

w_ Ona Dz}, s
® 8£C;L (9.%5 «

(23.23)

The above are called tensors of the second rank.
We have similar laws for tensors of higher ranks.

E.g.

e O0xo Oxg Oxy Ol 5

= . 23.3
e dx), dx;, 0z, Oxs aBy ( )

It may be worth while to remind the reader that
(23.3) typifies 256 distinct equations each with a sum
of 256 terms on the right-hand side.

It is easily shown that these transformation laws
fulfil the condition of self-consistency explained in
§ 20, and it is for this reason that quantities
governed by them are selected for special nomen-
clature.

If a tensor vanishes, i.e. if all its components
vanish, in one system of coordinates, it will con-
tinue to vanish when any other system of coordi-
nates is substituted. This is clear from the linearity
of the above transformation laws.

Evidently the sum of two tensors of the same
covariant or contravariant character is a tensor.
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Hence a law expressed by the vanishing of the
sum of a number of tensors, or by the equality of
two tensors of the same kind, will be independent
of the coordinate-system used.

'The product of two tensors such as 4,, and B; is
a tensor of the character indicated by 47,,. 'This is
proved by showing that the transformation law of
the product is the same as (23.3).

The general term zensor includes vectors (tensors
of the first rank) and invariants or scalars* (tensors
of zero rank).

A tensor of the second or higher rank need not
be expressible as a product of two tensors of lower
rank.

A simple example of an expression of the second
rank is afforded by the stresses in a solid or viscous
fluid. The component of stress denoted by p,, is
the traction in the y-direction across an interface
perpendicular to the »-direction. Each component
is thus associated with two directions.

*Scalar is a synonym for invariant. I generally use the latter
word as the more self-explanatory.
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24. Inner multiplication and contraction. The
quotient law.

If we multiply 4, by B~ we obtain sixteen quan-
tities 4,B!, 4,82, 4,B',... constituting a mixed tensor.
Suppose that we wish to consider the four “diag-
onal” terms 4,B', A.B2, 4;8%, A,B%; we naturally try
to abbreviate these by writing them 4,8+, But by
the summation convention 4,5+ stands for the sum
of the four quantities. The convention is right.
We have no use for them individually since they
do not form a vector; but the sum is of great
importance.

A, is called the inmer product of the two
vectors, in contrast to the ordinary or outer prod-
uct A,Bv.

In rectangular coordinates the inner product
coincides with the scalar-product defined in the
well-known elementary theory of vectors; but the
outer product is not the so-called wvector-product of
the elementary theory.

By a similar process we can form from any
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mixed tensor 47,, a “contracted*’tensor 47,,, which
is two ranks lower since - has now become a
dummy suffix. To prove that a,, is a tensor, we
set r =0 1N (23.3),

Ao ::3xa Oxg Oz Ozl 5
me - Owy, Ox), Oz}, Oxs oy

Oy Ozo
ox! Oxs

'The substitution operator changes s to

in 4, by (224). Hence

e Oz Oxp
pve = 8xL ox!, apy’

Comparing with the transformation law (23.22) we
see that 47, is a covariant tensor of the second
rank. Of course, the dummy suffixes 4 and + are
equivalent.

Similarly, setting » = in (23.23),

Oz, O,

Ox), Oxg

Al = Al = A = AL,

that is to say a» is unaltered by a transformation of
coordinates. Hence it is an invariant.

*German, verjingt.
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By the same method we can show that 4,
Awv. Avpy are invariants. In general when an upper
and lower suffix are the same the corresponding
covariant and contravariant qualities cancel out. If
all suffixes cancel out in this way, the expression
must be invariant. The identified suffixes must be
of opposite characters; the expression 47, is not a

pnoo

tensor, and no interest is attached to it.

We see that the suffixes keep a tally of what we
have called the generalised dimensions of the terms
in our equations. After cancelling out any suffixes
which appear in both upper and lower positions,
the remaining suffixes must appear in the same
position in each term of an equation. When that
is satisfied each term will undergo the same set of
operations when a transformation of coordinates
is made, and the equation will continue to hold in
all systems of coordinates. This may be compared
with the well-known condition that each term
must have the same physical dimensions, so that
it undergoes multiplication by the same factor
when a change of units is made and the equation
continues to hold in all systems of units.
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Just as we can infer the physical dimensions of
some novel entity entering into a physical equa-
tion, so we can infer the contravariant and covari-
ant dimensions of an expression whose character
was hitherto unknown. For example, if the equa-
tion is

A(uv)Byo = Cp, (24.1)
where the nature of A(u) is not known initially, we
see that 4(w) must be a tensor of the character a,
so as to give

AYByy = Co,

which makes the covariant dimensions on both
sides consistent.
'The equation (24.1) may be written symbolically

A(pv) = CHU/BM,,

and the conclusion is that not only the product
but also the (symbolic) quotient of two tensors is
a tensor. Of course, the operation here indicated
is not that of ordinary division.

'This quotient law is a useful aid in detecting the
tensor-character of expressions. It is not claimed
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that the general argument here given amounts to
a strict mathematical proof. In most cases we
can supply the proof required by one or more
applications of the following rigorous theorem—

A quantity which on inner multiplication by
amny covariant (alternatively, by any contravariant)
vector always gives a tensor, is itself a tensor.

For suppose that

A(uv)B”

is always a covariant vector for any choice of the
contravariant vector . Then by (23.12)

0z,

!
81,’“

{A'(w)B"} = 57 {A(aB)B"}. (24.2)

But by (23.11) applied to the reverse transformation
from accented to unaccented coordinates

_%Bm

B =
oz,

Hence, substituting for 7 in (24.2),

or 6‘;1:[3
v ! _ «a
B (A (v) Ox), O,

v

A@@):O
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Since B is arbitrary the quantity in the bracket
must vanish. This shows that aqw) is a covariant
tensor obeying the transformation law (23.22).

We shall cite this theorem as the “rigorous
quotient theorem.”

With reference to the statement that an equa-
tion such as (24.1) does not afford a rigorous proof
of the tensor character of a(w), it is desirable to
give an example of failure. Let r(u) be any ex-
pression antisymmetrical in » and », and let ¢ be
a symmetrical tensor, so that

F(uv) = —-F(uv) G* =G"M.
Then

F(uv)G* = —=F(vu)G**
— —F ()G

by interchanging the dummy suffixes. Hence
F(uv)G* = 0.

Thus the product of F(uw) and ¢« is invariant; but
it is fallacious to argue from this that r(w) must
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be a covariant tensor, since we have seen that any
antisymmetrical expression will have this property.

An equation, Agw)e» = invariant, only allows
us to infer that the symmetrical part of Auw) is
a tensor; the antisymmetrical part is arbitrary.
Similarly if ¢ is an antisymmetrical tensor, the
inference is that the antisymmetrical part of A(uw)
1s a tensor.

Thus when in § 29 we find that 4,, multiplied by
the symmetrical tensor de,/ds - de,/ds is an invariant,
the proper deduction is that the symmetrical part
of 4, is a tensor. To complete the proof of (20.3)
it is necessary to show that the antisymmetrical
part, viz. 1(94,/ox, — 94,/02,), is also a tensor. The
reader will easily verify this by determining its
transformation law, using (23.12).

Similarly the proof that 4, is a tensor at the
beginning of § 25 is not rigorous. Any antisym-
metrical expression could be added to 4,, without
altering 42, and the proof should take account of
the fact that g,, is defined as a symmetrical expres-
sion. A rigorous proof is easily supplied by finding

the transformation law as suggested in § 15.
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Although the chance of a breakdown of the
general deduction from covariant and contravari-
ant dimensions is somewhat greater than I origi-
nally realised, I do not regret having employed the
method extensively in this book. It is desirable
that the student’s course of reading should train
him instinctively to “spot” tensors in this way, and
there is never any serious difficulty in confirming
his discoveries by more rigorous tests. Although
cases of failure are easily constructed artificially,
I have yet to hear of a natural instance of this

happening.

25. The fundamental tensors.

It is convenient to write (22.1) as
ds® = 9w (dx)*(dz)”

in order to show explicitly the contravariant char-
acter of dz, = (dz)». Since ds? is independent of the
coordinate-system it is an invariant or tensor of
zero rank. The equation shows that g, (dx)» multi-
plied by an arbitrarily chosen contravariant vector
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(dz)” always gives a tensor of zero rank; hence g,., (dz)*
is a vector. Again, we see that 4, multiplied by
an arbitrary contravariant vector (dz)» always gives
a vector; hence g, is a tensor. This double applica-
tion of the rigorous quotient theorem shows that
gu 1s a tensor; and it is evidently covariant as the
notation has anticipated. In the proof above the
symmetry property (g,, = 4.,) was essential.
Let 4 stand for the determinant

g11 912 913 J14
921 g22 923 G24
g31 932 g33 g34

921 Gg42 G943 Ga4

Let ¢+ be defined as the minor of 4, in this
determinant, divided by ¢*.

Consider the inner product g..¢v. We see
that » and » select two rows in the determinant;
we have to take each element in turn from the
» row, multiply by the minor of the corresponding
element of the » row, add together, and divide

*The notation anticipates the result proved later that g"” is
a contravariant tensor.
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the result by 4. 'This is equivalent to substituting
the . row for the » row and dividing the resulting
determinant by 4. If , is not the same as v this
gives a determinant with two rows identical, and
the result is 0. If , is the same as » we reproduce
the determinant 4 divided by itself, and the result
is 1. We write

gZ :guogya
=0 futvy. (25.1)
=1 lf w=v

Thus ¢; has the same property of a substitution-

! .
operator that we found for giﬁ ‘Zﬁ“ in (22.4). For

example¥,
GLAM = AY 40+ 0+0. (25.2)

Note that ¢« has not the same meaning as ¢, with
n=v, because a summation is implied. Evidently

g =1+1+1+1=4 (25.3)

The equation (25.2) shows that ¢ multiplied by
any contravariant vector always gives a vector.

*Note that g, will act as a substitution-operator on any
expression and is not restricted to operating on tensors.



CH. II THE FUNDAMENTAL TENSORS 181

Hence ¢, is a tensor. It is a very exceptional
tensor since its components are the same in all
coordinate-systems.

Again since g,,¢v° is a tensor we can infer that
g is a tensor. 'This is proved rigorously by re-
marking that g4,,4» is a covariant vector, arbitrary
on account of the free choice of a». Multiplying
this vector by ¢~ we have

Guog A = glLA" = A”,

so that the product is always a vector. Hence the
rigorous quotient theorem applies.

'The tensor character of ¢»» may also be demon-
strated by a method which shows more clearly the
reason for its definition as the minor of 4,, divided
by 4. Since g,.4v is a covariant vector, we can

denote it by B,. Thus
g1 A + g1 A + g13 A% + g A* = By; etc.

Solving these four linear equations for 4!, 42, 43, a4
by the usual method of determinants, the result is

A' = g¢"' By + ¢"2By + ¢"* B3 + ¢"*By; etc.,
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so that
AP = g™ B,,.

Whence by the rigorous quotient theorem ¢ is a
tensor.
We have thus defined three fundamental tensors

Guvs G 9

of covariant, mixed, and contravariant characters
respectively.

26. Associated tensors.

We now define the operation of raising or
lowering a suffix. Raising the suffix of a vector is

defined by the equation
Al =g Ay,
and lowering by the equation
Ay = g A

., the op-
eration of raising . is defined in the same way,
Viz.

For a more general tensor such as a2

AV = g AT (26.1)

afv?
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and for lowering

7)
Aaﬂu

= g ALY (26.2)

'These definitions are consistent, since if we raise
a suffix and then lower it we reproduce the original
tensor. 'Thus if in (26.1) we multiply by g,, in order

to lower the suffix on the left, we have

1 5
guo'Aggu = g/nglwAzéﬁy

v é
= gUAlBl/

— A

afo

by (25.2),

which is the rule expressed by (26.2).

It will be noticed that the raising of a suffix »
by means of ¢ is accompanied by the substitution
of i for v. 'The whole operation is closely akin to
the plain substitution of . for » by means of ¢.

Thus

multiplication by ¢ gives substitution with raising.
multiplication by ¢ gives plain substitution,
multiplication by 4,, gives substitution with lowerir

In the case of non-symmetrical tensors it may
be necessary to distinguish the place from which
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the raised suffix has been brought, e.g. to distin-
guish between 4,” and 4,..

It is easily seen that this rule of association
between tensors with suffixes in different positions
is fulfilled in the case of g, ¢, g.; in fact the
definition of ¢ in (25.1) is a special case of (26.1).

For rectangular coordinates the raising or low-
ering of a suffix leaves the components unaltered
in three-dimensional space*; and it merely reverses
the signs of some of the components for Galilean
coordinates in four-dimensional space-time. Since
the elementary definitions of physical quantities
refer to rectangular axes and time, we can gen-
erally use any one of the associated tensors to
represent a physical entity without infringing pre-
relativity definitions. This leads to a somewhat
enlarged view of a tensor as having in itself no
particular covariant or contravariant character, but
having components of various degrees of covariance
or contravariance represented by the whole system

*If ds® = da? + dad + dal, g = g = g;, so that all three
tensors are merely substitution-operators.
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of associated tensors. That is to say, the raising or
lowering of suffixes will not be regarded as altering
the individuality of the tensor; and reference to a
tensor 4,, may (if the context permits) be taken to
include the associated tensors 47 and aw.

It is useful to notice that dummy suffixes have a
certain freedom of movement between the tensor-
factors of an expression. Thus

AapB*? = A% Bag,  AuaBYY = A,“BY,. (26.3)

'The suffix may be raised in one term provided it
is lowered in the other. 'The proof follows easily
from (26.1) and (26.2).

In the elementary vector theory two vectors
are said to be perpendicular if their scalar-product
vanishes; and the square of the /engzh of the vector
is its scalar-product into itself. Corresponding
definitions are adopted in the tensor calculus.

'The vectors 4, and B, are said to be perpendicular
if

A B" = 0. (26.4)

If 1 is the /length of 4, (or a»)

I = A,A" (26.5)
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A vector is self-perpendicular if its length vanishes.
'The interval is the length of the corresponding
displacement dx, because

ds* = g, (dx)" - (d)"

= (dx),(dx)”

by (26.2). A displacement is thus self-perpendicular
when it is along a light-track, s —o.

If a vector 4, receives an infinitesimal incre-
ment a4, perpendicular to itself, its length is unal-
tered to the first order; for by (26.5)

(I+dl)* = (A, +dA,) (A" + dA")
— A, A"+ A"dA, + A, dA*  to the first order
— 12 +24,d4" by (26.3),

and 4,d4" = 0 by the condition of perpendicular-
ity (26.4).

In the elementary vector theory, the scalar-
product of two vectors is equal to the product
of their lengths multiplied by the cosine of the
angle between them. Accordingly in the general
theory the angle ¢ between two vectors 4, and 3,
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is defined by
A, B¥

V(A,A%)(Bs BF)
Clearly the angle so defined is an invariant, and
agrees with the usual definition when the coor-
dinates are rectangular. In determining the angle
between two intersecting lines it makes no dif-
ference whether the world is curved or flat, since
only the initial directions are concerned and these
in any case lie in the tangent plane. 'The an-
gle ¢ (if it is real) has thus the usual geometrical
meaning even in non-Euclidean space. It must
not, however, be inferred that ordinary angles are
invariant for the Lorentz transformation; naturally
an angle in three dimensions is invariant only for
transformations in three dimensions, and the angle
which is invariant for Lorentz transformations is a
four-dimensional angle.

From a tensor of even rank we can construct
an invariant by bringing half the suffixes to the
upper and half to the lower position and contract-
ing. 'Thus from 4,.. we form 477 and contract,
obtaining 4 = a2. 'This invariant will be called

cosf =

(26.6)
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the spur*. Another invariant is the square of the
length 4,,,,4w7. ‘There may also be intermediate
invariants such as as,, 44",

pra

27. Christoffel’s 3-index symbols.

We introduce two expressions (not tensors) of
great importance throughout our subsequent work,
namely

el =4 (G2 + 5 - 5 ). zn1)
{uw, o} = Lg7 (%ﬁ: + %i”: = %{C“:) . (27.2)
We have
{pv,0} = g [, A, (27.3)
[uv, 0] = gox {1, A}. (27.4)

'The result (27.3) is obvious from the definitions. To
prove (27.4), multiply (27.3) by g,.; then
oo {11, 0} = Goag” [, A
= 92 [:L”/a )‘]

= [/’LV’ Oé],

*QOriginally the German word Spur.
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which is equivalent to (27.4).

Comparing with (26.1) and (26.2) we see that the
passage from the “square” to the “curly” symbol,
and wvice versa, is the same process as raising and
lowering a sufhix. It might be convenient to use a
notation in which this was made evident, e.g.

Lyvo = pv,o], 19, ={w,0o},

but we shall adhere to the more usual notation.
From (27.1) it is found that

99,0
oz,

[, 0] + [ov, p] = (27.5)

There are 40 different s-index symbols of each
kind. It may here be explained that the 4, are
components of a generalised pofential, and the 3-
index symbols components of a generalised force
in the gravitational theory (see § 55).

28. Equations of a geodesic.

We shall now determine the equations of a
geodesic or path between two points for which

/ ds 18 stationary.



CH. 11 EQUATIONS OF A GEODESIC 190

'This absolute track is of fundamental importance
in dynamics, but at the moment we are concerned
with it only as an aid in the development of the
tensor calculus*.

Keeping the beginning and end of the path
fixed, we give every intermediate point an arbitrary
infinitesimal displacement sz, so as to deform the

path. Since

ds? = Guv Az, dr,,

2dsé(ds) = dxy dxy 69, + guw dxy, 8(day) + g dzy 6(dxy,)

=dx, dz, %‘C;:W 06 + guv dxy, d(dz,) + g dxy, d(62,).  (28.1)

The stationary condition is
/ 5(ds) = 0, (28.2)
which becomes by (25.1)

o [ R byt g S 60) + g (60,0 s =

2 ds ds Oxs

*Qur ultimate goal is equation (29.3). An alternative proof
(which does not introduce the calculus of variations) is given

in § 31.
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or, changing dummy suffixes in the last two terms,

1 dx,, dv, 09, dx, dr,\ d
s 7 1) o e ov —7; | 5 1) o ds = 0.
2/{ ds ds Oz, o+ | I ds tg ds ds( To) ds =0

Applying the usual method of partial integration,
and rejecting the integrated part since sz, vanishes
at both limits,

1 dx, dx, 0gu, d dx, dx,
P 5 T3 a. T 5 o 5 ov ~; ] o ds = 0.
2/{ Ine g T s ) 7Y 0

'This must hold for all values of the arbitrary
displacements sz, at all points, hence the coefficient
in the integrand must vanish at all points on the

path. Thus

ldz, dx, 09y 1dgue dv, 1dge, dr, 1 dzxu 1 A2z,

2ds ds Oz, 2 ds ds 2 ds ds 9Imo Tggz T 99 g2 T

dguo  0guo dx, 9oy O09ov dxy
= n = —=,
ds Oox, ds a d ds Oz, ds

¥These simple formulae are noteworthy as illustrating the
great value of the summation convention. The law of total
differentiation for four coordinates becomes formally the same
as for one coordinate.
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Also in the last two terms we replace the dummy
suffixes » and » by «. The equation then becomes

2
} dz,, dz, <3guu 6glw _ 8gua> _ d°z. —0. (28.3)

2 ds ds \ 0r, Oz, Oz, Jeo g2

We can get rid of the factor 4., by multiplying
through by ¢ so as to form the substitution
operator go. 'Thus

1 dzx, dz, 09y O%vs  Oguv d?z,
— g — = 28.4
2 ds ds (3% + oz, 0z, + ds? 0, (28.4)
or, by (27.2)
A2z, dz,, dz,
—= =0. 28.
d82 + {/“/v Oé} dS dS 0 ( 8 5)

For o =1, 2, 3, 4 this gives the four equations
determining a geodesic.

29. Covariant derivative of a vector.

The derivative of an invariant is a covariant
vector (§ 19), but the derivative of a vector is not
a tensor. We proceed to find certain tensors which
are used in this calculus in place of the ordinary
derivatives of vectors.
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Since dz, is contravariant and 4s invariant, a
“velocity” da,/ds is a contravariant vector. Hence if
A, is any covariant vector the inner product

dx,

A, is invariant.

The rate of change of this expression per unit
interval along any assigned curve must also be
independent of the coordinate-system, i.e.

d dr,\ so .
= (A,=2) is invariant. 29.1
ds<yd8>s variant (29.1)

'This assumes that we keep to the same absolute
curve however the coordinate-system is varied.
The result (20.1) is therefore only of practical use
if it is applied to a curve which is defined in-
dependently of the coordinate-system. We shall
accordingly apply it to a geodesic. Performing the
differentiation,

04, dz, dxz, d2
o e et A g is invariant along a geodesic.
(29.2)

From (285) we have that along a geodesic

szu A’z dzu dx,
Au ds? = 4a ds? ~Aa o} ds
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Hence (20.2) gives

%dmu 04,
ds ds \ Ox,

- Aa{uy,a}) 1s invariant.

The result is now general since the curvature
(which distinguishes the geodesic) has been elim-
inated by using the equations (285) and only the
gradient of the curve (dz,/ds and dx,/ds) has been
left in the expression.

Since dz,/ds and dz,/ds are contravariant vectors,
their co-factor is a covariant tensor of the second
rank. We therefore write
_ aAlJf

oz,

A —{pv,a} Aa, (29.3)

and the tensor 4,, is called the covariant derivative
of 4,.

By raising a suffix we obtain two associated
tensors 4+, and 4,” which must be distinguished
since the two suffixes are not symmetrical. The
first of these is the most important, and is to be
understood when the tensor is written simply as a
without distinction of original position.

Since

Ay = goe A,
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we have by (20.3)

0

Acn/ = 87%(90'614‘) - {O'Z/,Oé} (gaeA‘)
B 0A° . 0G5c .
= o G+ AT G~ ov A by (27.4)

€

o % + [ev,0] 4° by (27.5).

174

Hence multiplying through by ¢+, and remember-
ing that ¢wg,. is a substitution-operator, we have

OAH
o0z,

A¥, = + {ev, u} A (29.4)

This is called the covariant derivative of 4. The
considerable differences between the formulae (20.3)
and (204) should be carefully noted.

The tensors 4,» and 4=, obtained from (20.3)
and (20.4) by raising the second suffix, are called the
contravariant derivatives of 4, and a+. We shall
not have much occasion to refer to contravariant
derivatives.
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30. Covariant derivative of a tensor.

The covariant derivatives of tensors of the sec-
ond rank are formed as follows—
DA

ARV = 5 +{ao, u} A% +{ao, v} A**, (30.1)
Lo
3 oA}, § N
A,ua' = Oz, —{po, at Ay +{ao,v} A,uv (30.2)
A
Ao = a{“)xl —A{uo,at Aoy —{vo,a} A,,. (30.3)

And the general rule for covariant differentiation
with respect to «, is illustrated by the example

0
Al;\/LV(T = % Ai/w - {)‘Uv Ol} Acpx;w - {:u’o—v 04} Aiau

—{vo,a} AS,, +{ao,p} A3, (30.4)

'The above formulae are primarily definitions;
but we have to prove that the quantities on the
right are actually tensors. This is done by an obvi-
ous generalisation of the method of the preceding
section. Thus if in place of (20.1) we use

d dx,, dx . . . .
(4, Hut G
75 ( g ) 1S 1nvariant along d geOdeSIC,

we obtain
0A,, dzs d:ciﬂ dx, n d& dzx# . da;iu A2z,
Ox, ds ds ds o ds  ds? Mods ds?
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'Then substituting for the second derivatives from (28
the expression reduces to

dz, dr, dzs
Y ds ds ds

1s invariant,

showing that 4,,, is a tensor.

The formulae (30.1) and (30.2) are obtained by
raising the suffixes » and ;, the details of the work
being the same as in deducing (204) from (29.3).

Consider the expression

BMO'CIJ + Bucuoa

the » denoting covariant differentiation. By (20.3)
this is equal to

0B, aC,
(8965 —{uo, a} Ba> C,+ B, (8% —{vo,a} C’a)
0

= e (B,Cy) — {po,a} (B.Cy) — {vo,a} (B,Cy).

But comparing with (30.3) we see that this is the
covariant derivative of the tensor of the second
rank (8,0,). Hence

(BC)o = BuyCy + BuChs. (30.5)
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Thus in covariant differentiation of a product the
distributive rule used in ordinary differentiation
holds good.

Applying 30.3) to the fundamental tensor, we
have

0
Juvo = agll,w - {/“77 V} Gav — {V0>a}g/wt

g

_ 99 B
= or, [no,v] = [vo, ]

—0 by (27.5).

Hence the covariant derivatives of the funda-
mental tensors vanish identically, and the funda-
mental tensors can be treated as constants in covari-
ant differentiation. It is thus immaterial whether
a suflix is raised before or after the differentiation,
as our definitions have already postulated.

If 7 is an invariant, 74, is a covariant vector;
hence its covariant derivative is

0
(IAM)V = oz, (IAM) - {UV7Q} IA,
ol
= AH aixy + IA#V.

But by the rule for differentiating a product (30.5)

(IA,), =1,A,+1A,,,
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so that
oI

I, = .
ox,

Hence the covariant derivative of an invariant is
the same as its ordinary derivative.

It is, of course, impossible to reserve the no-
tation 4, exclusively for the covariant derivative
of 4,, and the concluding suffix does not de-
note differentiation unless expressly stated. In
case of doubt we may indicate the covariant and
contravariant derivatives by (4,), and (4,)".

The utility of the covariant derivative arises
largely from the fact that, when the 4, are con-
stants, the 3-index symbols vanish and the co-
variant derivative reduces to the ordinary deriva-
tive. Now in general our physical equations have
been stated for the case of Galilean coordinates
in which the 4. are constants; and we may in
Galilean equations replace the ordinary derivative
by the covariant derivative without altering any-
thing. 'This is a necessary step in reducing such
equations to the general tensor form which holds
true for all coordinate-systems.
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As an illustration suppose we wish to find the
general equation of propagation of a potential with
the velocity of light. In Galilean coordinates the
equation is of the well-known form

2 2 2 2
np= 29 _9¢ 06 06 _, (30.6)
The Galilean values of ¢ are ¢4 =1, ¢t = ¢ =
¢ = -1, and the other components vanish. Hence
(30.6) can be written

w070
g Oz, 0z,

—0. (30.65)

The potential ¢ being an invariant, its ordinary
derivative is a covariant vector ¢, = 9¢/0z,; and since
the coordinates are Galilean we may insert the
covariant derivative ¢,, instead of a¢,/0=,. Hence
the equation becomes

9" ¢ = 0. (30.7)

Up to this point Galilean coordinates are essential;
but now, by examining the covariant dimensions
of 30.7), we notice that the left-hand side is an
invariant, and therefore its value is unchanged
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by any transformation of coordinates. Hence
30.7) holds for all coordinate-systems, if it holds
for any. Using (20.3) we can write it more fully

w (0% 9¢
g (0:8 S {pv, a} p ) =0. (30.8)
I v @

'This formula may be used for transforming Laplace’
equation into curvilinear coordinates, etc.

It must be remembered that a transformation
of coordinates does not alter the kind of space.
Thus if we know by experiment that a potential ¢
is propagated according to the law (30.6) in Galilean
coordinates, it follows rigorously that it is propa-
gated according to the law (30.8) in any system of
coordinates in flat space-time; but it does not fol-
low rigorously that it will be propagated according
to (30.8) when an irreducible gravitational field is
present which alters the kind of space-time. It is,
however, a plausible suggestion that (30.8) may be
the general law of propagation of ¢ in any kind
of space-time; that is the suggestion which the
principle of equivalence makes. Like all general-
isations which are only tested experimentally in a
particular case, it must be received with caution.
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'The operator o will frequently be referred to. In
general coordinates it is to be taken as defined by

OA,.. = g (Au.)ap- (30.9)
Or we may write it in the form
O=((-)a)"

i.e. we perform a covariant and contravariant dif-
ferentiation and contract them.

SuMmMARY OF RULES FOR COVARIANT DIFFERENTIATION.

1. To obtain the covariant derivative of any
tensor 4- with respect to «,, we take first the
ordinary derivative

0

oA
and for each covariant suffix 4-;, we add a term
(o o} A
and for each contravariant suffix 4+, we add a term

+{ao, u} A
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2. 'The covariant derivative of a product is
formed by covariant differentiation of each factor
in turn, by the same rule as in ordinary differenti-
ation.

3. The fundamental tensor g, or ¢~ behaves as
though it were a constant in covariant differentia-
tion.

4. The covariant derivative of an invariant is its
ordinary derivative.

5. In taking second, third or higher derivatives,
the order of differentiation is not interchangeable*.

31. Alternative discussion of the covariant
derivative.

By (23.22)
;o &va axﬁ
G = dx;, Oxi, 9o

Hence differentiating

99, Pz, Ozp &z Ozp N 0z 03 02 Ogap
or, Job oz’ Ox), Ox;,  Ox)\ dx), Jx, dx}, Ox), O\ Ox,
(3L.11)

#This is inserted here for completeness; it is discussed later.
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Here we have used

0Gap _ 0gap O
oz oz, Oz’

and further we have interchanged the dummy

suffixes « and g in the second term in the bracket.
Similarly

8gy)\ =y B{ 821‘& axﬂ 82xa 8x/a} 81‘@ ax,@ 81’7 agﬂ’Y

oz, dx), Oz, dx’\ ~ Ox}, 0z O, oz}, Ox), '\ Oxs’
(31.12)

99, o Oxp N Pr, Oxp | 0o O 01y 090y

ox!, dx;, Oz}, dx\ ~ Ox], 0x\ Ox), dx}, Ox), dx’\ Oxp '

(31.13)

Add (31.12) and 31.13) and subtract (31.11), we obtain

by (27.1)

Oz, Oxg  Oro Oxg Ox,y
= GoB Ox), Oz, O\ 8;10/” Ox!, 0x [f, 9]

[, N = (31.2)

Multiply through by ¢ =< we have by (27.3)

—g 82xa -g/Ap 6:!3/3 O,
a 07 Bt da, da'y D!,
0z, Ox, Oz, Ox
p Cty Fle o Y4B
o'y Bx’p Ox), Oz, [B,]

{uv, p}

tyg
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2
~ gusd™ 0%z, O0zo Oxg 7
op dx!, dx;, O, Oxl,

0%z, Ozo Oxg
~ 9z ox, | 0z o {aB, e}, (31.3)
" v o v

(B, ] by (23.21)

a formula which determines the second derivative
22, /0a, 02, in terms of the first derivatives.

By (23.12)
ox
r €
A = o, a

(31.4)

Hence differentiating

04, 9%z, 4 Oxe Ox. Oxs OA,
oxl, Ox), Oz, ox), Oz;, Oxs
ox, Bxa Ox 0z Org 0A,
<{’“ Y oy ;" b, ;{0‘5’6}> At Gur, oy, awy Y

by 31.3) and changing the dummy suffixes in the
last term.

Also by (23.12)
Jz.
¢ oz, Ay
Hence (31.5) becomes
0A’ Oz Oxg (OA
B AN [eY B o
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showing that

0A
— —{uv,p} 4,

obeys the law of transformation of a covariant
tensor. We thus reach the result (203) by an
alternative method.

A tensor of the second or higher rank may
be taken instead of 4, in (314), and its covariant
derivative will be found by the same method.

32. Surface-elements and Stokes’s theorem.

Consider the outer product s of two different
displacements dz, and sz,. The tensor »» will be
unsymmetrical in , and ». We can decompose any
such tensor into the sum of a symmetrical part

Lz 4+ 3y and an antisymmetrical part (s — s,

Double* the antisymmetrical part of the prod-
uct de, 6z, is called the surface-element contained by
the two displacements, and is denoted by as». We

*The doubling of the natural expression is avenged by the
appearance of the factor 1 in most formulae containing dSH”.
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have accordingly

as*"’ =dx, éx, — dx, 0z, (32.1)

In rectangular coordinates this determinant repre-
sents the area of the projection on the v plane
of the parallelogram contained by the two dis-
placements; thus the components of the tensor
are the projections of the parallelogram on the six
coordinate planes. In the tensor asw these are
repeated twice, once with positive and once with
negative sign (corresponding perhaps to the two
sides of the surface). The four components as',
ds2, etc. vanish, as must happen in every antisym-
metrical tensor. The appropriateness of the name
“surface-element” is evident in rectangular coor-
dinates; the geometrical meaning becomes more
obscure in other systems.

The surface-element is always a tensor of the
second rank whatever the number of dimensions
of space; but in #hree dimensions there is an alter-
native representation of a surface area by a simple
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vector at right angles to the surface and of length
proportional to the area; indeed it is customary in
three dimensions to represent any antisymmetrical
tensor by an adjoint vector. Happily in four di-
mensions it is not possible to introduce this source
of confusion.
'The invariant
LA, dSH

is called the flux of the tensor 4, through the
surface-element. 'The flux involves only the anti-
symmetrical part of 4,, since the inner product
of a symmetrical and an antisymmetrical tensor
evidently vanishes.

Some of the chief antisymmetrical tensors arise
from the operation of cur/ing. If x,, is the covariant
derivative of x,, we find from (20.3) that

0K, 0K,

K o =
b o, Oz,

1%

- K

(32.2)

since the 3-index symbols cancel out. Since the
left-hand side is a tensor, the right-hand side is
also a tensor. 'The right-hand side will be recog-
nised as the “curl” of elementary vector theory,
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except that we have apparently reversed the sign.
Strictly speaking, however, we should note that
the curl in the elementary three-dimensional the-
ory is a vector, whereas our curl is a tensor; and
comparison of the sign attributed is impossible.

The result that the covariant curl is the same as
the ordinary curl does not apply to contravariant
vectors or to tensors of higher rank:

OK" OKY

KILU_KVM#E)T_ oxr,
v n

In tensor notation the famous theorem of
Stokes becomes

/ K, dz, — / / (‘?;;5— > dsm, (32.3)

the double integral being taken over any surface
bounded by the path of the single integral. The
factor ! is needed because each surface-element
occurs twice, e.g. as as? and —as?. 'The theorem
can be proved as follows—

Since both sides of the equation are invariants
it is sufficient to prove the equation for any one
system of coordinates. Choose coordinates so that
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the surface is on one of the fundamental partitions
x5 = const., z, = const., and so that the contour
consists of four parts given successively by z, = q,
2 = B, 11 =7, =, = 5; the rest of the mesh-system may
be filled up arbitrarily. For an elementary mesh
the containing vectors are (dz;,0,0,0) and (0,das.0,0),
so that by (32.1)

dS" = dxq dwy = —dS? .

Hence the right-hand side of (32.3) becomes
b oKk, ok
_//<8x21 — IQ)dl‘lde
a B

¥ )
=— /{[KlyS — [K4)P} dzy + /{[Kg]7 — [K2]*} dzo,
a B

which consists of four terms giving [k, dz, for the
four parts of the contour.

This proof affords a good illustration of the
methods of the tensor calculus. The relation to
be established is between two quantities which
(by examination of their covariant dimensions) are
seen to be invariants, viz. i, (dz)* and (K, — K,,.) ds*,
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the latter having been simplified by 322). Ac-
cordingly it is a relation which does not depend
on any particular choice of coordinates, although
in (32.3) it is expressed as it would appear when
referred to a coordinate-system. In proving the
relation of the two invariants once for all, we nat-
urally choose for the occasion coordinates which
simplify the analysis; and the work is greatly short-
ened by drawing our curved meshes so that four
partition-lines make up the contour.

33. Significance of covariant differentiation.

Suppose that we wish to discuss from the phys-
ical point of view how a field of force varies from
point to point. If polar coordinates are being used,
a change of the r-component does not necessar-
ily indicate a want of uniformity in the field of
force; it is at least partly attributable to the incli-
nation between the r-directions at different points.
Similarly when rotating axes are used, the rate of
change of momentum » is given not by an,/at, etc.,
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but by

dhl/dt — wzho + wohg, etc. (331)

'The momentum may be constant even when the
time-derivatives of its components are not zero.

We must recognise then that the change of a
physical entity is usually regarded as something
distinct from the change of the mathematical
components into which we resolve it. In the ele-
mentary theory a definition of the former change
is obtained by identifying it with the change of
the components in unaccelerated rectangular coor-
dinates; but this is of no avail in the general case
because space-time may be of a kind for which no
such coordinates exist. Can we still preserve this
notion of a physical rate of change in the general
caser

Our attention is directed to the rate of change
of a physical entity because of its importance in
the laws of physics, e.g. force is the time-rate of
change of momentum, or the space-rate of change
of potential; therefore the rate of change should be
expressed by a tensor of some kind in order that it



CH. II SIGNIFICANCE OF COVARIANT DIFFERENTIATION 213

may enter into the general physical laws. Further
in order to agree with the customary definition
in elementary cases, it must reduce to the rate
of change of the rectangular components when
the coordinates are Galilean. Both conditions are
fulfilled if we define the physical rate of change of
the tensor by its covariant derivative.

The covariant derivative 4,, consists of the term
9A,/dx,, giving the apparent gradient, from which
is subtracted the “spurious change” f{uw.a}A. at-
tributable to the curvilinearity of the coordinate-
system. When Cartesian coordinates (rectangular
or oblique) are used, the s-index symbols vanish
and there is, as we should expect, no spurious
change. For the present we shall call 4,, the rate
of absolute change of the vector a,.

Consider an elementary mesh in the plane
of z,z,, the corners being at

Az, xy), B(xy,+dz,,z,), C(xy+dxy,, vo+dr,), D(z,,z,+dz,).

Let us calculate the whole absolute change of the
vector-field 4, as we pass round the circuit 4BcpaA.
(1) From 4 to B, the absolute change is 4, dx.,
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calculated for z,*.

(2) From B to ¢, the absolute change is 4, da.,
calculated for «, + dz,.

(3) From c to b, the absolute change is -4,, dz,,
calculated for z, + dz,.

(4) From b to 4, the absolute change is -4,, da,,
calculated for ..
Combining (2) and (4) the net result is the dif-
ference of the changes 4,,ds,, at =, +dz, and at
z, respectively. We might be tempted to set this
difference down as

%(AW dz,)dz,.

But as already explained that would give only the
difference of the mathematical components and
not the “absolute difference.” We must take the
covariant derivative instead, obtaining (since dz, is

the same for (2) and (4))

Ajov dx g dz,,.

*We suspend the summation convention since dz, and dz,
are edges of a particular mesh. The convention would give
correct results; but it goes too fast, and we cannot keep pace
with it.
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Similarly (3) and (1) give
—Ae dz, dz,,

so that the total absolute change round the circuit
1s

(Apor — Apvo) day da,. (33.2)

We should naturally expect that on returning
to our starting point the absolute change would
vanish. How could there have been any absolute
change on balance, seeing that the vector is now
the same 4, that we started with? Nevertheless
in general 4,,, # 4,.,, that is to say the order of
covariant differentiation is not permutable, and
33.2) does not vanish.

That this result is not unreasonable may be
seen by considering a two-dimensional space, the
surface of the ocean. If a ship’s head is kept
straight on the line of its wake, the course is a
great circle. Now suppose that the ship sails round
a circuit so that the final position and course are
the same as at the start. If account is kept of all
the successive changes of course, and the angles
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are added up, these will not give a change zero
(or 2r) on balance. For a triangular course the
difference is the well-known “spherical excess.”
Similarly the changes of velocity do not cancel out
on balance. Here we have an illustration that the
absolute changes of a vector do not cancel out on
bringing it back to its initial position.

If the present result sounds self-contradictory,
the fault lies with the name “absolute change”
which we have tentatively applied to the thing
under discussion. 'The name is illuminating in
some respects, because it shows the continuity of
covariant differentiation with the conceptions of
elementary physics. For instance, no one would
hesitate to call (33.1) the absolute rate of change
of momentum in contrast to the apparent rate of
change dn,/dt. But having shown the continuity, we
find it better to avoid the term in the more general
case of non-Euclidean space.

Following Levi-Civita and Weyl we use the
term parallel displacement for what we have hith-
erto called displacement without “absolute change.”
'The condition for parallel displacement is that the
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covariant derivative vanishes.

We have hitherto considered the absolute change
necessary in order that the vector may return to its
original value, and so be a single-valued function
of position. If we do not permit any change
en route, i.e. if we move the vector by parallel
displacement, the same quantity will appear (with
reversed sign) as a discrepancy s4, between the
final and initial vectors. Since these are at the
same point the difference of the initial and final
vectors can be measured immediately. We have
then by (33.2)

04, = (Ao — Apov) dzy, dzs,
which may also be written
5A, =1 / / (Ao — Ayr) dS™°, (33.3)

where the summation convention is now restored.
We have only proved this for an infinitesimal
circuit occupying a coordinate-mesh, for which
ds* has only two non-vanishing components dx, dz,
and —dz, dz,. But the equation is seen to be a tensor-
equation, and therefore holds independently of the
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coordinate-system; thus it applies to circuits of any
shape, since we can always choose coordinates for
which the circuit becomes a coordinate-mesh. But
33.3) is still restricted to infinitesimal circuits and
there is no way of extending it to finite circuits—
unlike Stokes’s theorem. 'The reason for this
restriction is as follows—

An isolated vector 4, may be taken at the starting
point and carried by parallel displacement round
the circuit, leading to a determinate value of sa4,.
In (33.3) this is expressed in terms of derivatives of a
vector-field 4, extending throughout the region of
integration. For a large circuit this would involve
values of 4, remote from the initial vector, which
are obviously irrelevant to the calculation of s4,. It
is rather remarkable that there should exist such a
formula even for an infinitesimal circuit; the fact is
that although 4,.,-4,,. at a point formally refers to
a vector-field, its value turns out to depend solely
on the isolated vector 4, (see equation (343)).

'The contravariant vector dz,/ds gives a direction
in the four-dimensional world which is interpreted
as a velocity from the ordinary point of view which
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separates space and time. We shall usually call it
a “velocity”; its connection with the usual three-
dimensional vector (u,»,w) is given by

dzy
ds

where s is the FitzGerald factor ai/as.  The
length (265) of a velocity is always unity.

If we transfer d,/ds continually along itself by
parallel displacement we obtain a geodesic. For
by (20.4) the condition for parallel displacement is

0 (Ox, 0rs
Oz, < ds > —l—{ay,u}g =0.

= 5(“7 U? w’ 1)7

Hence multiplying by dz,/ds

0%z, 0xq dxy
ds? ds ds

which is the condition for a geodesic (28.5). Thus in
the language used at the beginning of this section,
a geodesic is a line in four dimensions whose
direction undergoes no absolute change.

+ {av, u} =0, (33.4)

34. The Riemann-Christoffel tensor.

The second covariant derivative of 4, is found
by inserting in (30.3) the value of 4,, from (20.3). 'This
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gives

9 (04,
AIU’U - 87% <8TV - {,U/I/,Ck} Aa)

- (o} (500 -~ (e A,

- e} (G~ (e 1)

9%A,, 04, 94,
- 8330- axl/ - {/JJV7O[} axa - {,U/O',Of} axu

—{vo,a} oA, + {vo,a} {ua, e} A
0xq
+ {po,a}{av,e} A, — A, ai{/u/, at. (34.1)
Lo

The first five terms are unaltered when » and - are
interchanged. The last two terms may be written,
by changing the dummy suffix « to ¢ in the last

term,
0
A <{ua, a}t{av,e} — g{ﬂl/, e}) .
Hence

0
Auuo - AMO’V = A, ({/,LO', Oé}{Oél/, 6} - O {MV’ 6}

—A{pv, a}{ao, e} — 8iy {po, e}) (34.2)

'The rigorous quotient theorem shows that the co-
factor of 4, must be a tensor. Accordingly we
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write
A/U/U - A/LO'U - A B/“,g, (343)
where
B;eulo’ - {:U/O- Oz}{OéV 6} {:U’V (X}{OéO' 6}_ {:u g, } 7{1“’”76}' (344)

'This is called the Riemann—Christoffel tensor. It
is only when this tensor vanishes that the order of
covariant differentiation is permutable.

The suffix ¢ may be lowered. Thus

_ €
Bvop = 9pe Bl

= {0, o}l — {uas oo pl = 5l pl + ol

gpa agpa
4.4
+ (s} 2, (34.45)

~ {0} 3

where « has been replaced by o« in the last two
terms,

= —{uo, a}pyr, o] + {uv, a}lpo, o

9%g 9%g 0%g 0%g
1 0o po_ Gpe O G 345
T2 (8:0“ oz, * ox,0r, Or,0z, Oz, 8:%) , (345)

by (27.5) and (27.1).
It will be seen from (345) that B,..,, besides being
antisymmetrical in » and o, is also antisymmetrical
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in x and p. Also it is symmetrical for the double
interchange , and v, » and . It has the further

cyclic property
B,u,uo'p + Buo’pu + B/J.pllo’ =0, (346)

as is easily verified from (34.5).

'The general tensor of the fourth rank has 256 dif-
ferent components. Here the double antisymme-
try reduces the number (apart from differences of
sign) to 6x6. 30 of these are paired because u, »
can be interchanged with v, »; but the remain-
ing ¢ components, in which 4, , is the same pair
of numbers as v, 5, are without partners. This
leaves 21 different components, between which
(346) gives only one further relation. We conclude
that the Riemann-Christoffel tensor has 20 inde-
pendent components*.

*Writing the suffixes in the order ppov the following
scheme gives 21 different components:

1212 1223 1313 1324 1423 2323 2424
1213 1224 1314 1334 1424 2324 2434
1214 1234 1323 1414 1434 2334 3434
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The Riemann-Christoffel tensor is derived
solely from the 4., and therefore belongs to the
class of fundamental tensors. Usually we can form
from any tensor a series of tensors of continually
increasing rank by covariant differentiation. But
this process is frustrated in the case of the fun-
damental tensors because .., vanishes identically.
We have got round the gap and reached a fun-
damental tensor of the fourth rank. The series
can now be continued indefinitely by covariant
differentiation.

When the Riemann-Christoffel tensor van-
ishes, the differential equations

04y _ {pv,a} Ay =0 (34.7)

A;LU = Oz

are integrable. For the integration will be possible
if (34.7) makes 44, or

0A,
ox,

with the relation 1234 — 1324 + 1423 = 0.

If we omit those containing the sufhix 4, we are left with
6 components in three-dimensional space. In two dimensions
there is only the one component 1212.

dz,
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a complete differential, i.e. if
{pv,a} Ay dx,

is a complete differential. By the usual theory the
condition for this is

oo (s} Ag) = 5 (o} Aa) =0,

or

A, 9A,
axo_ - {/LO',Q} TJ;V =0.

Ao (ot = gt a) ) + (vea)

Substituting for 04./0x,, 94./dz, from (34.7)

0 0
Ao (o) = 5 {uoval)
+ ({pv, a} {ao, e} —{po,a}{av,e})A. = 0.

Changing the suffix o to ¢ in the first term, the
condition becomes

A.BS  =0.

pov

Accordingly when s, vanishes, the differential a4,

pov

determined by (34.7) will be a complete differential,

and
/ dA,
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between any two points will be independent of
the path of integration. We can then carry the
vector 4,. by parallel displacement to any point
obtaining a unique result independent of the route
of transfer. If a vector is displaced in this way all
over the field, we obtain a uniform vector-field.

This construction of a uniform vector-field is
only possible when the Riemann-Christoffel ten-
sor vanishes throughout. In other cases the equa-
tions have no complete integral, and can only
be integrated along a particular route. E.g., we
can prescribe a uniform direction at all points of a
plane, but therl is nothing analogous to a uniform
direction over the surface of a sphere.

Formulae analogous to (34.3) can be obtained for

for a vector 4,. The result is easily found to be

A‘..u..ua - .Hp,‘.o'u ZBI“'”’ c €l (348)

the summation being taken over all the suffixes
of the original tensor.

'The corresponding formulae for contravariant
tensors follow at once, since the ¢ behave as
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constants in covariant differentiation, and suffixes
may be raised on both sides of (34s).

35. Miscellaneous formulae.

'The following are needed for subsequent use—
Since

guwg'* =0 Or 1,

gua dgul/ + g dgﬂa =0.

Hence
g,ua guﬁ dgm/ = —Guv g”ﬁ dg“a = —gg dg#a
= —dg*”. (35.11)
Similarly
dga,@ = —9uavp dg,uu. (35.12)

Multiplying by 4+#, we have by the rule for lower-
ing suffixes

Aaﬁ dgaﬁ = 7(9/:,0491/[314&5) dgl“’

=—A,,dg"" = —A.p dg®?. (35.2)
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For any tensor B.; other than the fundamental
tensor the corresponding formula would be

AP dB,5 = Anp dB™P

by (263). The exception for B,; = ¢., arises because
a change dg., has an additional indirect eftect
through altering the operation of raising and low-
ering suffixes.

Again d¢ is formed by taking the difterential of
each ¢, and multiplying by its co-factor 4.4+ in
the determinant. Thus

d
% = g g, = —gyu dgt”. (35.3)

'The contracted 3-index symbol

ag;t)\ + 390A N 89;10
0%y Oz, ox )y

{po, o} = 3¢°* {

_ 10X agaA
oz,

2

'The other two terms cancel by interchange of the
dummy suffixes - and x. Hence by (35.3)

1 9
2g Oz,
0

{uo,o} =
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We use =5 because 4 is always negative for real

coordinates.

A possible pitfall in differentiating a summed
expression should be noticed. The result of dif-
ferentiating a,,z,z, with respect to z, is not a,.a,
but (a,, +a,)z,. The method of performing such
differentiations may be illustrated by the following

example. Let

hl/T = QuylorTulo,

where ., represents constant coeflicients. Then

Oftwr _ vy -, Do
T A T A
= Qo (ghz, + gSz,) DY (22.3).
Repeating the process,

0%h,,
0z, 0x

= auqr (9495 + 9095)
= QavQgr + agy Qo -
Hence changing dummy suffixes

82

1 B (QprOor®pTo) = Quylor + Ggyyr.
o o

(35.5)
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Similarly if a,., is symmetrical in its suffixes

83

m(auyo—xufﬂyl};) = 6a,u,l/0" (356)
w v o

'The pitfall arises from repeating a suffix three times
in one term. In these formulae the summation
applies to the repetition within the bracket, and
not to the differentiation.

Summary.

Tensors are quantities obeying certain transfor-
mation laws. Their importance lies in the fact
that if a tensor equation is found to hold for one
system of coordinates, it continues to hold when
any transformation of coordinates is made. New
tensors are recognised either by investigating their
transformation laws directly or by the property
that the sum, difference, product or quotient of
tensors is a tensor. This is a generalisation of the
method of dimensions in physics.

The principal operations of the tensor calcu-
lus are addition, multiplication (outer and inner),
summation (§ 22), contraction (§ 24), substitution
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(§ 25), raising and lowering suffixes (§ 26), co-
variant differentiation (§§ 29, 30). 'There is no
operation of division; but an inconvenient factor
g OF g can be removed by multiplying through
by ¢#= or g, so as to form the substitution-oper-
ator. 'The operation of summation is practically
outside our control and always presents itself as a
fait accompli. 'The most characteristic process of
manipulation in this calculus is the free alteration
of dummy suffixes (those appearing twice in a
term); it is probably this process which presents
most difficulty to the beginner.

Of special interest are the fundamental tensors
or world-tensors, of which we have discovered two,
viz. g, and B,.,. The latter has been expressed
in terms of the former and its first and second
derivatives. It is through these that the gap
between pure geometry and physics is bridged; in
particular g,, relates the observed quantity ds to the
mathematical coordinate specification dz,.

Since in our work we generally deal with ten-
sors, the reader may be led to overlook the rarity of

this property. The juggling tricks which we seem
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to perform in our manipulations are only possible
because the material used is of quite exceptional
character.

The further development of the tensor calculus
will be resumed in § 48; but a stage has now been
reached at which we may begin to apply it to the
theory of gravitation.



CHAPTER III
THE LAW OF GRAVITATION

36. 'The condition for flat space-time. Natural
coordinates.

REGION of the world is called flat or homaloidal
.A. if it is possible to construct in it a Galilean
frame of reference.

It was shown in § 4 that when the 4. are
constants, 4s> can be reduced to the sum of four
squares, and Galilean coordinates can be con-
structed. Thus an equivalent definition of flat
space-time is that it is such that coordinates can
be found for which the g4, are constants.

When the 4,, are constants the 3-index symbols
all vanish; but since the 3-index symbols do not
form a tensor, they will not in general continue
to vanish when other coordinates are substituted
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in the same flat region. Again, when the 4,, are
constants, the Riemann-Christoffel tensor, being
composed of products and derivatives of the 3-
index symbols, will vanish; and since it is a tensor,
it will continue to vanish when any other coordi-
nate-system is substituted in the same region.
Hence the vanishing of the Riemann-Christoffel
tensor is a necessary condition for flat space-time.
'This condition is also sufficient—it the Rie-
mann-Christoffel tensor vanishes space-time must

be flat. 'This can be proved as follows—
We have found (§ 34) that if

B, =0, (36.1)

puvo

it is possible to construct a uniform vector-field
by parallel displacement of a vector all over the
region. Let 42 be four uniform vector-fields given
by a=1, 2, 3, 4, so that

(4

((x))g =0

or by (20.4)

aA?O() €
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Note that « is not a tensor-suffix, but merely
distinguishes the four independent vectors.

We shall use these four uniform vector-fields
to define a new coordinate-system distinguished
by accents. Our unit mesh will be the hyper-
parallelopiped contained by the four vectors at
any point, and the complete mesh-system will be
formed by successive parallel displacements of this
unit mesh until the whole region is filled. One
edge of the unit mesh, given in the old coordinates
by

dr, = A’("l)7

has to become in the new coordinates
dz', = (1,0,0,0).

Similarly the second edge, dz, = 4%, must become
dal, = (0,1,0,0); etc. 'This requires the law of transfor-
mation

dxy = Al day,. (36.3)

Of course, the construction of the accented coor-
dinate-system depends on the possibility of con-
structing uniform vector-fields, and this depends
on (36.1) being satisfied.
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Since 452 is an invariant

Gop dx, daly = g, dx, dz,,
= g AL A7 do, do'y DY (36.3).,

Hence

Jap = JuvAla)Als)-

Accordingly, by differentiation,

g’ 3 V M 9
a ) y i
To = I Al o+ 9w Al 5o 8 = AL Afy) D,
v 99
9 Ay Al {60, v} = gy Al Al e 1} + Al Ay 5=

by (6.2). By changing dummy suffixes, this be-

comes

ﬁg’ﬁ 9g
ab 12 v "
Or, A(a) (8) [ Guelvo, €} — ga{po, e} + D, }

v a LV
= Al Alp) [—[W,u]—[ua,uH I }

0%y

— 0 by (27.5).

Hence the ¢, are constant throughout the region.
We have thus constructed a coordinate-system
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fulfilling the condition that the 4's are constant,
and it follows that the space-time is flat.

It will be seen that a uniform mesh-system, i.e.
one in which the unit meshes are connected with
one another by parallel displacement, is necessarily
a Cartesian system (rectangular or oblique). Uni-
formity in this sense is impossible in space-time
for which the Riemann-Christoffel tensor does not
vanish, e.g. there can be no uniform mesh-system
on a sphere.

When space-time is not flat we can introduce
coordinates which will be approximately Galilean
in a small region round a selected point, the 4., be-
ing not constant but stationary there; this amounts
to identifying the curved space-time with the os-
culating flat space-time for a small distance round
the point. Expressing the procedure analytically,
we choose coordinates such that the 40 derivatives
99, /0, Vanish at the selected point. It is fairly ob-
vious from general considerations that this will
always be possible; but the following is a formal
proof. Having transferred the origin to the se-
lected point, make the following transformation of
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coordinates

Te = gg ;}. - %{aﬁv 6}0 gg QE x,/ux/ua (364)

where the value of the 3-index symbol at the origin
is to be taken. Then at the origin

0x.
ox 9¢ (36.45)
“w
0%z, y
8xa axﬁ
— —{af, e} 5o 7, by (36.45).
Hence by (31.3)
oz,
v p} 5 =
P
But
0x,
{wv,p} 5= = {uw, Y 92 = {w, €}’
P

Hence in the new coordinates the 3-index sym-
bols vanish at the origin; and it follows by (27.4)
and (27.5) that the first derivatives of the ¢, vanish.
'This is the preliminary transformation presupposed
in § 4.

We pass on to a somewhat more difficult trans-
formation which is important as contributing an
insight into the significance of 5

uvo®
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It is not possible to make the second derivatives
of the g,, vanish at the selected point (as well as the
first derivatives) unless the Riemann-Christoffel
tensor vanishes there; but a great number of other
special conditions can be imposed on the 100 second
derivatives by choosing the coordinates suitably.
Make an additional transformation of the form

_ €. 1 e /AN AW
Te = g,%, + 600 TpTyTg, (36.5)

where «,, represents arbitrary coefficients sym-
metrical in u, v, 0. This new transformation will
not affect the first derivatives of the 4, at the
origin, which have already been made to vanish
by the previous transformation, but it alters the

second derivatives. By differentiating (31.3), viz.

ox 0z Oz 0?x
/ € « _ €
{uw,p} ax; 83% oz, {af, e} 83@’“ oz’
we obtain at the origin
0 , 0. Oxy Oxg Oxy O B 3z,
aar, MY e~ G, w0, 0y 7 T ot ot o,

since the 3-index symbols themselves vanish.
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Hence by (36.5)*
8 I
a?{ulﬂp} 'gp gugygo' T{aﬁﬂe} ;,wo’?
which reduces to
9 9 )
@{M%G} g, €} = G (36.55)

The transformation (36.5) accordingly increases
H{pv, e} /0x, by e

Owing to the symmetry of o
tities

all three quan-

puvod

0 0 0
87%{:“”76}7 87%{/110-76}7 aTH{Vave}

are necessarily increased by the same amount.
Now the unaltered difference

7{/1” 6} B},Llio” (366)

since the remaining terms of (344) vanish in the
coordinates here used. We cannot alter any of the
components of the Riemann-Christoffel tensor;
but, subject to this limitation, the alterations of
the derivatives of the 3-index symbols are arbitrary.

*For the disappearance of the factor , see (35.6).



CH. III THE CONDITION FOR FLAT SPACE-TIME 240
'The most symmetrical way of imposing further
conditions is to make a transformation such that

9

0
e {po, e} + a—x“{ya, e} =0. (36.7)

oo {ne} +
'There are so different equations of this type, each of
which fixes one of the so arbitrary coefficients a,,.
In addition there are 20 independent equations
of type (36.6) corresponding to the 20 independent
components of the Riemann-Christoffel tensor.
'Thus we have just sufficient equations to determine
uniquely the 100 second derivatives of the 4,,. Co-
ordinates such that ag,,/0z, is zero and 92, /01, oz,
satisfies (36.7) may be called canonical coordinates.
By solving the 100 equations we obtain all the
92g,,/9z, 0z, for canonical coordinates expressed as
linear functions of the 5c,,.
The two successive transformations which lead
to canonical coordinates are combined in the for-

mula

_ €. 1 AW,
Le = 9Ty, — §{IL“/76}0 L,xy,
1

18

0
02y

0 0
aTc#{VU’ e} + T%{ua, €} + {pv, e} ) z,x,x,.  (36.8)
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At the origin az./0x, = g5, so that the transformation
does not alter any tensor at the origin. For
example, the law of transformation of ¢,., gives

O0xo Oxg Ox,

/ —_ -
Clws = Cagy Ox), Ox;, Oz,

uvo

= Capr 919593

=Cuo-

The transformation in fact alters the curvature and
hypercurvature of the axes passing through the
origin, but does not alter the angles of intersection.

Consider any tensor which contains only the 4,
and their first and second derivatives. In canonical
coordinates the first derivatives vanish and the
second derivatives are linear functions of the 5:,,;
hence the whole tensor is a function of the 4., and
the B:,,. But neither the tensor itself nor the g,
and B¢, have been altered in the reduction to
canonical coordinates, hence the same functional
relation holds true in the original unrestricted
coordinates. We have thus the important result—

The only fundamental tensors which do not contain

derivatives of g, beyond the second order are functions

of 9., and B;

pvo*
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This shows that our treatment of the tensors
describing the character of space-time has been
exhaustive as far as the second order. If for
suitably chosen coordinates two surfaces have the
same g¢,, and B, at some point, they will be
applicable to one another as far as cubes of the
coordinates; the two tensors suffice to specify the
whole metric round the point to this extent.

Having made the first derivatives vanish, we
can by the linear transformation explained in § 4
give the ¢,, Galilean values at the selected point.
The coordinates so obtained are called natural
coordinates at the point and quantities referred to
these coordinates are said to be expressed in natural
measure. Natural coordinates are thus equivalent
to Galilean coordinates when only the 4, and
their first derivatives are considered; the difference
appears when we study phenomena involving the
second derivatives.

By making a Lorentz transformation (which
leaves the coordinates still a natural system) we
can reduce to rest the material located at the
point, or an observer supposed to be stationed
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with his measuring appliances at the point. The
natural measure is then further particularised as the
proper-measure of the material, or observer. It may
be noticed that the material will be at rest both as
regards velocity and acceleration (unless it is acted
on by electromagnetic forces) because there is no
field of acceleration relative to natural coordinates.

To sum up this discussion of special systems
of coordinates.—When the Riemann-Christoffel
tensor vanishes, we can adopt Galilean coordi-
nates throughout the region. When it does not
vanish we can adopt coordinates which agree with
Galilean coordinates at a selected point in the
values of the 4., and their first derivatives but not
in the second derivatives; these are called nazu-
ral coordinates at the point. Either Galilean or
natural coordinates can be subjected to Lorentz
transformations, so that we can select a system
with respect to which a particular observer is at
rest; this system will be the proper-coordinates tor
that observer. Although we cannot in general
make natural coordinates agree with Galilean co-
ordinates in the second derivatives of the 4., we
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can impose so partially arbitrary conditions on the
100 second derivatives; and when these conditions
are selected as in (36.7) the resulting coordinates
have been called canonical.

There is another way of specialising coordinates
which may be mentioned here for completeness. It
is always possible to choose coordinates such that
the determinant 4 - -1 everywhere (as in Galilean
coordinates). 'This is explained in § 49.

We may also consider another class of spe-
cialised coordinates—those which are permissible
in special problems. There are certain (non-Eu-
clidean) coordinates found to be most convenient
in dealing with the gravitational field of the sun,
Einstein’s or de Sitter’s curved world, and so on.
It must be remembered, however, that these re-
fer to idealised problems, and coordinate-systems
with simple properties can only be approximately
realised in nature. If possible a szatic system of co-
ordinates is selected, the condition for this being
that all the 4,, are independent of one of the coor-
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dinates =, (which must be of timelike character*).
In that case the interval corresponding to any
displacement dx, is independent of the “time” w..
Such a system can, of course, only be found if the
relative configuration of the attracting masses is
maintained unaltered. If in addition it is possible
to make gu, g, gs1 = 0 the time will be reversible,
and in particular the forward velocity of light along
any track will be equal to the backward velocity;
this renders the application of the name “time”
to z, more just, since one of the alternative con-
ventions of § 11 is satisfied. We shall if possible
employ systems which are static and reversible in
dealing with large regions of the world; problems
in which this simplification is not permissible must
generally be left aside as insoluble—e.g. the prob-
lem of two attracting bodies. For small regions of
the world the greatest simplification is obtained by
using natural coordinates.

*dxy will be timelike if g44 is always positive.
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37. Einstein’s law of gravitation.

The contracted Riemann-Christoffel tensor is
formed by setting ¢ =+ in B,,. It is denoted by q,..
Hence by (34.4)

. (37.1)

G = {po,a}{av, 0} —{uv,aH{ao, a}+

The symbols containing a duplicated suffix are
simplified by (35.4), viz.

9
{po, o} = a—%logv—g.
Hence, with some alterations of dummy suffixes,

0
G/,Ll/ = —%{MV,O(} + {uaaﬂ}{yﬁva}
2

+ Oz, 0z,

0
logv/—g — {pv, o} Er logv/—g. (37.2)

Contraction by setting « -, does not provide an
alternative tensor, because

B, = ¢"" By, =0,

pvo

owing to the antisymmetry of B,,., in » and .
'The law

G =0, (37.3)
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in empty space, is chosen by Einstein for his law
of gravitation.

We see from 37.2) that ¢, is a symmetrical
tensor; consequently the law provides 10 partial
differential equations to determine the g,,. It will
be found later (§ 52) that there are 4 identical
relations between them, so that the number of
equations is effectively reduced to 6. The equations
are of the second order and involve the second
differential coeflicients of g, linearly. We proved in
§ 36 that tensors not containing derivatives beyond
the second must necessarily be compounded from
g and Bg,; so that, unless we are prepared to
go beyond the second order, the choice of a law
of gravitation is very limited, and we can scarcely
avoid relying on the tensor a,.*.

Without introducing higher derivatives, which
would seem out of place in this problem, we can

¥The law By, = 0 (giving flat space-time throughout all
empty regions) would obviously be too stringent, since it does
not admit of the existence of irreducible fields of force.
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suggest as an alternative to (37.3) the law
G = A, (37.4)

where x is a universal constant. There are theo-
retical grounds for believing that this is actually
the correct form; but it is certain that » must
be an extremely small constant, so that in prac-
tical applications we still take (37.3) as sufficiently
approximate. 'The introduction of the small con-
stant  leads to the spherical world of Einstein or
de Sitter to which we shall return in Chapter V.
'The spur

G =g""G (37.5)

is called the Gaussian curvature, or simply the
curvature, of space-time. It must be remembered,
however, that the deviation from flatness is de-
scribed in greater detail by the tensors ¢,, and B...,
(sometimes called components of curvature) and the
vanishing of ¢ is by no means a sufhicient condition
for fiat space-time.

Einstein’s law of gravitation expresses the fact
that the geometry of an empty region of the world
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is not of the most general Riemannian type, but
is limited. General Riemannian geometry cor-
responds to the quadratic form (21) with the 4's
entirely unrestricted functions of the coordinates;
Einstein asserts that the natural geometry of an
empty region is not of so unlimited a kind, and
the possible values of the ¢'s are restricted to those
which satisfy the differential equations (37.3). It will
be remembered that a field of force arises from
the discrepancy between the natural geometry of
a coordinate-system and the abstract Galilean ge-
ometry attributed to it; thus any law governing a
field of force must be a law governing the natu-
ral geometry. That is why the law of gravitation
must appear as a restriction on the possible nat-
ural geometry of the world. The inverse-square
law, which is a plausible law of weakening of a
supposed absolute force, becomes quite unintelli-
gible (and indeed impossible) when expressed as
a restriction on the intrinsic geometry of space-
time; we have to substitute some law obeyed by
the tensors which describe the world-conditions
determining the natural geometry.
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38. 'The gravitational field of an isolated par-
ticle.

We have now to determine a particular solution
of the equations (37.3). 'The solution which we shall
obtain will ultimately be shown to correspond to
the field of an isolated particle continually at rest
at the origin; and in seeking a solution we shall be
guided by our general idea of the type of solution
to be expected for such a particle. This preliminary
argument need not be rigorous; the final test is
whether the formulae suggested by it satisfy the
equations to be solved.

In flat space-time the interval, referred to spher-
ical polar coordinates and time, is

ds® = —dr® — r?d0? — r?sin® 0 do® + dt>. (38.11)

If we consider what modifications of this can be
made without destroying the spherical symmetry
in space, the symmetry as regards past and future
time, or the static condition, the most general
possible form appears to be

ds* = —U(r)dr? = V(r) (r?d0? + r*sin> 0 d¢?) + W (r)dt?,  (38.12)
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where v, v, w are arbitrary functions of ». Let
r? =r2V(r).
Then (3s.12) becomes of the form
ds® = —Uy(r1) dr? —ridf? — r?sin® 0 dg? + Wy (r1) dt?, (38.13)

where v, and w, are arbitrary functions of .
There is no reason to regard » in (38.12) as more
immediately the counterpart of » in (3811) than
r is. If the functions v, v, w differ only slightly
from unity, both » and » will have approximately
the properties of the radius-vector in Euclidean
geometry; but no length in non-Euclidean space
can have exactly the properties of a Euclidean
radius-vector, and it is arbitrary whether we choose
r or r, as its closest representative. We shall here
choose r,, and accordingly drop the suffix, writing
(38.13) in the form

ds? = —e* dr? — 12 d6? — r?sin® 0 do? + e¥ dit?, (38.2)

where ) and v are functions of » only.

Moreover since the gravitational field (or distur-
bance of flat space-time) due to a particle dimin-
ishes indefinitely as we go to an infinite distance,
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we must have ) and » tend to zero as - tends to
infinity. Formula (33.2) will then reduce to (3s.11) at
an infinite distance from the particle.

Our coordinates are

1 =T, $2:97 $3:¢7 x4:t7

and the fundamental tensor is by (3s.2)

g11 = —6/\> g22 = —7“2a 933 = —r? sin? 0, gas =€, (38~31)

and
G =0 lf w#E U,

'The determinant 4 reduces to its leading diago-
nal 911922933944« Hence

—g = e rtsin? g, (38.32)
and ¢ = 1/4., etc., so that
gl =—e 2 =—1/r% ¢33 =—1/r%sin?0, g =e". (38.33)

Since all the ¢~ vanish except when the two
suffixes are the same, the summation disappears in
the formula for the 3-index symbols (27.2), and

dg g OGpv
_ 100 (o o 99y n mmed.
{uw, o} = 1g < Pt B B ot summed
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If i, v, o denote different suffixes we get the fol-
lowing possible cases (the summation convention

being suspended):

dg 0
= Llopp ZJBp _ 1 1
{ap, '} 59 Dr, 2 8%(OgQW),
o 09
{pp,v} = -39 78;:’

(38.4)

dg 0
= 1gv = =1 1 vv
{pv,vy = 39 Dz, ~ 20a, (log guv),

{pv,o0} = 0.

It is now easy to go systematically through the
40 3-index symbols calculating the values of those
which do not vanish. We obtain the following
results, the accent denoting differentiation with
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respect to i

{11,1} = LN,

{12,2} =1/,

{13,3} = 1/r,

{14,4) = 3/,

{22,1} = —re ™, (38.5)
{23,3} = cot,

{33,1} = —rsin*fe?,

{33,2} = —sinfcos¥),

{44,1} = %e”_)‘z/.

'The remaining 31 symbols vanish. Note that {21,2}
is the same as {12,2}, etc.

These values must be substituted in 37.2). As
there may be some pitfalls in carrying this out,
we shall first write out the equations (37.2) in full,
omitting the terms (223 in number) which now
obviously vanish.

Gy = ,%{117 1+ {11, 13{11,1} + {12,2}{12,2}

+ {13,3}{13,3} + {14,4}{14,4}

02 0
+ ﬁlog\/ﬁq —{11,1} Elogw/f ,
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Gy = —Q{QQ 1} +2{22,1}{21,2} + {23,3}{23,3}
logf {22,1} o logf,
Gas = —5{33, 1} - % (33,2}
+2{33, 1}{31 3} +2{33,2}{32, 3}
—{33.1} 5 1ogf {33,2} o logf,
Gaa = — {44 1} + 2{44, 1}{41, 4} {441y o 1ogf,
Gy = {13 3}23.3) — {12.2} 55 1ogf

'The remaining components contain no surviving
terms.

Substitute from (3s5) and (38.32) in these, and
collect the terms. 'The equations to be satisfied
become

Gu=4V"— NV + 3% = N/r=0, (38.61)
Ga=e1+3r@ —X))—1=0, (38.62)
Gaz =sin’0-e (1 + ir(/ — X)) —sin?0 =0, (38.63)
Gu =" M=+ INV =L~V /r) =0, (38.64)
Gz = 0. (38.65)

We may leave aside (33.63) which is a mere repetition
of (38.62); then there are left three equations to be
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satisfied by » and v. From (3s.61) and (3s.64) we have
¥ =—v. Since x» and v are to vanish together at
r = oo, this requires that

A= .
Then (38.62) becomes
e’(1+m/) =1
Set ¢ =+, then
y+ry =1,

Hence, integrating,

2
y=1-=, (38.7)

where 2m is a constant of integration.

It will be found that all three equations are
satisfied by this solution. Accordingly, substituting
e =¢’ =~ 1N (38.2),

ds? = —y~Ldr? — r? d? — 2 sin% 0 do* +  dt?, (38.8)

where + = 1-2m/r, is a particular solution of Ein-
stein’s gravitational equations ¢,, —o. The solution
in this form was first obtained by Schwarzschild.
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39. Planetary orbits.

According to (15.7) the track of a particle moving
freely in the space-time given by (3:.8) is determined
by the equations of a geodesic (285), viz.

d’z, dz,, dz,
ds? +{pw, 0} ds ds

—0. (39.1)

Taking first o =2, the surviving terms are

d2$2 dl’l dwg deQ d.’L’l dng dl’g
_— 12,2} — —= 21,2} — — 2} — —— =
ds? +{12,2} ds ds +1{21,2} ds ds +1{33,2} ds ds 0,

Or using (3s.5)

%Jr%%%fcosﬂsinG (flf)QO. (39.2)
Choose coordinates so that the particle moves
initially in the plane ¢ = i=. 'Then d6/ds = 0 and
cosf = 0 initially, so that /a2 — 0. 'The particle
therefore continues to move in this plane, and we
may simplify the remaining equations by putting
6 — 1= throughout. The equations for o =1, 3, 4 are
found in like manner, viz.

d*r 1 dr\ _x [ do ? 1 v—2X dt\?
et () - (%) e () -0 o
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2 2drdp

¢e, 20w 32
ds? + r ds ds 0, (39.32)
d*t  ,dr dt

—_— — — =0. 39.33
ds? v ds ds ( )

'The last two equations may be integrated immedi-
ately, giving

d¢
22 =h 39.41
" ds ’ ( )
dt Y
o= ¢/, (39.42)

where » and ¢ are constants of integration.

Instead of troubling to integrate (30.31) we can
use in place of it (3s.8) which plays here the part of
an integral of energy. It gives

2 2 2
1 (Z:) e (‘jl‘f) . ((‘Z) -1 (39.43)
Eliminating & and s by means of (30.41) and (30.42)
1/ h dr\> K2 ¢
> (T2 d¢> tapmo =1 (39.44)

whence, multiplying through by 5 or (1 -2m/r),

h dr 2+h2 9 1+2m+2m h?
e - o, a2
r2 do 72 r ror2’
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or writing 1/r = u,

du\? s =1 2m
kel = 4+ —u+2mu. :
<d¢> +u B + h2u+ mu (39.5)

Differentiating with respect to ¢, and removing

du
the factor i

d*u m
el 3mu?, (39.61)
with
220
ds
Compare these with the equations of a Newto-
nian orbit

h. (39.62)

d?u m
with
do
2 - =h. 72
T 7 (39.72)

In 39.61) the ratio of 3mu? to m/n? is 3n2?, or by

(39.62)
3Qﬁf.

For ordinary speeds this is an extremely small
quantity—practically three times the square of the
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transverse velocity in terms of the velocity of light.
For example, this ratio for the earth is 0.00000003.
In practical cases the extra term in (39.61) will
represent an almost inappreciable correction to the
Newtonian orbit (39.71).

Again in (39.62) and (30.72) the difference between
d¢s and 4t is equally insignificant, even if we were
sure of what is meant by a in the Newtonian
theory. The proper-time for the body is ds, and it
might perhaps be urged that & in equation (30.72)
is intended to refer to this; but on the other hand
s cannot be used as a coordinate since ds is not
a complete differential, and Newton’s “time” is
always assumed to be a coordinate.

Thus it appears that a particle moving in the
field here discussed will behave as though it were
under the influence of the Newtonian force exerted
by a particle of gravitational mass m at the origin,
the motion agreeing with the Newtonian theory
to the order of accuracy for which that theory has
been confirmed by observation.

By showing that our solution satisfies G, = o,
we have proved that it describes a possible state
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of the world which might be met with in nature
under suitable conditions. By deducing the orbit
of a particle, we have discovered how that state
of the world would be recognised observationally
if it did exist. In this way we conclude that the
space-time field represented by (ss.8) is the one
which accompanies (or “is due to”) a particle of
mass m at the origin.

'The gravitational mass m is the measure adopted
in the Newtonian theory of the power of the
particle in causing a field of acceleration around
it, the units being here chosen so that the velocity
of light and the constant of gravitation are both
unity. It should be noticed that we have as yet
given no reason to expect that = in the present
chapter has anything to do with the m introduced
in § 12 to measure the inertial properties of the
particle.

For a circular orbit the Newtonian theory gives

m = w?rd = v?r,

the constant of gravitation being unity. Applying
this to the earth, » =30 km. per sec. = 10* in
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terms of the velocity of light, and » = 15108 km.
Hence the mass m of the sun is approximately 1.5

kilometres. The mass of the earth is 1/300,000th

of this, or about 5 millimetres*.

More accurately, the mass of the sun, 1.99.
10% grams, becomes in gravitational units 1.47
kilometres; and other masses are converted in a
like proportion.

*QObjection is sometimes taken to the use of a centimetre
as a unit of gravitational (i.e. gravitation-exerting) mass; but
the same objection would apply to the use of a gram, since
the gram is properly a measure of a different property of the
particle, viz. its inertia. Our constant of integration m is
clearly a length and the reader may, if he wishes to make this
clear, call it the gravitational radius instead of the gravitational
mass. But when it is realised that the gravitational radius
in centimetres, the inertia in grams, and the energy in ergs,
are merely measure-numbers in different codes of the same
intrinsic quality of the particle, it seems unduly pedantic to
insist on the older discrimination of these units which grew
up on the assumption that they measured qualities which were
radically different.



CH. III THE ADVANCE OF PERIHELION 263

40. The advance of perihelion.

'The equation (39.5) for the orbit of a planet can
be integrated in terms of elliptic functions; but we
obtain the astronomical results more directly by a
method of successive approximation. We proceed
from equation (39.61)

d*u

102 +u= 72 1 3mul. (40.1)

Neglecting the small term 3mu?, the solution is

u= % (1+ ecos(¢p — w)), (40.2)

as in Newtonian dynamics. The constants of inte-
gration, « and =, are the eccentricity and longitude
of perihelion.

Substitute this first approximation in the small
term 3mu2, then (40.1) becomes

2 3 3 3
%—Fu: %—&-3734 67;: ecos(¢p— w)—i—%ﬁe (142 cos(p—w)). (40.3)
Of the additional terms the only one which can
y
produce an effect within the range of observation

is the term in cos(¢ - w); this is of the right period
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to produce a continually increasing effect by res-
onance. Remembering that the particular integral

of

d2
— =A
0 +u = Acos¢
1s
u = %Aqﬁsinqb,

this term gives a part of u
3

i edsin(¢ — w), (40.4)

u1—3

which must be added to the complementary inte-
gral (40.2). Thus the second approximation is

2
h2
1+ ecos(¢p — @ — 6w)),

u= 53 (1 +ecos(¢p —w) + 3—epsin(¢p — w))

=

where
S = 3 ¢, (40.5)

and (5=)? is neglected.
Whilst the planet moves through 1 revolution,
the perihelion = advances a fraction of a revolution

equal to
o 3m? 3m
7¢ = h2 = a(l — 82) N (40.6)
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using the well-known equation of areas »* = mi =
ma(l — e?).
Another form is obtained by using Kepler’s
third law,
5
m = ? a,

(52 _ 12m2a?
¢ 2T?(1 —e2)’

giving

(40.7)

where 7 is the period, and the velocity of light .
has been reinstated.

'This advance of the perihelion is appreciable in
the case of the planet Mercury, and the predicted
value is confirmed by observation.

For a circular orbit we put dr/ds, d*r/ds* =0, SO
that (30.31) becomes

L (doN\ dt\?
—re=? (ds) + %e Ay (ds) =0.
Whence

2

=m/r?,
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so that Kepler’s third law is accurately tulfilled.
'This result has no observational significance, being
merely a property of the particular definition of »
here adopted. Slightly different coordinate-sys-
tems exist which might with equal right claim to
correspond to polar coordinates in flat space-time;
and for these Kepler’s third law would no longer
be exact.

We have to be on our guard against results of
this latter kind which would only be of interest if
the radius-vector were a directly measured quantity
instead of a conventional coordinate. The advance
of perihelion is a phenomenon of a difterent cat-
egory. Clearly the number of years required for
an eccentric orbit to make a complete revolution
returning to its original position is capable of ob-
servational test, unaffected by any convention used
in defining the exact length of the radius-vector.

For the four inner planets the following table
gives the corrections to the centennial motion of
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perihelion predicted by Einstein’s theory:

oo edww
Mercury +42".9 +8".82
Venus + 86 + 0.05
Earth + 38 + 0.07
Mars + 1.35 + 0.13

'The product ¢s= is a better measure of the observ-
able effect to be looked for, and the correction is
only appreciable in the case of Mercury. After
applying these corrections to esw, the following
discrepancies between theory and observation re-
main in the secular changes of the elements of the
inner planets, i and o being the inclination and the
longitude of the node:

edw de sini 6§ ¢
Mercury —0".58 £0”7.29 —07.88+0".33 +0".46 +£0”.34 +0".38
Venus — 0114+ 017 + 021+ 021 + 053+ 0.12 -+ 0.38
Earth 0.00+ 0.09 + 0.02+ 0.07 — 0.22

Mars + 051+ 023 4+ 029+ 0.18 — 0.11+ 0.15 — 0.01

'The probable errors here given include errors of
observation, and also errors in the theory due to
uncertainty of the masses of the planets. The
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positive sign indicates excess of observed motion
over theoretical motion*.

Einstein’s correction to the perihelion of Mer-
cury has removed the principal discordance in the
table, which on the Newtonian theory was nearly
30 times the probable error. Of the 15 residuals
s exceed the probable error, and 3 exceed twice the
probable error—as nearly as possible the proper
proportion. But whereas we should expect the
greatest residual to be about 3 times the proba-
ble error, the residual of the node of Venus is
rather excessive at 4} times the probable error,
and may perhaps be a genuine discordance. Ein-
stein’s theory throws no light on the cause of this
discordance.

*Newcomb, Astronomical Constants. His results have been
slightly corrected by using a modern value of the constant of
precession in the above table; see de Sitter, Monthly Notices,
vol. 76, p. 728.
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41. The deflection of light.

For motion with the speed of light ds -0, so that
by (39.62) h = =, and the orbit (30.61) reduces to

d?u

dTSQJru:?)mu?. (41.1)

'The track of a light-pulse is also given by a geodesic
with ds = 0 according to (158. Accordingly the
orbit (41.1) gives the path of a ray of light.

We integrate by successive approximation. Ne-
glecting 3mu? the solution of the approximate equa-
tion

Z;Z +u=0
is the straight line

cos ¢
7

u =

(41.2)
Substituting this in the small term 3mu2, we have

d?u 3m
dTSg—FU*ﬁcos ¢.

A particular integral of this equation is

]7:2 (cos? ¢ + 2sin? ¢),

up =
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so that the complete second approximation is

cosp m .
7t ﬁ(cos“‘ ¢ + 2sin ¢). (41.3)

u =
Multiply through by =,
R =rcos ¢+ 7 (rcos’ 6 4 2rsin” ),

or in rectangular coordinates, x = rcosg, y =rsing,

(41.4)

'The second term measures the very slight deviation
from the straight line » = . 'The asymptotes are
found by taking y very large compared with ». The
equation then becomes

m

x:R—R

(£2y),
and the small angle between the asymptotes is (in

circular measure)
dm

i
For a ray grazing the suns limb, m = 147 km,,
R =697000 km., so that the deflection should be 17.75.
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'The observed values obtained by the British eclipse
expeditions in 1919 were

Sobral expedition 17.98 + 0,12
Principe expedition 1,61 + 0”.30

It has been explained in Space, Time and Grav-
itation that this deflection is double that which
might have been predicted on the Newtonian the-
ory. In this connection the following paradox has
been remarked. Since the curvature of the light-
track is doubled, the acceleration of the light at
each point is double the Newtonian acceleration;
whereas for a slowly moving object the acceler-
ation is practically the same as the Newtonian
acceleration. To a man in a lift descending with
acceleration m/r? the tracks of ordinary particles
will appear to be straight lines; but it looks as
though it would require an acceleration 2m/r? to
straighten out the light-tracks. Does not this
contradict the principle of equivalence?

The fallacy lies in a confusion between two
meanings of the word “curvature.” 'The coordi-
nate curvature obtained from the equation of the
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track (414) is not the geodesic curvature. The latter
is the curvature with which the local observer—
the man in the lift—is concerned. Consider the
curved light-track traversing the hummock corre-
sponding to the suns field; its curvature can be
reckoned by projecting it either on the base of the
hummock or on the tangent plane at any point.
'The curvatures of the two projections will generally
be different. 'The projection into Euclidean coor-
dinates (r,y) used in (414) is the projection on the
base of the hummock; in applying the principle of
equivalence the projection is on the tangent plane,
since we consider a region of the curved world
so small that it cannot be discriminated from its
tangent plane.

42. Displacement of the Fraunhofer lines.

Consider a number of similar atoms vibrating
at different points in the region. Let the atoms
be momentarily at rest in our coordinate-system
(r.6,6,t). The test of similarity of the atoms is
that corresponding intervals should be equal, and
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accordingly the inferval of vibration of all the
atoms will be the same.

Since the atoms are at rest we set dr, dd, dé =0
in (38.8), so that

ds* = vy dt*. (42.1)

Accordingly the #imes of vibration, of the differ-
ently placed atoms will be inversely proportional
to .

Our system of coordinates is a szatic system, that
is to say the g, do not change with the time.
(An arbitrary coordinate-system has not generally
this property; and further when we have to take
account of two or more attracting bodies, it is
in most cases impossible to find a strictly static
system of coordinates.) Taking an observer at rest
in the system (r,6,,1) a wave emitted by one of the
atoms will reach him at a certain time o after it
leaves the atom; and owing to the static condi-
tion this time-lag remains constant for subsequent
waves. Consequently the waves are received at
the same time-periods as they are emitted. We
are therefore able to compare the time-periods
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of the different atoms, by comparing the periods
of the waves received from them, and can verify
experimentally their dependence on the value of .5
at the place where they were emitted. Naturally
the most hopeful test is the comparison of the
waves received from a solar and a terrestrial atom
whose periods should be in the ratio 1.ooo00212 : 1.
For wave-length 4000 A, this amounts to a relative
displacement of o.00s2 A of the respective spectral
lines. This displacement is believed to have been
verified observationally, but the test is difficult and
perhaps uncertain. The theory has been strikingly
confirmed in the spectrum of the Companion of
Sirius where the predicted displacement was 30
times larger.

'The quantity a is merely an auxiliary quantity
introduced through the equation (3s8) which de-
fines it. The fact that it is carried to us unchanged
by light-waves is not of any physical interest, since
dt was defined in such a way that this must happen.
'The absolute quantity ds, the interval of the vibra-
tion, is not carried to us unchanged, but becomes
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gradually modified as the waves take their course
through the non-Euclidean space-time. It is in
transmission through the solar system that the
absolute difference is introduced into the waves,
which the experiment hopes to detect.

The argument refers to similar atoms and the
question remains whether, for example, a hydrogen
atom on the sun is truly similar to a hydrogen atom
on the earth. Strictly speaking it cannot be exactly
similar because it is in a different kind of space-
time, in which it would be impossible to make a
finite structure exactly similar to one existing in
the space-time near the earth. But if the interval
of vibration of the hydrogen atom is modified
by the kind of space-time in which it lies, the
difference must be dependent on some invariant
of the space-time. The simplest invariant which
differs at the sun and the earth is the square of the
length of the Riemann-Christoffel tensor, viz.

B, Bt

pnro

'The value of this can be calculated from (33.8) by
the method used in that section for calculating
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the ¢,,. The result is

m2

48 P

By consideration of dimensions it seems clear that
the proportionate change of 4s would be of the
order

oim?

r6

where o is the radius of the atom; there does not
seem to be any other length concerned. For a com-
parison of solar and terrestrial atoms this would
be about 10-1. In any case it seems impossible
to construct from the invariants of space-time a
term which would compensate the predicted shift
of the spectral lines, which is proportional to m/r.

43. Isotropic coordinates.

We can transform the expression for the inter-
val (33.8) by making the substitution

r= <1+m)2r1, (43.1)

27"1
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SO that
m?
dr = (1 — 47"%) dry,

(o3 /()

'Then (38.8) becomes

(1 — m/27“1)2

ds® = —(1+m/2r1)* (dry+7r] d6*+17 sin® 0 d¢2)+m

dt*. (43.2)

'The coordinates (r,,0,4) are called isofropic polar
coordinates. 'The corresponding isotropic rectan-
gular coordinates are obtained by putting

x = rqsinf cos @, y = r1sin @ sin ¢, z =1r1cosb,
giving

1—m/2r)?
ds® = —(1+m/2r) (da® + dy? + do?) + S TY2r1)

2
T 4 (433)
with

T = \/m
This system has some advantages. For example,
to obtain the motion of a light-pulse we set as=o

in (43.3). 'This gives

(%) - (%) - (%) -Gnimr
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At a distance », from the origin the velocity of
light is accordingly

(1 — m/27‘1)

W m/n)’ .

in all directions. For the original coordinates
of (33.8) the velocity of light is not the same for the
radial and transverse directions.

Again in the isotropic system the coordinate
length (\/22+,7+22) of a small rod which is rigid
(as = constant) does not alter when the orientation
of the rod is altered. This system of coordinates
is naturally arrived at when we partition space by
rigid scales or by light-triangulations in a small
region, e.g. in terrestrial measurements. Since
the ultimate measurements involved in any obser-
vation are carried out in a terrestrial laboratory
we ought, strictly speaking, always to employ the
isotropic system which conforms to assumptions
made in those measurements*. But on the earth
the quantity m/r is negligibly small, so that the

*But the terrestrial laboratory is falling freely towards the
sun, and is therefore accelerated relatively to the coordinates

(x,y, z,1).
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two systems coalesce with one another and with
Euclidean coordinates. Non-Euclidean geome-
try is only required in the theoretical part of the
investigation—the laws of planetary motion and
propagation of light through regions where m/r is
not negligible; as soon as the light-waves have
been safely steered into the terrestrial observatory,
the need for non-Euclidean geometry is at an
end, and the difference between the isotropic and
non-isotropic systems practically disappears.

In either system the forward velocity of light
along any line is equal to the backward velocity.
Consequently the coordinate ¢ conforms to the
convention (§ 11) that simultaneity may be deter-
mined by means of light-signals. If we have a
clock at 4 and send a light-signal at time ¢, which
reaches B and is immediately reflected so as to re-
turn to 4 at time ¢,, the time of arrival at 5 will be
L(ta+1,) just as in the special relativity theory. But
the alternative convention, that simultaneity can
be determined by slow transport of chronometers,
breaks down when there is a gravitational field.
This is evident from § 42, since the time-rate of a
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clock will depend on its position in the field. In
any case slow transport of a clock is unrealisable
because of the acceleration which all objects must
submit to.

The isotropic system could have been found
directly by seeking particular solutions of Einstein’s
equations having the form (3s.12), or

ds* = —e N dr® — e (r? df? 4 r%sin® 0 d¢?) + e dt?,

where ), i, v are functions of ». By the method of

§ 38, we find

G+ 3 4 g = X B = I I 4
Goy = el [1 +2ry’ + %r(u' - M)+ %7’2;/’

+ 3P (W + 3 = AN -1 (43.5)
G35 = Gagsin? 0

Gy = _eu—)\ %l/”-l— 11//‘1‘ %V/M/_ i)\lul—l— %V/Q
T
The others are zero.
Owing to an identical relation between ci,, G
and G., the vanishing of this tensor gives only two
equations to determine the three unknowns A, 4, v.
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There exists therefore an infinite series of particular
solutions, differing according to the third equation
between A, u, » which is at our disposal. 'The
two solutions hitherto considered are obtained by
taking » =0, and x =, respectively. ‘The same
series of solutions is obtained in a simpler way by
substituting arbitrary functions of » instead of -
in (38.8).

'The possibility of substituting any function of
for » without destroying the spherical symme-
try is obvious from the fact that a coordinate is
merely an identification-number; but analytically
this possibility is bound up with the existence of
an identical relation between 6.1, G2, and G, which
makes the equations too few to determine a unique
solution.

'This introduces us to a theorem of great conse-
quence in our later work. If Einstein’s ten equa-
tions ¢, = o were all independent, the ten 4,, would
be uniquely determined by them (the boundary
conditions being specified). The expression for ds?
would be unique and no transformation of coor-
dinates would be possible. Since we know that
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we can transform coordinates as we please, there
must exist identical relations between the ten ¢,.;

and these will be found in § 52.

44. Problem of two bodies—Motion of the
moon.

'The field described by the g4,, may be (artificially)
divided into a field of pure inertia represented by
the Galilean values, and a fre/d of force represented
by the deviations of the 4, from the Galilean
values. It is not possible to superpose the fields of
force due to two attracting particles; because the
sum of the two solutions will not satisfy a,, = o,
these equations being non-linear in the g,..

No solution of Einstein’s equations has yet been
found for a field with two singularities or particles.
'The simplest case to be examined would be that
of two equal particles revolving in circular orbits
round their centre of mass. Apparently there
should exist a statical solution with two equal
singularities; but the conditions at infinity would
differ from those adopted for a single particle
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since the axes corresponding to the static solution
constitute what is called a rotating system. The
solution has not been found, and it is even possible
that no such statical solution exists. I do not think
it has yet been proved that two bodies can revolve
without radiation of energy by gravitational waves.
In discussions of this radiation problem there is a
tendency to beg the question; it is not sufficient to
constrain the particles to revolve uniformly, then
calculate the resulting gravitational waves, and
verify that the radiation of gravitational energy
across an infinite sphere is zero. That shows that a
statical solution is not obviously inconsistent with
itself, but does not demonstrate its possibility.

'The problem of two bodies on Einstein’s theory
remains an outstanding challenge to mathematician:
like the problem of three bodies on Newton’s
theory.

For practical purposes methods of approxima-
tion will suffice. We shall consider the problem
of the field due to the combined attractions of the
earth and sun, and apply it to find the modifica-
tions of the moon’s orbit required by the new law
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of gravitation. 'The problem has been treated in
considerable detail by de Sitter*. We shall not here
attempt a complete survey of the problem; but we
shall seek out the largest effects to be looked for
in refined observations. There are three sources of
fresh perturbations:

(1) The sun’s attraction is not accurately given
by Newton’s law, and the solar perturbations of the
moon’s orbit will require corrections.

(2) Cross-terms between the sun’s and the
earth’s fields of force will arise, since these are not
additive.

(3) 'The earth’s field is altered and would inzer
alia give rise to a motion of the lunar perigee
analogous to the motion of Mercury’s perihelion.
It is easily calculated that this is far too small to
be detected.

If g, 0 are the Newtonian potentials of the
sun and earth, the leading terms of (1), (2), (3)

will be relatively of order of magnitude

0%, QQp, Qg

*Monthly Notices, vol. 77, p. 155.
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For the moon o = 7500,. We may therefore confine
attention to terms of type (1). If these prove
to be too small to be detected, the others will
presumably be not worth pursuing.

We were able to work out the planetary orbits
from Einstein’s law independently of the New-
tonian theory; but in the problem of the moon’s
motion we must concentrate attention on the dif-
ference between Einstein’s and Newton’s formulae
if we are to avoid repeating the whole labour of
the classical lunar theory. In order to make this
comparison we transform (39.31) and (39.32) so that
t is used as the independent variable.

A _(dNdE dtd(dt)d
ds2  \ds) dt?2  ds dt \ds) dt
dt\? [ d? dr d
(&) (& y2e b 42).
<ds> (dt2+ i dt) Y (39-42)

Hence the equations (39.31) and (39.32) become

2r o (dr\? _ [(do\? ,
w2 () () w0

¢\ drdp  2drdp _

dt? dt dt ' rdt dt
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Whence )
d?r do m
aw " (dt) TR
(44.1)
¢  2drdé\ _
"\az Trarar )
where )
2m
3 2 2
r (44.21)
d=—\Nuv
and

u=dr/dt, v=rdp/dt.

Equations (44.1) show that r and @ are the radial
and transverse perturbing forces which Einstein’s
theory adds to the classical dynamics. To a sufh-
cient approximation x = —2m/r2, so that

2 2
R=2(3u% - 20%) + =
r r (44.22)
¢ =— 2w

<

In three-dimensional problems the perturbing
forces become

m 2m?

R = ﬁ(g’l}? — 2’(}2 — 2w2) + TT

o= @2  Quw (44.23)
T

Z = EQ - 2uw
T
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It must be pointed out that these perturbing
forces are Einstein’s corrections to the law of cen-
tral force m/r2, where r is the coordinate used in our
previous work. Whether these forces represent the
actual differences between Einstein’s and Newton’s
laws depends on what Newton’s » is supposed to
signify. De Sitter, making a slightly different
choice of r, obtains different expressions for r, @*.
One cannot say that one set of perturbing forces
rather than the other represents the difference
from the older theory, because the older theory
was not sufficiently explicit. The classical lunar
theory has been worked out on the basis of the
law m/r2; the ambiguous quantity » occurs in the
results, and according as we have assigned to it
one meaning or another, so we shall have to apply
different corrections to those results. But the final
comparison with observation does not depend on
the choice of the intermediary quantity .

Take fixed rectangular axes referred to the eclip-
tic with the sun as origin, and let

*Monthly Notices, vol. 76, p. 723, equations (53).
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(a,0,0) be the coordinates of the earth at the
instant considered,

(z,y,2) the coordinates of the moon relative to
the earth.

Taking the earth’s orbit to be circular and treat-
ing the mass of the moon as infinitesimal, the
earth’s velocity will be (0,+,0), where 2 = m/a.

To find the difference of the forces r, ¢, z on
the moon and on the earth, we differentiate (44.23)
and set

or=z, O(u,v,w) = (dx/dt,dy/dt,dz/dt),
and, after the differentiation,
T:a’ (u7v7w) = (071)70).

The result will give the perturbing forces on the
moon’s motion relative to the earth, viz.

R=X=— V-~ 2%y
_ 2w’z 4m dy
o at e dt (44.3)
2m  dx
p=y="r3%
azvdt
Z=0
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We shall omit the term —2m?:/¢* in x. It can
be verified that it gives no important observable
effects. It produces only an apparent distortion of
the orbit attributable to our use of non-isotropic
coordinates (§ 43). Transforming to new axes (¢,n)
rotated through an angle ¢ with respect to (z,y) the
remaining forces become

=T 4 2 NI
E= a2v( 2cosfsind o (4 cos” 6 + 2sin” 0) o
p at (44.4)
_m o AN . 2 2 9y 48
H= azv( 2C08981n9dt + (4sin” 0 + 2 cos” 0) dt)

We keep the axes (¢,n) permanently fixed; the
angle ¢ which gives the direction of the sun (the
old axis of ) will change uniformly, and in the
long run take all values with equal frequency
independently of the moon’s position in its orbit.
We can only hope to observe the secular effects
of the small forces =, H, accumulated through a
long period of time. Accordingly, averaging the
trigonometrical functions, the secular terms are

- m dn dn

= = —9— —:72 —_—
520w wdt}
m o de e

H= 32,58 - o,%
52V “

(44.5)
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where

w = 3mv/a®. (44.6)

If (7. r,) is the Newtonian force, the equations
of motion including these secular perturbing forces

will be
S oM g, Y 9, (44.7)

It is easily seen that « is a very small quantity,
so that «? is negligible. The equations (44.7) are then
recognised as the Newtonian equations referred to
axes rotating with angular velocity —. Thus if we
take the Newtonian orbit and give it an angular
velocity +w, the result will be the solution of (44.7).
'The leading correction to the lunar theory obtained
from Einstein’s equations is a precessional effect,
indicating that the classical results refer to a frame
of reference advancing with angular velocity w
compared with the general inertial frame of the
solar system.

From this cause the moons node and perigee
will advance with velocity «. If o is the earth’s
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angular velocity

w

Q

Hence the advance of perigee and node in a
century is

3 -8
=3.107%.

N w

m
a

3r-10-Sradians = 1”.94.

We may notice the very simple theoretical rela-
tion that Einstein’s corrections cause an advance of
the moon’s perigee which is one half the advance
of the earth’s perihelion.

Neither the lunar theory nor the observations
are as yet carried quite far enough to take account
of this small effect; but it is only a little below
the limit of detection. 'The result agrees with
de Sitter’s value except in the second decimal place
which is only approximate.

There are well-known irregular fluctuations in
the moon’s longitude which attain rather large
values; but it is generally considered that these
are not of a type which can be explained by any
amendment of gravitational theory and their origin
must be looked for in other directions. At any rate
Einstein’s theory throws no light on them.
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'The advance of 17.94 per century has not exclu-
sive reference to the moon; in fact the elements
of the moon’s orbit do not appear in @46). It
represents a property of the space surrounding the
earth—a precession of the inertial frame in this
region relative to the general inertial frame of the
sidereal system. If the earth’s rotation could be
accurately measured by Foucault’s pendulum or
by gyrostatic experiments, the result would dif-
fer from the rotation relative to the fixed stars
by this amount. This result seems to have been
first pointed out by J. A. Schouten. One of the
difficulties most often urged against the relativity
theory is that the earth’s rotation relative to the
mean of the fixed stars appears to be an absolute
quantity determinable by dynamical experiments
on the earth*; it is therefore of interest to find
that these two rotations are not exactly the same,
and the earth’s rotation relative to the stellar sys-
tem (supposed to agree with the general inertial
frame of the universe) cannot be determined except

*Space, Time and Gravitation, p. 152.
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by astronomical observations.

The argument of the relativist is that the ob-
served effect on Foucault’s pendulum can be ac-
counted for indifferently by a field of force or by
rotation. 'The anti-relativist replies that the field of
force is clearly a mathematical fiction, and the only
possible physical cause must be absolute rotation.
It is pointed out to him that nothing essential
is gained by choosing the so-called non-rotating
axes, because in any case the main part of the
field of force remains, viz. terrestrial gravitation.
He retorts that with his non-rotating axes he has
succeeded in making the field of force vanish at
infinity, so that the residuum is accounted for as
a local disturbance by the earth; whereas, if axes
fixed in the earth are admitted, the corresponding
field of force becomes larger and larger as we re-
cede from the earth, so that the relativist demands
enormous forces in distant parts for which no
physical cause can be assigned. Suppose, however,
that the earth’s rotation were much slower than it
is now, and that Foucault’s experiment had indi-
cated a rotation of only —17.04 per century. Our two
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disputants on the cloud-bound planet would no
doubt carry on a long argument as to whether this
was essentially an absolute rotation of the earth
in space, the irony of the situation being that the
earth all the while was non-rotating in the anti-
relativist’s sense, and the proposed transformation
to allow for the Foucault rotation would actually
have the effect of introducing the enormous field
of force in distant parts of space which was so
much objected to. When the origin of the 17.94 has
been traced as in the foregoing investigation, the
anti-relativist who has been arguing that the ob-
served effect is definitely caused by rotation, must
change his position and maintain that it is defi-
nitely due to a gravitational perturbation exerted
by the sun on Foucault’s pendulum; the relativist
holds to his view that the two causes are not

distinguishable.
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45. Solution for a particle in a curved world.

In later work Einstein has adopted the more
general equations (37.4)

G[U/ - aguu- (451)

In this case we must modify (ss.61), etc. by inserting
ag. on the right. We then obtain

%V” _ l)\lyl + lV’Q — )\’/r = —ae/\7 (45.21)
A1+ - )) —1=—ar? (45.22)
61/7)\(7% IA/ A § ’2 _ I/I/T) = ae”. (4523)

From (45.21) and (45.23), » = -, so that we may take
»=—v. An additive constant would merely amount
to an alteration of the unit of time. Equation (45.22)
then becomes

e’(1+rv)=1—ar’

Let ¢ = +; then
vy =1—ar?
which on integration gives

2
y=1- Tm — tar®. (45.3)
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'The only change is the substitution of this new
value of ~ in (38.9).

By recalculating the few steps from (39.44) to
(30.61) we obtain the equation of the orbit

d*u m o la _g

The effect of the new term in o is to give an
additional motion of perihelion

dw  1ah® 1 add
— == =5 W(l —e?)3. (45.5)

o 2 mt

At a place where , vanishes there is an im-

passable barrier, since any change ar corresponds

to an infinite distance ids surveyed by measuring-

rods. ‘The two roots of the quadratic (45.3) are
approximately

r=2m and = 3/

The first root would represent the boundary of
the particle—if a genuine particle could exist—
and give it the appearance of impenetrability. The
second barrier is at a very great distance and may
be described as the horizon of the world.
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It is clear that the latter barrier (or illusion of
a barrier) cannot be at a less distance than the
most remote celestial objects observed, say 10 cm.
This makes « less than 10-® (cm.)-2. Inserting
this value in @55 we find that the additional
motion of perihelion will be well below the limit
of observational detection for all planets in the
solar system*.

If in (45.3) we set m =0, we abolish the particle at
the origin and obtain the solution for an entirely

empty world
ds* = —(1— tar®)"1dr® — r?d0? — r*sin® 0 d¢*> + (1 — $ar?) dt*. (45.6)

'This will be further discussed in Chapter V.

¥This could scarcely have been asserted a few years ago,
when it was not known that the stars extended much be-
yond 1000 parsecs distance. A horizon distant 700 parsecs
corresponds to a centennial motion of about 1” in the earth’s
perihelion, and greater motion for the more distant planets in
direct proportion to their periods.
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46. Transition to continuous matter.

In the Newtonian theory of attractions the
potential ¢ in empty space satisfies the equation

Vi =0,

of which the elementary solution is @ = m/r; then
by a well-known procedure we are able to deduce
that in continuous matter

V2Q = —4np. (46.1)

We can apply the same principle to Einstein’s
potentials ¢,,, which in empty space satisfy the
equations G,, —o. The elementary solution has been
found, and it remains to deduce the modification
of the equations in continuous matter. The logical
aspects of the transition from discrete particles
to continuous density need not be discussed here,
since they are the same for both theories.

When the square of m/r is neglected, the
isotropic solution (43.3) for a particle continually at
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rest becomes*
2 2m 2 2 2 2m 2
ds® = — 1+7 (dz* + dy* + dz*) + 1—7 dt*. (46.15)

The particle need not be at the origin provided
that » is the distance from the particle to the point
considered.

Summing the fields of force of a number of
particles, we obtain

ds® = —(1 +2Q)(dz? + dy* + dz?) + (1 — 2Q)dt?, (46.2)
where

o= 2 - Newtonian potential at the point conside
T

'The inaccuracy in neglecting the interference of
the fields of the particles is of the same order as
that due to the neglect of m?/:2, if the number of
particles is not unduly large.

¥This approximation though sufficient for the present pur-
pose is not good enough for a discussion of the perihelion of
Mercury. The term in m?/r? in the coefficient of dt* would
have to be retained.
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Now calculate the ¢, for the expression (46.2).

We have

G,uy = gUpB;u/a'p

2 2 2 2
:éggp( P Pgpo P guoe g ) (46.3)
O0r,0x, Ox,0x, Or,0x, Or,0z,

by (345). The non-linear terms are left out because
they would involve 2 which is of the order (m/r)?
already neglected.

'The only terms which survive are those in which
the s have like suffixes. Consider the last three
terms in the bracket; for ¢,, they become

1( 11 9911 22 07920
2

0? 02 0? o2
53 1y 1 g% 933 g 944 1197911 11 911)'
1

0z? Ox? 0z? g Ox? g 0z3

Substituting for the ¢s from (46.2) we find that the
result vanishes (neglecting 02). For ., the result
vanishes for a different reason, viz. because o does
not contain =, (=¢). Hence

0? g

=10, 1n (30.65). 46.4
5o, o~ 200 as (30.65) (46.4)

o
Guw = 39°°
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Since time is not involved

0= -V2,
G11, G2, G333, Gu = *%V2(911,9227g33,g44)

— V20 by (46.2).

Hence, making at this point the transition to
continuous matter,

Gi1, Gao, Gz3, Gy = —4mp by (46.1). (46.5)
Also

G=g"Gu =—G11 —Gaz — Gz + Gy

= 8mp

to the same approximation.
Consider the tensor defined by

=817y = Gy — 29,uG. (46.6)
We readily find
T,, =0, €XCept Tus = p,
and raising the suffixes

T =0, €except 7' =p, (46.7)
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since the ¢ are Galilean to the order of approxi-
mation required.
Consider the expression

dz, dx,

pOE ds’

where dxz,/ds refers to the motion of the matter,
and p, is the proper-density (an invariant). The
matter is at rest in the coordinates hitherto used,
and consequently

doy dwy drs _ dea _
ds’ ds’ ds ’ ds ’

so that all components of the expression vanish,
except the component ,, » =4 which is equal to .
Accordingly in these coordinates

dr,, dx
THY — it} v
PO s Tds

(46.8)

since the density » in (6.7) is clearly the proper-
density.

Now (46.8) is a tensor equation*, and since it has
been verified for one set of coordinates it is true

*When an equation is stated to be a tensor equation, the
reader is expected to verify that the covariant dimensions of
both sides are the same.
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for all coordinate-systems. Equations .6 and
(46.8) together give the extension of Einstein’s law
of gravitation for a region containing continuous
matter of proper-density , and velocity dz,/ds.

'The question remains whether the neglect of m?
causes any inaccuracy in these equations. In
passing to continuous matter we diminish m for
each particle indefinitely, but increase the number
of particles in a given volume. To avoid increasing
the number of particles we may diminish the
volume, so that the formulae (6.5) will be true for
the limiting case of a point inside a very small
portion of continuous matter. Will the addition of
surrounding matter in large quantities make any
difference? 'This can contribute nothing directly
to the tensor a,.,, since so far as this surrounding
matter is concerned the point is in empty space;
but Einstein's equations are non-linear and we
must consider the possible cross-terms.

Draw a small sphere surrounding the point p
which is being considered. Let g, = 6. +hu +
n,, where s, represents the Galilean values, and

nrd
h. and w,, represent the fields of force contributed
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independently by the matter internal to and ex-
ternal to the sphere. By § 36 we can choose
coordinates such that at p n;, and its first deriva-
tives vanish; and by the symmetry of the sphere
the first derivatives of »,, vanish, whilst »,, itself
tends to zero for an infinitely small sphere. Hence
the cross-terms which are of the form

! Oh'
W Ohuw ’ oh... 8hW’ ’clIld ho w
0x) 0z, Ory Oz, Oz 0z,

will all vanish at p. Accordingly with these limita-
tions there are no cross-terms, and the sum of the
two solutions n,, and #,, is also a solution of the
accurate equations. Hence the values (46.5) remain
true. It will be seen that the limitation is that
the coordinates must be “natural coordinates” at
the point p. We have already paid heed to this in
taking , to be the proper-density.

We have assumed that the matter at p is not
accelerated with respect to these natural axes at p.
(‘The original particles had to be continually at rest,
otherwise the solution (6.15) does not apply.) If it
were accelerated there would have to be a stress
causing the acceleration. We shall find later that a
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stress contributes additional terms to the ¢,,. The
formulae (46.5) apply only strictly when there is no
stress and the continuous medium is specified by
one variable only, viz. the density.

The reader may feel that there is still some
doubt as to the rigour of this justification of the
neglect of m2*. Lest he attach too great importance
to the matter, we may state at once that the
subsequent developments will not be based on this
investigation. In the next chapter we shall arrive at
the same formulae by a different line of argument,

#To illustrate the difficulty, what exactly does py mean,
assuming that it is not defined by (46.6) and (46.7)? If the
particles do not interfere with each other’ fields, pg is Y | m per
unit volume; but if we take account of the interference, m is
undefined—it is the constant of integration of an equation
which does not apply. Mathematically, we cannot say what
m would have been if the other particles had been removed;
the question is nonsensical. Physically we could no doubt
say what would have been the masses of the atoms if widely
separated from one another, and compare them with the
gravitational power of the atoms under actual conditions; but
that involves laws of atomic structure which are quite outside
the scope of the argument.
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and proceed in the reverse direction from the laws
of continuous matter to the particular case of an
isolated particle.

The equation (6.2) is a useful expression for the
gravitational field due to a static distribution of
mass. It is only a first approximation correct to
the order m/r, but no second approximation exists
except in the case of a solitary particle. This is
because when more than one particle is present
accelerations necessarily occur, so that there can-
not be an exact solution of Einstein’s equations
corresponding to a number of particles continually
at rest. It follows that any constraint which could
keep them at rest must necessarily be of such a
nature as to contribute a gravitational field on its
own account.

It will be useful to give the values of a,, -
19,,G corresponding to the symmetrical formula
for the interval (332). By varying A and » this can
represent any distribution of continuous matter
with spherical symmetry. We have

G=—e MV = IV + 2 20 = X)fr+ 21— ) /r?)
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/r?

G — %911(; = —V//T - (1= )
Gog — %QQQG = 77‘267)\(§1/N — i "N+ 11//2 + 35 ( )\/)/T)

Ga3 — %gggG = —r%sin2fe (%V” - Zl/ "N+ %1/2 + §(V/ — )\’)/T)

G44 — %g44G = 61/_)\(—)\//7" + (1 — EA)/TQ)
(46.9)

47. Experiment and deductive theory.

So far as I am aware, the following is a complete
list of the postulates which have been introduced
into our mathematical theory up to the present
stage:

1. The fundamental hypothesis of § 1.

2. 'The interval depends on a quadratic function
of four coordinate-differences (§ 2).

3. 'The path of a freely moving particle is in all
circumstances a geodesic (§ 15).

4. 'The track of a light-wave is a geodesic with
ds =0 (§ 15)

5. 'The law of gravitation for empty space is
G, =0, or more probably G,, = Ag.., where A is a very
small constant (§ 37).

No. 4 includes the identification of the velocity
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of light with the fundamental velocity, which was
originally introduced as a separate postulate in § 6.

In the mathematical theory we have two ob-
jects before us—to examine how we may test the
truth of these postulates, and to discover how the
laws which they express originate in the struc-
ture of the world. We cannot neglect either of
these aims; and perhaps an ideal logical discussion
would be divided into two parts, the one showing
the gradual ascent from experimental evidence to
the finally adopted specification of the structure of
the world, the other starting with this specification
and deducing all observational phenomena. The
latter part is specially attractive to the mathemati-
cian for the proof may be made rigorous; whereas
at each stage in the ascent some new inference or
generalisation is introduced which, however plau-
sible, can scarcely be considered incontrovertible.
We can show that a certain structure will explain
all the phenomena; we cannot show that nothing
else will.

We may put to the experiments three questions
in crescendo. Do they verify? Do they suggest?
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Do they (within certain limitations) compel the
laws we adopt? It is when the last question is put
that the difficulty arises for there are always lim-
itations which will embarrass the mathematician
who wishes to keep strictly to rigorous inference.
What, for example, does experiment enable us to
assert with regard to the gravitational field of a
particle (the other four postulates being granted)?
Firstly, we are probably justified in assuming that
the interval can be expressed in the form (3s.2),
and experiment shows that » and » tend to zero
at great distances. Provided that ¢ and ¢« are
simple functions it will be possible to expand the
coefficients in the form

1
dSQZ_(1+(ll+a§+...> er—rdeQ—T2Sin26d¢2
T T

+<1+?+f§+i§+--~> 1dt2.
Now reference to §§ 39, 40, 41 enables us to de-
cide the following points:
(1) The Newtonian law of gravitation shows
that 5, = —2m.
(2) The observed deflection of light then
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shows that a, = —2m.

(3) The motion of perihelion of Mercury then
shows that b, =o.
'The last two coefficients are not determined exper-
imentally with any high accuracy; and we have no
experimental knowledge of the higher coeflicients.
If the higher coeflicients are zero we can proceed
to deduce that this field satisfies c,, =o.

If small concessions are made, the case for the
law @, =0 can be strengthened. 'Thus if only one
linear constant m is involved in the specification of
the field, », must contain »#, and the corresponding
term is of order (m/r)?, an extremely small quantity.
Whatever the higher coefficients may be, ¢, will
then vanish to a very high order of approximation.

Turning to the other object of our inquiry, we
have yet to explain how these five laws originate
in the structure of the world. In the next chapter
we shall be concerned mainly with Nos. 3 and 5,
which are not independent of one another. They
will be replaced by a broader principle which
contains them both and is of a more axiomatic
character. No. 4 will be traced to its origin in the



CH. III EXPERIMENT AND DEDUCTIVE THEORY 311

electromagnetic theory of Chapter VI. Finally a
synthesis of these together with Nos. 1 and 2 will
be attempted in the closing chapter.

The following forward references will enable
the reader to trace exactly what becomes of these
postulates in the subsequent advance towards more
primitive conceptions:

Nos. 1 and 2 are not further considered until
§ 97.

No. 3 is obtained directly from the law of
gravitation in § 56.

No. 4 is obtained from the electromagnetic
equations in § 74. These are traced to their origin
in § 96.

No. 5 is obtained from the principle of iden-
tification in § 54, and more completely from the
principle of measurement in § 66. The possibility
of alternative laws is discussed in § 62.

In the last century the ideal explanation of the
phenomena of nature consisted in the construction
of a mechanical model, which would act in the
way observed. Whatever may be the practical
helpfulness of a model, it is no longer recognised as
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contributing in any way to an ultimate explanation.
A little later, the standpoint was reached that on
carrying the analysis as far as possible we must
ultimately come to a set of differential equations
of which further explanation is impossible. We
can then trace the modus operandi, but as regards
ultimate causes we have to confess that “things
happen so, because the world was made in that
way.” But in the kinetic theory of gases and
in thermodynamics we have laws which can be
explained much more satisfactorily. The principal
laws of gases hold, not because a gas is made
“that way,” but because it is made “just anyhow.”
This is perhaps not to be taken quite literally;
but if we could see that there was the same
inevitability in Maxwell's laws and in the law
of gravitation that there is in the laws of gases,
we should have reached an explanation far more
complete than an ultimate arbitrary differential
equation. 'This suggests striving for an ideal—
to show, not that the laws of nature come from
a special construction of the ultimate basis of
everything, but that the same laws of nature would
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prevail for the widest possible variety of structure
of that basis. 'The complete ideal is probably
unattainable and certainly unattained; nevertheless
we shall be influenced by it in our discussion,
and it appears that considerable progress in this
direction is possible.



CHAPTER IV
RELATIVITY MECHANICS

48. The antisymmetrical tensor of the fourth
rank.

TENSOR 4,, is said to be antisymmetrical if
A Ay, = A, It follows that 4, = —4,,, so that 4,
Assy Ass, Ay must all be zero.

Consider a tensor of the fourth rank z+# which
is antisymmetrical for all pairs of suffixes. Any
component with two suffixes alike must be zero,
since by the rule of antisymmetry pestt — —posi,
In the surviving components, o, 3, 4, 5, being all
different, must stand for the numbers 1, 2, 3, 4 in
arbitrary order. We can pass from any of these
components to £2% by a series of interchanges of
the suffixes in pairs, and each interchange merely
reverses the sign. Writing £ for g2+ all the
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256 components have one or other of the values
YE, 0, -E.
We shall write
E*"° = E - €apys) (48.1)
where

cass = 0, when the suffixes are not all different,

= +1,when they can be brought to the order 1,
2, 3, 4 by an even number of interchanges,

— -1, when an odd number of interchanges is n

It will appear later that £ is not an invariant;
consequently «.s,5 is not a tensor.

The coefhicient «.s,s is particularly useful for
dealing with determinants. If |, denotes the
determinant formed with the elements &, (which
need not form a tensor), we have

4! x |km,| = €apBys€enb k‘aek‘ggkwnk’(m, (48.2)

because the terms of the determinant are obtained
by selecting four elements, one from each row (a,
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3, v, 8, all different) and also from each column (e,
¢, n, 0, all different) and affixing the + or — sign to
the product according as the order of the columns
is brought into the order of the rows by an even
or odd number of interchanges. 'The factor 4
appears because every possible permutation of the
same four elements is included separately in the
summation on the right.

It is possible by corresponding formulae to
define and manipulate determinants in three di-
mensions (with 64 elements arranged in a cube) or
in four dimensions.

Note that

€apys€ecno = 4l (48.31)

'The determinants with which we are most con-
cerned are the fundamental determinant 4 and the
Jacobian of a transformation

Okt
8(3317 Z2,I3, x4)
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By wus.2)

4! g = €apys €ccno Jae 98¢ Gy 9505 (48.32)
81’ axg aCU 8x9
0, Oxp (9367 Oxs’

4! J = €aBys €eCnbd 7 (4833)

To illustrate the manipulations we shall prove that*
g=J%.
By (48.32) and (48.33)

Al ox!, 0xg Oz Oxl
(4)°T%9" = €aprs €ccnd Gne Isc Gyn 950 * Eurdp €veom - Oz, Da,, 0wy O,

8:% oz’ (“)xw ox!,

oTU w . 48.41
P CpoTu Coxw oz, Ox, Oz, Oy ( )

There are about 250 billion terms on the right,
and we proceed to rearrange those which do not
vanish.

For non-vanishing terms the letters v, ¢, o, =
denote the same suffixes as a, 8, 4, 4, but (usually)
in a different order. Permute the four factors in
which they occur so that they come into the same

*A shorter proof is given at the end of this section.
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order; the suffixes of the denominators will then
come into a new order, say, i, k, I, m. lhus

oz}, Oz Oxl, 0z, Ol Oxj 0, Ox
Ox, Ox,, Oxy Oz,  Ox Oz Ox; 0Ty

(48.42)

Since the number of interchanges of the de-
nominators is the same as the number of inter-
changes of the numerators

Svbom _ 4 = Grdu (48.43)
€apBys €iklm

so that the result of the transposition is

s o ox!, 0xg 9zl Oxl . o oxl, Oxjy Ox!, Oxf
AT 9, Oy Oy Omy, veow Ciklm 5 Oar 01 Ot

(48.5)

Making a similar transposition of the last four
terms, (48.41) becomes

0uf 9%y 0!, 0wy 0, 9% O o
Ox; Oxp O0x; Oxyy, Oxy Oxs Oxp Oy,

(4)°T%" = Ghe G Gy G50 -
* €iklm €véow Evéow Erstu Epxpw Epxrhw-

But by (23.22)

!/ !
, Oz, Oz

Jare dx; Ox, Gir-
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Hence

(4')3']2 "= (4!)26iklm €rstu Jir Jks it Imu
= (41)%g,

which proves the theorem.
Returning to g+#», its tensor-transformation law
18
Ox), dz!, Ox) Oz
0o Oxg Oxy x5

Whence multiplying by e.... and using @s.1)

E'WoT — Eoz,[ﬂ’y&

/ / / /
oz, oz, Ozl Oz’

Oxy Oxg Oxy Oxs

/
E- €uvor €pvor = E- €aBys €puvor

so that by (48.31) and (48.33)
E = JE. (48.6)

Thus £ is not an invariant for transformations of
coordinates.
Again
E*PY B e 9p¢ 9ym 9560

is seen by inspection to be an invariant. But this
is equal to

E2€o¢ﬁ’y6 €uvor Goe 93¢ Gyn 956
=41 E%g.
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Hence
E%g 1S an invariant. (48.65)

Accordingly
E’g=E”¢ = (EJ?, by (486)
giving another proof that
g=1J%" (48.7)

Corollary. 1f a is the determinant formed from
the components q,, of any covariant tensor, £ is
an invariant and

a=J%. (48.8)

49. Element of volume. Tensor-density.

In § 32 we found that the surface-element cor-
responding to the parallelogram contained by two
displacements, s,2,, &, is the antisymmetrical
tensor

dSHY — 51$M 5130,,

5217# 52xu
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Similarly we define the volume-element (four-di-
mensional) corresponding to the hyperparallelop-
iped contained by four displacements, 6.z., &z,
83,4, 04z, 45 the tensor

(51.%‘# (515131, (5151;‘0 (51.”[]-,—

0o, Oam, 03Ty Oaxs
dyuwer — |2 02ty O2to 02 (49.1)

(531'# 53£CV 53560- 53.T7-

(541'# 54$V 54%0 54%-,—

It will be seen that the determinant is an an-
tisymmetrical tensor of the fourth rank, and its
256 components accordingly have one or other of
the three values

+dVv, 0, —dvV,

where av = +av'23, It follows from (4s.65) that (@v)2g is
an invariant, so that

V—g-dV 1S an invariant. (49.2)

Since the sign of vz is associated with some
particular cycle of enumeration of the edges of the
parallelopiped, which is not usually of any im-
portance, the single positive quantity av is usually
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taken to represent the volume-element fully. Sum-
ming a number of infinitesimal volume-elements,
we have

/ / / J/=g-dv is an invariant, (49.3)

the integral being taken over any region defined
independently of the coordinates.

When the quadruple integral is regarded as the
limit of a sum, the infinitesimal parallelopipeds
may be taken of any shape and orientation; but
for analytical integration we choose them to be
coincident with meshes of the coordinate-system
that is being used, viz.

o1z, = (dz1,0,0,0); oz, = (0,dz2,0,0); etc.
Then (19.1) reduces to a single diagonal
dV = d{El d(Ez dl‘;), dLL’4.

We write 4 for the volume-element when chosen
in this way, so that

dT = dx1 dxo dxs dzy.
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It is not usually necessary to discriminate be-
tween ¢r and the more general expression av; and
we shall usually regard =g 4¢r as an invariant.
Strictly speaking we mean that ,=5-4r behaves as
an invariant in volume-integration; whereas ,/—g.dv
is intrinsically invariant.

For Galilean coordinates z, y, -, ¢, we have
J/=g=1, so that

V—gdr =dzdydzdt. (49.41)

Further if we take an observer at rest in this
Galilean system, dzdyd- is his element of proper-
volume (three-dimensional) 4w, and a4 is his
proper-time ds. Hence

V—gdr =dWds. (49.42)

By (49.41) we see that ,=gdr is the volume in
natural measure of the four-dimensional element.
This natural or invariant volume is a physical
conception—the result of physical measures made
with unconstrained scales; it may be contrasted
with the geometrical volume av or ¢r, which ex-



CH. IV ELEMENT OF VOLUME. TENSOR-DENSITY 324

presses the number of unit meshes contained in
the region.

Let 7 be a scalar, i.e. an invariant function of
position; then, since 7/=gdv is an invariant,

/ T\/—gdr 1S an 1nvariant

for any absolutely defined four-dimensional region.
Each unit mesh (whose edges dri, drs, dus, das
are unity) contributes the amount 7,=5 to this
invariant. Accordingly we call 7y=5 the scalar-
density* or invariant-density.

A nearly similar result is obtained for tensors.

The integral
/ T g dr

over an absolutely defined region is not a tensor;
because, although it is the sum of a number of

*[ have usually avoided the superfluous word “scalar,”
which is less expressive than its synonym “invariant.” But
it is convenient here in order to avoid confusion between
the density of an invariant and a density which is invariant.
'The latter, po, has hitherto been called the invariant density
(without the hyphen).
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tensors, these tensors are not located at the same
point and cannot be combined (§ 33). But in
the limit as the region is made infinitely small
its transformation law approaches more and more
nearly that of a single tensor. Thus 7w,=5 is a
tensor-density, representing the amount per unit
mesh of a tensor in the infinitesimal region round
the point.

It is usual to represent the tensor-density cor-
responding to any tensor by the corresponding
German letter; thus

T =T /—g;  T=Tv—g. (49.5)

By (s.1)

€0 = BB/ Tg = EN/=g - €apyss (49.51)
and since £y=7 is an invariant it follows that c.,.; is
a tensor-density.

Physical quantities are of two main kinds, e.g.

Field of acceleration = intensity of some condition a
Momentum = quantity of something in a v

'The latter kind are naturally expressed as “so much
per unit mesh.” Hence infensity is naturally de-
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scribed by a tensor, and guantity by a tensor-den-
sity. We shall find /=5 continually appearing in our
formulae; that is an indication that the physical
quantities concerned are strictly tensor-densities
rather than tensors. In the general theory tensor-
densities are at least as important as tensors.

We can only speak of the amount of momen-
tum in a large volume when a definite system of
coordinates has been fixed. The total momentum
is the sum of the momenta in different elements of
volume; and for each element there will be differ-
ent coeflicients of transformation, when a change
of coordinates is made. The only case in which we
can state the amount of something in a large re-
gion without fixing a special system of coordinates
is when we are dealing with an invariant; e.g. the
amount of “Action” in a large region is indepen-
dent of the coordinates. In short, tensor-analysis
(except in the degenerate case of invariants) deals
with things located at a point and not spread over
a large region; that is why we usually have to use
densities instead of quantities.

Alternatively we can express a physical quantity
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of the second kind as “so much per unit natural
volume (y/=gdr)”; it is then represented by a tensor.
From the physical point of view it is perhaps as
rational to express it in this way, as to express it by
a tensor-density “so much per unit mesh (4r).” But
analytically this is a somewhat hybrid procedure,
because we seem to be employing simultaneously
two systems of coordinates, the one openly for
measuring the physical quantity, the other (a nat-
ural system) implicitly for measuring the volume
containing it. It cannot be considered wrong in a
physical sense to represent quantities of the sec-
ond kind by tensors; but the analysis exposes our
sub-conscious reference to ,=gdr, by the repeated
appearance of =5 in the formulae.

In any kind of space-time it is possible to
choose coordinates such that =5 -1 everywhere;
for if three of the systems of partitions have
been drawn arbitrarily, the fourth can be drawn
so as to intercept meshes all of equal natural
volume. In such coordinates tensors and tensor-
densities become equivalent, and the algebra may

be simplified; but although this simplification does
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not involve any loss of generality, it is liable to
obscure the deeper significance of the theory, and
it is not usually desirable to adopt it.

The quantity obtained by dividing a tensor
by y=g may be called a fensor-volume. We shall
indicate tensor-volumes by calligraphic type, so
that

T =T =g TM =T /=g (49.6)

Evidently s,, 7 is an invariant, German character
cancelling calligraphic.

By (9.2) av an invariant-volume and should be
denoted by av.

'The coefhicient ;s is at the same time a con-
travariant tensor-density and a covariant tensor-
volume. We may thus write

€aprs = Eaprys = Capys (49.7)

'The product ¢.5.s¢2# should evidently be invariant;
this is satisfied because by (4s.31) it has the constant
value 4.

By means of this coeflicient we can associate a
covariant tensor-volume with any antisymmetrical
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contravariant tensor. This process is especially
important in connection with space-elements of
1,2,3 or 4 dimensions, which are antisymmetrical
contravariant tensors. For example, the four-
dimensional element of volume is measured by
either the tensor ave#s or the invariant volume av
connected by the relation

(A)dV = EupysdV P

Similarly the surface-element is represented by dse#
or ds.;, where

s = EaprsdST° (49.8)

'The necessity for inserting the accent should be
noticed; the result of this operation does not
give ds,; which according to previous definitions is
derived from ds# by lowering the two suffixes and
dividing by y=.

The representation of surface-elements by an
adjoint vector in elementary three-dimensional
theory arises in this way. If

dS!, = Eup,dS?7, (49.9)
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the vector-volume ds;, can be used as a measure
of the surface-element. ‘The elementary theory
(restricted to rectangular coordinates) does not
discriminate between vectors and vector-volumes.

From a covariant antisymmetrical tensor F.,
we can derive two different tensor-densities ¢
and %, thus

3P =g ¢PFsv/—g  FP =P, (49.10)

the latter is obtained merely by rearranging the
components of F,;.
As an illustration we can prove that

6" = |9y (49.11)

For this equation is equivalent to

Eapr6€ecno@™g’ g1’ = €10« g5 gyngso

Both sides are seen to have the same dimensions,
viz. those of the square of an invariant-density,
and so transform by the same law. In natural
coordinates the two determinants are identical;
hence their values are equal in all coordinate-
systems.
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50. The problem of the rotating disc.

We may consider at this point a problem of
some historic interest—

A disc made of homogeneous incompressible
material is caused to rotate with angular velocity ;
to find the alteration in length of the radius.

'The old paradox associated with this problem—
that the circumference moving longitudinally might
be expected to contract, whilst the radius moving
transversely is unaltered—no longer troubles us*.
But the general theory of relativity gives a quan-
titative answer to the problem, which was first
obtained by Lorentz by a method different from
that given heref.

We must first have a clear understanding of
what is meant by the word “incompressible”. Let
us isolate an element of the rotating disc, and refer
it to axes with respect to which it has no velocity
or acceleration (proper-measure); then except for
the fact that it is under stress due to the cohesive

*Space, Time and Gravitation, p. 75.
tNature, vol. 106, p. 795.
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forces of surrounding matter, it is relatively in
the same state as an element of the non-rotating
disc referred to fixed axes. Now the meaning of
incompressible is that no stress-system can make
any difference in the closeness of packing of the
molecules; hence the particle-density a (referred to
proper-measure) is the same as for an element of
the non-rotating disc. But the particle-density o
referred to axes fixed in space may be different.
We might write down at once by (14.1)

o =o(1- w27'2)7%,

since wr is the velocity of the element. This would
in fact give the right result. But in § 14 accel-
eration was not taken into account and we ought
to proceed more rigorously. We use the accented
coordinates of § 15 for our rotating system, and
easily calculate from (15.4) that

V _g/:17

and since 2, «, «, are constant for an element of
the disc, the proper-time

dS—\/l—w2 (22 + 2f?) dx)y.
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If aw is the proper-volume of the element,
by (49.42)

dW ds = \/—g' - da) dzy daly da).
Hence
AW = (1 - w? (@ +22)) "2 da day da
— (1 —w??)" 3¢ dr' d6' daty.

If the thickness of the disc is s =, and its
boundary is given by » = «, the total number of
particles in the disc will be

’
a

N = /adW = 2mb/(1 — w272y
' 0
Since this number is unaltered by the rotation,
« must be a function of » such that

’
a

/(1 —w?r?)~2 ¢ dr' = const.,
0
or

1 (1 —V1- w2a’2) = const.

w?
Expanding the square-root, this gives approxi-
mately

30”1+ jwa’?) = const.,
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so that if « is the radius of the disc at rest
d =1+ tw’d?) =a.
Hence to the same approximation

a = a(l — fw?a®).

Note that « is the radius of the rotating disc ac-
cording to measurement with fixed scales, since the
rotating and non-rotating coordinates have been
connected by the elementary transformation (15.3).

We see that the contraction is one quarter
of that predicted by a crude application of the
FitzGerald formula to the circumference.

This proof has been criticised as defective in
that no explanation is given as to why the thick-
ness » of the disc is assumed to be unaltered by
rotation. We may examine this question by the
same general method. 'The essential point is that
in an incompressible and (it should be added) per-
fectly rigid disc there is no response of any kind
to applied stress, so that stresses may be ignored;
any difference between rotating and non-rotat-
ing elements must be a difference of description,
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not of intrinsic structure. Thus the configuration
of molecules when referred to proper-coordinates
will be the same in rotating as in non-rotating
elements of the material. But the transformation
to proper-coordinates does not affect s, so that
the spacing of the molecules along this coordi-
nate is unaltered by the rotation. The thickness
of the disc—or length of the chain of molecules
extending from the lower to the upper surface—is
accordingly unaltered.

51. The divergence of a tensor.

In the elementary theory of vectors the diver-

gence
ox oY oz
or Oy 0z
1s important; we can to some extent grasp its
geometrical significance. In our general notation,
this expression becomes

0A*

oz,

But evidently a more fundamental operation is to
take the covariant derivatives which will give an
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invariant

(A") .
We therefore define the divergence of a tensor as
its contracted covariant derivative.

By (20.4)
()= G
:giJrAe o= B 9 = by (35.4)
_ \/% ai#(Au\/fg)’ (51.11)

since « may be replaced by .. In terms of tensor-
density this may be written

Ab/—g = Al = %mt (51.12)
“w

'The divergence of 4 is by (30.2)

14 6 v « v
(A}, = a—xl’Au + {av, v} AL — {pv, a Ay
19, ,

= = o, (ApV=9) — {mv, a} A, (51.2)

by the same reduction as before. 'The last term
gives

} 99up i 99up _ G APV
ox, Oz, O0xg
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When 4#* is a symmetrical tensor, two of the
terms in the bracket cancel by interchange of s

and », and we are left with —% %AW
o
Hence for symmetrical tensors
vy oL 9 = 109ap jap
(A;J,)V - \/jg axl/ (Ay, g) 2 axu A ) (5131)
or, by (35.2),
y 1 90, ., 1 9g*8
e = =5 g, WiV=0) 4 g g Ao (L3

For antisymmetrical tensors, it is easier to use the
contravariant associate,
(A*Y), = (‘)iAW + {av, v} AP + {av, u} A*. (51.41)
LTy
'The last term vanishes owing to the antisymmetry.
Hence

(@), = o= (A=) (51.42)
Introducing tensor-densities our results become
oA, = aixy% — 1gof %g;f (symmetrical tensors),
(51.51)
A — %mw (antisymmetrical tensors).

(51.52)
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52. The four identities.

We shall now prove the fundamental theorem
of mechanics—

The divergence of G, - 14.G is identically zero.  (52)

In three dimensions the vanishing of the diver-
gence is the condition of continuity of flux, e.g.
in hydrodynamics ou/ox + ov/dy + ow/o: = 0. Adding
a time-coordinate, this becomes the condition of
conservation or permanence, as will be shown in
detail later. [Ir will be realised how important for
a theory of the material world is the discovery of a
world-tensor which is inherently permanent.

I think it should be possible to prove (s2) by
geometrical reasoning in continuation of the ideas
of § 33. But I have not been able to construct a
geometrical proof and must content myself with a
clumsy analytical verification.

By the rules of covariant differentiation

oG oG
(g;LG) = gu ox a..

8xu'
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Thus the theorem reduces to

, 109G
Gl =3 (52.1)
For =1, 2, 3, 4, these are the four identities referred

to in § 37. By (s1.32)

v __ 1 8 v/ 1 agaﬁ
G = ﬁ 350,,( WV=9) + 3G oz, ’
and since G = ¢**Gu.;s
LOG _y 0y0Gas 1, 05
2 0z, O0x,, O0x,,

Hence, subtracting, we have to prove that

= 5 (G = b
Since (52) is a tensor relation it is sufficient to
show that it holds for a special coordinate-sys-
tem; only we must be careful that our special
choice of coordinate-system does not limit the
kind of space-time and so spoil the generality of
the proof. It has been shown in § 36 that in
any kind of space-time, coordinates can be chosen
so that all the first derivatives ag,, /02, vanish at a

P (52.2)
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particular point; we shall therefore lighten the al-
gebra by taking coordinates such that at the point

considered
0guv
02y

'This condition can, of course, only be applied after
all differentiations have been performed. Then

]' a v a vT O
ﬁ g(Guv —9) ——(9""9°"V/ =9 Burop)-

= 0. (52.3)

1
"~ Vg 0z,
Owing to (523) ¢7¢7vy=g can be taken outside the
differential operator, giving

VT op

0
979" 5 Birop,
1%

which by (345) is equal to

Lgvmgor 9%9ps gur _ 9o _ *Gpr
2 Oz, 0z,  Ox,0r, Or,0x; Ox,0x,)’

(52.4)

The rest of B,.,, is omitted because it consists of
products of two vanishing factors (s-index sym-
bols), so that after differentiation by oz, one van-
ishing factor always remains.

By the double interchange + for -, » for », two
terms in (52.4) cancel out, leaving

1 0 0 0%g,5 0%g,,
S (G = 3o o (e - ) (s

0z, 0x, 0z,0%,
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Similarly
oG oG 0
1,08 ap — 1 vT vr _ 1 vt 7 B
2 axﬂ Qg 6.’1,'# Qg 8CCH (g VT(T[))
— lgy‘rgo-p i anpU 8291/7 _ a2gu0 _ a2gp7
4 oz, \ 0z, 0z, 0x,0x, 0x,0x. Ox,0z,
0 9%g ?g
=39"79°" po_ o 2.52
29 9 oz, (8@ Oz, Oz, 8x0> ’ (52.52)

since the double interchange - for -, » for v, causes
two terms to become equal to the other two.

Comparing (s251) and (52.52) we see that the re-
quired result is established for coordinates chosen
so as to have the property (523) at the point con-
sidered; and since it is a tensor equation it must
hold true for all systems of coordinates.

The four identities can be obtained in a more
elegant way as follows. We must first establish the
identity

(Boyo) + (Bowr) + (B = 0, (52.6)

where the final suffix denotes covariant differenti-
ation. To prove this we evaluate the left-hand side
in terms of 3-index symbols by substituting (34.)
in (304); but it is only necessary to proceed far
enough to see that the second derivatives of the
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3-index symbols cancel out cyclically, and that the
first derivatives occur only in combination with a 3-
index symbol itself as co-factor. Hence the whole
expression will vanish when the 3-index symbols
(but not their derivatives) vanish, i.e. in natural
coordinates. The result is thus proved for natural
coordinates, and since it is a tensor equation it will
be true for all coordinate-systems.

Lowering the suffix ¢, and using the antisym-
metrical properties of B,.,. we have

(B#VUE)T - (B/.LTO'E)U + (BEVT,U,)J =0.
Hence, multiplying by g7,
(GZ)T - (G)I/ + (Gg)a =0,

which is equivalent to (s2.1).

'The crude statement in § 37, that owing to the
existence of these 4 identical relations the number
of gravitational equations is effectively reduced to
6, requires some amplification. A relation between
the first derivatives of the ¢,, is not so restrictive
as a relation between the ¢,, themselves, and it is
not true that if 6 of the ¢,, are made to vanish
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the remaining 4 will identically vanish. If we
consider the 40 covariant derivatives (G3),, 4 of
these depend on the others, so that the Vamshmg
of 36 of the derivatives ensures that all 40 will
vanish. The effect is that the scheme of equations
for determining the g,, is incomplete by 4, so that
there remains a four-fold arbitrariness in the values
of the 4,, and therefore of the coordinate-system.

53. 'The material energy-tensor.

Let p, be the proper-density of matter, and let
dz,/ds refer to the motion of the matter; we write,

as 1n (46.8),
dz,, dz,
07ds ds

T = (53.1)

Then  (with the associated mixed and covariant

tensors) is called the energy-tensor of the matter.
For matter moving with any velocity relative to

Galilean coordinates, the coordinate-density , is

given by
P =po (ii) ) (53.2)

for, as explained in (142), the FitzGerald factor
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8 = di/ds appears twice, once for the increase of
mass with velocity and once for the contraction of
volume.

Hence in Galilean coordinates

dzy dz,

T/Ly:
P=at "t

(53.3)

so that if «, v, » are the components of velocity

T = pu?,  pvu, pwu, pu (53.4)
puv,  pv:,  pwv,  pv
puw, pow, pw?,  pw
pu, pv, pw, p

In matter atomically constituted, a volume
which is regarded as small for macroscopic treat-
ment contains particles with widely divergent
motions. Thus the terms in (534) should be
summed for varying motions of the particles. For
macroscopic treatment we express the summation
in the following way.—

Let (uv,w) refer to the motion of the centre
of mass of the element, and (u,u.w) be the
internal motion of the particles relative* to the

*In the sense of elementary mechanics, i.e. the simple
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centre of mass. Then in a term of our tensor
such as Y p(u+uw)w+v), the cross-products will
vanish, leaving 3 puv+ 3 purv;. NOW 3 puse; represents
the rate of transfer of w-momentum by particles
crossing a plane perpendicular to the y-axis, and
is therefore equal to the internal stress usually
denoted by p,,. We have therefore to add to (s3.4)
the tensor formed by the internal stresses, bordered
by zeroes. The summation can now be omitted,
p referring to the whole density, and «, v, « to the
average or mass-motion of macroscopic elements.

Accordingly

TH = pea 4+ pu?,  pya+pvu,  pu +pwu,  pu (53.5)
Doy +puv,  pyy+pv?, py.+pwv,  pv
Prz + puw,  py.+pvw,  p..+pw?,  pw
pu pv pw p

Consider the equations

8T[l/l/
=0.
0z,

(53.6)

difference of the velocities.
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Taking first =4, this gives by (53.5)

I(pu) | 9(pv)  O(pw) Op _
o T oy tos Tar (53.71)

which is the usual “equation of continuity” in
hydrodynamics.

For =1, we have

s | Opay | Opws _ (O(pu®)  d(puwv) = d(puw)  (pu)
8x+6y+8z<81:+8y+6z+6t
_ I(pu) | 9(pv)  O(pw) Op
__“( or "oy "o T
ou ou @+@
“or "oy TV, T ot

=2t (53.72)

by (s3.71). Du/Dt is the acceleration of the element
of the fluid.

This is the well-known equation of hydrody-
namics when no body-force is acting. (By adopt-
ing Galilean coordinates any field of force acting
on the mass of the fluid has been removed.)

Equations (53.71) and (s3.72) express directly the
conservation of mass and momentum, so that for
Galilean coordinates these principles are contained
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in
AT /9, = 0.

In fact orwr/ox, represents the rate of creation of
momentum and mass in unit volume. In classical
hydrodynamics momentum may be created in the
volume (i.e. may appear in the volume without
having crossed the boundary) by the action of a
body-force yx, pv, pz; and these terms are added on
the right-hand side of (s3.72). The creation of mass
is considered impossible. Accordingly the more
general equations of classical hydrodynamics are

oTH
oz,

= (pX, pY,pZ,0). (53.81)

In the special relativity theory mass is equivalent to
energy, and the body-forces by doing work on the
particles will also create mass, so that

oTH
oz,

= (pX,pY,pZ, pS), (53.82)

where ps is the work done by the forces px, ,v,
pz. 'These older formulae are likely to be only
approximate; and the exact formulae must be
deduced by extending the general relativity theory
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to the case when fields of force are present, viz. to
non-Galilean coordinates.

It is often convenient to use the mixed tensor 7
in place of 7. For Galilean coordinates we obtain
from (53.5)%

TV = —pre—pu®,  —pyo—pou,  —pe—pwu, pu (53.91)
TH TPey U, Py - pv?,  —py. —pwv, v
y Pz — PUW,  —Pyz — PUW,  —Po. — pw>,  pw
—pu -pv —pw , p

'The equation equivalent to (53.s2) is then
oTY
o0z,

= (=pX,—pY,—pZ, pS). (53.92)

That is to say a77/0x, is the rate of creation of neg-
ative momentum and of positive mass or energy
in unit volume.

54. New derivation of Einstein’s law of grav-
itation.

We have found that for Galilean coordinates

T
= 0. 4.1
oz, ~ 0 (54.1)

*BE.g. T} = ppoT°l =0 —T% +0+0.
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This is evidently a particular case of the tensor
equation
(T*), = 0. (54.21)

Or we may use the equivalent equation
(T%), =0, (54.22)

which results from lowering the suffix ». In
other words the divergence of the energy-tensor
vanishes.

Taking the view that energy, stress, and mo-
mentum belong to the world (space-time) and not
to some extraneous substance in the world, we
must identify the energy-tensor with some fun-
damental tensor, i.e. a tensor belonging to the
fundamental series derived from g,.,.

The fact that the divergence of 7 vanishes
points to an identification with (¢ - 1¢:¢) whose
divergence vanishes identically (§ 52). Accordingly
we set

GY — 194G — 8Ty, (54.3)

the factor s being introduced for later convenience
in coordinating the units.
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To pass from (s41) to (s4.21) involves an appeal
to the hypothetical Principle of Equivalence; but
by taking (54.3) as our fundamental equation of
gravitation (s4.21) becomes an identity requiring no
hypothetical assumption.

We thus arrive at the law of gravitation for
continuous matter (46.6) but with a different justi-
fication. Appeal is now made to a Principle of
Identification. Owur deductive theory starts with
the interval (introduced by the fundamental axiom
of § 1), from which the tensor g4,, is immediately
obtained. By pure mathematics we derive other
tensors G,,, Bu.,, and if necessary more compli-
cated tensors. These constitute our world-building
material; and the aim of the deductive theory is
to construct from this a world which functions in
the same way as the known physical world. If
we succeed, mass, momentum, stress, etc. must
be the vulgar names for certain analytical quanti-
ties in the deductive theory; and it is this stage
of naming the analytical tensors which is reached
in (54.3). If the theory provides a tensor ¢’ - i4.¢
which behaves in exactly the same way as the ten-



CH. IV NEW DERIVATION OF EINSTEIN'S LAW OF GRAVITATION 351

sor summarising the mass, momentum and stress
of matter is observed to behave, it is difficult to
see how anything more could be required of it*.

By means of (s3.91) and (54.3) the physical quanti-
ties p, u, v, wy pus, ..., p.. are identified in terms of
the fundamental tensors of space-time. There are
10 of these physical quantities and 10 different com-
ponents of ¢: - 14.G, so that the identification is just
sufficient. It will be noticed that this identification
gives a dynamical, not a kinematical definition of
the velocity of matter «, v, w; it is appropriate,
for example, to the case of a rotating homoge-
neous and continuous fly-wheel, in which there
is no velocity of matter in the kinematical sense,
although a dynamical velocity is indicated by its
gyrostatic propertiest. The connection with the
ordinary kinematical velocity, which determines

*For a complete theory it would be necessary to show that
matter as now defined has a tendency to aggregate into atoms
leaving large tracts of the world vacant. The relativity theory
has not yet succeeded in finding any clue to the phenomenon
of atomicity.

TSpace, Time and Gravitation, p. 194.
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the direction of the world-line of a particle in four
dimensions, is followed out in § 56.

Contracting (543) by setting v = 4, and remem-
bering that ¢ - 4, we have

G = 8aT, (54.4)
so that an equivalent form of (54.3) is

v o__ v 1 v
G, = =8n(T), — 59,.T). (54.5)

w2

When there is no material energy-tensor this gives
ar =0,

which is equivalent to Einsteins law ¢, = o for
empty space.

According to the new point of view Einstein’s
law of gravitation does not impose any limitation
on the basal structure of the world. ¢, may
vanish or it may not. If it vanishes we say that
space is empty; if it does not vanish we say that
momentum or energy is present; and our practical
test whether space is occupied or not—whether
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momentum and energy exist there—is the test
whether ¢,, exists or not*.

Moreover it is not an accident that it should
be this particular tensor which is capable of be-
ing recognised by us. It is because its diver-
gence vanishes—because it satisfies the law of
conservation—that it fulfils the primary condition
for being recognised as substantial. If we are to
surround ourselves with a perceptual world at all,
we must recognise as substance that which has
some element of permanence. We may not be able
to explain how the mind recognises as substantial
the world-tensor ¢ - 142G, but we can see that it
could not well recognise anything simpler. There
are no doubt minds which have not this predis-
position to regard as substantial the things which
are permanent; but we shut them up in lunatic

*We are dealing at present with mechanics only, so that
we can scarcely discuss the part played by electromagnetic
fields (light) in conveying to us the impression that space is
occupied by something. But it may be noticed that the crucia/
test is mechanical. A real image has the optical properties but
not the mechanical properties of a solid body.
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asylums.
'The invariant

T = g, T

_ dz, dr,
= Guv * PO ds ds

= po,

since

Guv dxy dz, = ds?.

'Thus

G = 87T = 8po. (54.6)
Einstein and de Sitter obtain a naturally curved
world by taking instead of (54.3)

G, — 390(G —2\) = 8T}

2 wo

(54.71)

where \ is a constant. Since the divergence of ¢
or of ¢ vanishes, the divergence of this more
general form will also vanish, and the laws of
conservation of mass and momentum are still
satisfied identically. Contracting (s4.71), we have

G — 4\ = 81T = 8mpy. (54.72)
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For empty space ¢ =4\, and 77 —0; and thus the
equation reduces to

v o__ v
G/L - )\g/m

or
Guu = )\g;tua

as in (37.4).

When account is taken of the stresses in con-
tinuous matter, or of the molecular motions in
discontinuous matter, the proper-density of the
matter requires rather careful definition. There
are at least three possible definitions which can be
justified; and we shall denote the corresponding
quantities by s, poo, povo-

(1) We define

po=T.

By reference to (546) it will be seen that this
represents the sum of the densities of the particles
with different motions, each particle being referred
to axes with respect to which it is itself at rest.

(2) We can sum the densities for the different
particles referring them all to axes which are at
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rest in the matter as a whole. The result is denoted

by po. Accordingly
poo = Tus referred to axes at rest in the matter as a wt

(3) If a perfect fluid is referred to axes with
respect to which it is at rest, the stresses p.., pyy, p--
are each equal to the hydrostatic pressure p. 'The
energy-tensor (s53.5) accordingly becomes

™ =p 0 0 0
0 p O 0
0 0 »p 0
0 0 0 P00

Writing poo = powe — », the pressure-terms give a ten-
sor —g»p. Accordingly we have have the tensor
equation applicable to any coordinate-system

dz, dx,
ds ds

T = £000 - gl“/p. (5481)

Thus if the energy-tensor is analysed into two
terms depending respectively on two invariants
specifying the state of the fluid, we must take
these invariants to be p and p.
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'The three quantities are related by
Po = Poo — 3P = pooo — 4p- (54.82)

If a fluid is incompressible, i.e. it the closeness
of packing of the particles is independent of »,
the condition must be that ,, is constant*. In-
compressibility is concerned with constancy not of
mass-density but of particle-density, so that no
account should be taken of increases of mass of
the particles due to motion relative to the centre
of mass of the matter as a whole.

For a liquid or solid the stress does not arise
entirely from molecular motions, but is due mainly
to direct repulsive forces between the molecules
held in proximity. These stresses must, of course,
be included in the energy-tensor (which would
otherwise not be conserved) just as the gaseous
pressure is included. It will be shown later that
if these repulsive forces are Maxwellian electrical
forces they contribute nothing to s, so that p, arises

*Many writers seem to have defined incompressibility by
the condition pgy = constant. This is surely a most misleading
definition.
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entirely from the molecules individually (probably
from the electrons individually) and is independent
of the circumstances of packing.

Since p, is the most useful of the three quantities
in theoretical investigations we shall in future call
it the proper-density (or invariant density) without
qualification.

55. 'The force.

By (51.2) the equation (17), =0 becomes
19

V=g 0z,

Let us choose coordinates so that /=5 =1; then

0
ox,

(T2V/=9) = {w, 0} T2, (55.1)

T = {uw,a}TY. (55.2)

In most applications the velocity of the matter
is extremely small compared with the velocity of
light, so that on the right of this equation 7} =,
is much larger than the other components of 7v.
As a first approximation we neglect the other
components, so that

0
o0z,

Ty = {pd, 4}p. (55.3)
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This will agree with classical mechanics (s3.92) if
CX, -Y, —Z={14,4}, {24,4}, {34,4}. (55.4)

The 3-index symbols can thus be interpreted
as components of the field of force. 'The three
quoted are the leading components which act
proportionately to the mass or energy; the others,
neglected in Newtonian mechanics, are evoked
by the momenta and stresses which form the
remaining components of the energy-tensor.

The limitation =g =1 is not essential if we take
account of the confusion of tensor-densities with
tensors referred to at the end of § 49. It will
be remembered that the force (x,v,z) occurs be-
cause we attribute to our mesh-system an abstract
Galilean geometry which is not the natural ge-
ometry. Either inadvertently or deliberately we
place ourselves in the position of an observer who
has mistaken his non-Galilean mesh-system for
rectangular coordinates and time. We therefore
mistake the unit mesh for the unit of natural
volume, and the density of the energy-tensor
reckoned per unit mesh is mistaken for the energy-
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tensor itself 72 reckoned per unit natural volume.
For this reason the conservation of the supposed
energy-tensor should be expressed analytically by
o7 /ox, = 0 and when a field of force intervenes
the equations of classical hydrodynamics should
be written

9
07% =T(-X,-Y,~Z,0), (55.51)

the supposed density , being really the “density-
density” py=g or Ti*.

*[t might seem preferable to avoid this confusion by im-
mediately identifying the energy, momentum and stress with
the components of T}, instead of adopting the roundabout
procedure of identifying them with 77 and noting that in
practice T}, is inadvertently substituted. The inconvenience is
that we do not always attribute abstract Galilean geometry to
our coordinate-system. For example, if polar coordinates are
used, there is no tendency to confuse the mesh dr df d¢ with
the natural volume 2 sin @ dr df d¢; in such a case it is much
more convenient to take 7} as the measure of the density of
energy, momentum and stress. It is when by our attitude of
mind we attribute abstract Galilean geometry to coordinates
whose natural geometry is not accurately Galilean, that the
automatic substitution of T}, for the quantity intended to
represent T)/ occurs.
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Since (55.1) is equivalent to

0
o0z,

T, = {w, a} Ty, (55.52)

the result (s5.4) follows irrespective of the value
of /3.

The alternative formula (s151) may be used to
calculate 1z,, giving

9 v _ 1qap 99ap
g T =BT T (55.6)
Retaining on the right only 5%, we have by com-

parison with (55.51)

10944 10944 1 0gay
2 9x’ 2 9y’ 2 0z

X, Y, Z= (55.7)

Hence, for a static coordinate-system

1 (0gaa 0944 0944 &
2\ Oz

Xdx+Ydy+Zdz=—— dz + dy +
; y 0z

= _%dg447
so that x, v, z are derivable from a potential

Q= —1gu +cCONSt.
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Choosing the constant so that 4., =1 when e =0
gaa =1 — 20 (55.8)

Special cases of this result will be found in (154)
and (38.8), @ being the potential of the centrifugal
force and of the Newtonian gravitational force
respectively.

Let us now briefly review the principal steps
in our new derivation of the laws of mechanics
and gravitation. We concentrate attention on the
world-tensor 1 defined by

v 1 v 1 v
71& = _g(Gu - §guG)'

The question arises how this tensor would be
recognised in nature—what names has the practi-
cal observer given to its components? We suppose
tentatively that when Galilean or natural coor-
dinates are used 7# is recognised as the amount
of mass or energy per unit volume, 7, 74, 74 as
the negative momentum per unit volume, and the
remaining components contain the stresses accord-
ing to the detailed specifications in (53.91). 'This can
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only be tested by examining whether the compo-
nents of 77 do actually obey the laws which mass,
momentum and stress are known by observation
to obey. For natural coordinates the empirical
laws are expressed by o77/02, = 0, which is satisfied
because our tensor from its definition has been
proved to satisty (1), =0 identically. When the co-
ordinates are not natural, the identity 77, =0 gives
the more general law

0 o 1 8ga/3

Y g _
B2 0x,

af
oz, T,

We attribute an abstract Galilean geometry to
these coordinates, and should accordingly identify
the components of 7 as before, just as though
the coordinates were natural; but owing to the
resulting confusion of unit mesh with unit natural
volume, the tensor-densities <2, =3, <, ¢ will now
be taken to represent the negative momentum and
energy per unit volume.

In accordance with the definition of force as
rate of change of momentum, the quantity on the
right will be recognised as the (negative) body-
force acting on unit volume, the three components
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of the force being given by n -1, 2, 3. When
the velocity of the matter is very small compared
with the velocity of light as in most ordinary
problems, we need only consider on the right the
component s or p; and the force is then due
to a field of acceleration of the usual type with
components —1dg./dz, —30gu/drs, —309u/dz;. 1he
potential o of the field of acceleration is thus
connected with g,, by the relation g,, = 1-20. When
this approximation is not sufficient there is no
simple field of acceleration; the acceleration of
the matter depends not only on its position but
also on its velocity and even on its state of stress.
Einstein’s law of gravitation for empty space G,, =0
follows at once from the above identification of 7.

56. Dynamics of a particle.

An isolated particle is a narrow tube in four
dimensions containing a non-zero energy-tensor
and surrounded by a region where the energy-
tensor is zero. The tube is the world-line or track
of the particle in space-time.
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'The momentum and mass of the particle are ob-
tained by integrating 14 over a three-dimensional
volume; if the result is written in the form

—Mu, —Mv, —Mw, M,

then u is the mass (relative to the coordinate
system), and (u,v,w) is the dynamical velocity of the
particle, i.e. the ratio of the momenta to the mass.

'The kinematical velocity of the particle is given
by the direction of the tube in four dimensions,
d$1 d$2 d$3

viz. ( > along the tube. For completely

d$4’3517d$4
continuous matter there is no division of the en-

ergy-tensor into tubes and the notion of kinemat-
ical velocity does not arise.

It does not seem to be possible to deduce
without special assumptions that the dynamical
velocity of a particle is equal to the kinematical
velocity. 'The law of conservation merely shows
that (v, Mo, Mw, M) is constant along the tube when
no field of force is acting; it does not show that
the direction of this vector is the direction of the
tube.
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I think there is no doubt that in nature the
dynamical and kinematical velocities are the same;
but the reason for this must be sought in the
symmetrical properties of the ultimate particles of
matter. If we assume as in § 38 that the particle
is the nucleus of a symmetrical field, the result
becomes obvious. A symmetrical particle which is
kinematically at rest cannot have any momentum
since there is no preferential direction in which
the momentum could point; in that case the
tube is along the /-axis, and so also is the vector
(0,0,0,M). It is not necessary to assume complete
spherical symmetry; three perpendicular planes of
symmetry would suffice. The ultimate particle may
for example have the symmetry of an anchor-ring.

It might perhaps be considered sufficient to
point out that a “particle” in practical dynamics
always consists of a large number of ultimate
particles or atoms, so that the symmetry may be
merely a consequence of haphazard averages. But
we shall find in § 80, that the same difficulty
occurs in understanding how an electrical field
affects the direction of the world-line of a charged
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particle, and the two problems seem to be precisely
analogous. In the electrical problem the motions
of the ultimate particles (electrons) have been
experimented on individually, and there has been
no opportunity of introducing the symmetry by
averaging. I think therefore that the symmetry
exists in each particle independently.

It seems necessary to suppose that it is an es-
sential condition for the existence of an actual
particle that it should be the nucleus of a symmer-
rical field, and its world-line must be so directed
and curved as to assure this symmetry. A satisfac-
tory explanation of this property will be reached
in § 66.

With this understanding we may use the equa-
tion (s3.1), involving kinematical velocity,

dz, dz,
ds ds’

™ = py (56.1)
in place of (s34), involving dynamical velocity.
From the identity 7~ — o, we have by (51.41)

0

52, LV=9) = ~{av, W} T V=g (56.2)
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Integrate this through a very small four-di-
mensional volume. The left-hand side can be
integrated once, giving

|:///T”1\/jgdaj2d$3dl‘4—|—///Tﬂ2\/jgdl_1dx3d$4+”'
_//// {av, p} T - /=g dr. (56.3)

Suppose that in this volume there is only a
single particle, so that the energy-tensor vanishes
everywhere except in a narrow tube. By (s6.1) the
quadruple integral becomes

dz, dz, dza d
—/// {av, u} ;s ;:9 pov—gdr = —{ap, L}i ﬂ mds, (56.4)

SINCE poy/—gdr = podW - ds = dm -ds, where dam 1is the
proper-mass.

On the left the triple integrals vanish except at
the two points where the world-line intersects the
boundary of the region. For convenience we draw
the boundary near these two points in the planes
dr, = 0, so that only the first of the four integrals
survives. The left-hand side of (56.3) becomes

U// pmﬁdl’“ @d@ dzs dzy)| (56.51)
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the bracket denoting the difference at the two ends
of the world-line.

'The geometrical volume of the oblique cylinder
cut oftf from the tube by sections du,drsde, at a
distance apart 4s measured along the tube is

d
& dsdxs drs dry.
ds

Multiplying by =5 we get the amount of
contained*, which is amds. Hence (s6.51) reduces to

dz,,
{m ", ] .
The difference at the two limits is

d (m dm") ds, (56.52)

ds
where ds is now the length of track between the
two limits as in (56.4).
By (s6.4) and (s6.52) the equation reduces to

d dz,\ dr, dxg

*The amount of density in a four-dimensional volume is, of
course, not the mass but a quantity of dimensions mass x time.
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Provided that m is constant this gives the equa-
tions of a geodesic (28.5), showing that the track of
an isolated particle is a geodesic. The constancy
of m can be proved formally as follows—

From (s6.6)

dr, d dz,, B 9 dz, dz, dzg
"I s ds (m ds > = —m’[af,v] ds ds ds
2 %y dzy dra dr,
Ozg ds ds ds

2 dgau dwa dwu

1

2™ U Tds ds
dg,, dx, dx

12 v ATy ATy

2™ 0 Tds ds

1
2

Adding the same equation with , and » inter-

changed

@ (A A A dey
Gpuw ds ds ds Guuw ds ds ds
dx, dr, dgu.

+m.ﬁ.mds ds =0

or

d dz,, dx,\

ds (gﬂv'mds‘m ds ) =0
By (22.1) this gives am?/ds = 0. Accordingly the invari-
ant mass of an isolated particle remains constant.
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'The present proof does not add very much to
the argument in § 17 that the particle follows a
geodesic because that is the only track which is
absolutely defined. Here we postulate symmetrical
properties for the particle (referred to proper-coor-
dinates); this has the effect that there is no means
of fixing a direction in which it could deviate from
a geodesic. For further enlightenment we must
wait until Chapter V.

On reconsideration I think that it is unnec-
essary to assume that a particle has symmetrical
properties in order to prove that the dynamical
velocity is equal to the kinematical velocity. Pos-
sibly some limitations must be imposed on the
structure of the particle, beyond the definition in
the text, viz. that a particle is a tube containing
non-vanishing energy-tensor surrounded by a re-
gion of zero energy-tensor; but these limitations
will be much less stringent than the assumption of
symmetry.

In natural coordinates as/0z, = 0, so that

oty 0w 0T 0%}

=0
8901 + 8332 * 61‘2 + 8$2 ’
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which may be compared with the equation in
elementary electrostatics

0E, OE, OE.

8x+8y+8z =0

'The latter equation leads by Gauss’s theorem to the
conception of unit tubes of force, the whole space
being divided into tubes running in the direction
of (£,,E, E.) and the flux of this vector across any
section of a tube remaining constant. Similarly
in four dimensions we shall have unit tubes of <
running in the direction of the vector and contain-
ing constant flux. Obviously such a tube cannot
stray into a region where % — o, since the constancy
of flux could not then be maintained. Hence the
unit tubes must run along inside the world-tube
bounding the particle, and for an infinitesimal
particle their direction cannot deviate appreciably
from the direction of the world-tube. But the unit
tubes have the direction of %, i.e. the dynami-
cal velocity, and the world-tube has the direction
of dr,/ds, i.e. the kinematical velocity.

I believe this argument is unassailable if we
assume that every portion of the particle has the
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same dynamical velocity, so that the unit tubes
run parallel to one another. In the more general
case complications are conceivable which require
fuller discussion*, e.g. the tubes may spiral round
inside the world-tube in a screw of narrow thread.
Or the world-curvature inside the particle may be
so large and variable that natural coordinates are
inadmissible. I think, however, that few if any
of these cases will prove to be genuine excep-
tions, when the dynamical velocity of the separate
elements has been averaged over the particle.

57. Equality of gravitational and inertial mass.
Gravitational waves.

The term gravitational mass can be used in
two senses; it may refer to (s) the response of a
particle to a gravitational field of force, or () to
its power of producing a gravitational field of
force. In the sense (o) its identity with inertial
mass is axiomatic in our theory, the separation

*The worst complications are avoided if we refuse to admit
negative mass. This prevents the tubes from doubling back.
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of the field of force from the inertial field being
dependent on our arbitrary choice of an abstract
geometry. We accordingly use the term exclusively
in the sense ), and we have shown in §§ 38, 39
that the constant of integration m represents the
gravitational mass. But in the present discussion
the ,, which occurs in the tensor 7, refers to
inertial mass defined by the conservation of energy
and momentum. The connection is made via
equation (54.3), where on the left the mass appears
in terms of g, ie. in terms of its power of
exerting (or being accompanied by) a gravitational
field; and on the right it appears in the energy-
tensor which comprises p, according to (s3.1). But it
will be remembered that the factor sr in (54.3) was
chosen arbitrarily, and this must now be justified*.
This coefhicient of proportionality corresponds to
the Newtonian constant of gravitation.

'The proportionality of gravitational and inertial
mass, and the “constant of gravitation” which con-

*[t has been justified in § 46, which has a close connec-
tion with the present paragraph; but the argument is now
proceeding in the reverse direction.
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nects them, are conceptions belonging to the ap-
proximate Newtonian scheme, and therefore pre-
suppose that the gravitational fields are so weak
that the equations can be treated as linear. For
more intense fields the Newtonian terminology be-
comes ambiguous, and it is idle to inquire whether
the constant of gravitation really remains constant
when the mass is enormously great. Accordingly
we here discuss only the limiting case of very weak

fields, and set

Guv = 6;w + h;w, (571)

where s,, represents Galilean values, and »,, will be
a small quantity of the first order whose square is
neglected. 'The derivatives of the 4,, will be small
quantities of the first order.

We have, correct to the first order,

G,uu = gUpB/_wap
_ 1909( (r“)zg,w + 82909 829/10 829VP )
-2

oz, 0z, Ox,0x, 0Ox,0r, JOx,0x, (572)

by (34.5).
We shall try to satisfy this by breaking it up



CH. IV EQUALITY OF GRAVITATIONAL AND INERTIAL MASS 376

into two equations

0%g
— 1 0p Ky
G;U/ 29 8(Eg 81'p (5731)
and
> g g g
— op op _ Ho _ vp
0=9 ((")x# 0x, Oz,0x, Oz, 81'0) ' (57.32)

The second equation becomes, correct to the
first order,

0z, 0z, Oz,0v, 0x,0z,
_ 0*h d°hg, s,
- Ox,0x, 0Ox,0x, Ox,0z,

- w( Phey Py Phy, )

where
W =7 hyg; b= h? = §7h,,

'This is satisfied if

o 1 on
Oy 2 Oz,
or
a @ 1sa
Fu i = 30uh) = 0. (57.4)

'The other equation (57.31) may be written

Ohu = 2G
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or
Uhy, = 2Gy,

showing that ¢z is a small quantity of the first
order. Hence
O(hg — $60h) = 2(G — 390G)

= 16772 (57.5)

This “equation of wave-motion” can be inte-
grated. Since we are dealing with small quantities
of the first order, the effect of the deviations
from Galilean geometry will only affect the results
to the second order; accordingly the well-known
solution* may be used, viz.
ho dgopo L [ (S07T) AV

27m 4m ! ’

(57.6)

the integral being taken over each element of
space-volume v’ at a coordinate distance » from
the point considered and at a time (-, i.e. at a
time such that waves propagated from «v’ with unit
velocity can reach the point at the time considered.

*Rayleigh, Theory of Sound, vol. 11, p. 104, equation (3).
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If we calculate from (57.6) the value of

0

0zq

(hy — 15%h),

the operator /0z, indicates a displacement in space
and time of the point considered, involving a
change of ». We may, however, keep » constant
on the right-hand side and displace to the same
extent the element «v' where (r2) is calculated.

Thus

o . N o ) dv’
But by (55.2) o72/02. is of the second order of small
quantities, so that to our approximation (574) is
satisfied.

'The result is that

Ohyy = 2G (57.7)

satisfies the gravitational equations correctly to the
first order, because both the equations into which
we have divided (57.2) then become satisfied. Of
course there may be other solutions of (57.2), which
do not satisty (57.31) and (57.32) separately.
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For a static field (57.7) reduces to

—V2hy = 2G,,
— —167(T\ — 25,,7) Dy (54.5).

Also for matter at rest 7 = 7, = » (the inertial
density) and the other components of 7,, vanish;
thus

V2(hi1, haa, has, has) = 87p(1,1,1,1).

For a single particle the solution of this equation
is well known to be

2
hlla h227h33) h/44 = _Tm
Hence by (57.1) the complete expression for the
interval is

2 2
i = (14 2) @y +ay + (1220 sy
r T

agreeing with (6.15). But m as here introduced is
the inertial mass and not merely a constant of
integration. We have shown in §§ 38, 39 that
the m in (6.15) is the gravitational mass reckoned
with constant of gravitation unity. Hence we see
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that inertial mass and gravitational mass are equal

and expressed in the same units, when the constant

of proportionality between the world-tensor and

the physical-tensor is chosen to be s as in (54.3).
In empty space (57.7) becomes

Ohy =0,

showing that the deviations of the gravitational
potentials are propagated as waves with unit ve-
locity, i.e. the velocity of light (§ 30). But it
must be remembered that this representation of
the propagation, though always permissible, is not
unique. In replacing (s7.2) by (57.31) and (57.32), we
introduce a restriction which amounts to choos-
ing a special coordinate-system. Other solutions
of (s7.2) are possible, corresponding to other coor-
dinate-systems. All the coordinate-systems differ
from Galilean coordinates by small quantities of
the first order. The potentials 4,, pertain not only
to the gravitational influence which has objective
reality, but also to the coordinate-system which
we select arbitrarily. We can “propagate” coordi-
nate-changes with the speed of thought, and these
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may be mixed up at will with the more dilatory
propagation discussed above. There does not seem
to be any way of distinguishing a physical and a
conventional part in the changes of the g,...

'The statement that in the relativity theory grav-
itational waves are propagated with the speed of
light has, I believe, been based entirely on the
foregoing investigation; but it will be seen that it
is only true in a very conventional sense. If coordi-
nates are chosen so as to satisfy a certain condition
which has no very clear geometrical importance,
the speed is that of light; if the coordinates are
slightly diftferent the speed is altogether different
from that of light. The result stands or falls by
the choice of coordinates and, so far as can be
judged, the coordinates here used were purposely
introduced in order to obtain the simplification
which results from representing the propagation
as occurring with the speed of light. The argument
thus follows a vicious circle.

Must we then conclude that the speed of prop-
agation of gravitation is necessarily a conventional
conception without absolute meaning? I think not.
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'The speed of gravitation is quite definite; only the
problem of determining it does not seem to have
yet been tackled correctly. To obtain a speed inde-
pendent of the coordinate-system chosen, we must
consider the propagation not of a world-tensor but
of a world-invariant. The simplest world-invariant
for this purpose is B, B, since ¢ and @,.¢» van-
ish in empty space. It is scarcely possible to treat
of the propagation of an isolated pulse of gravi-
tational influence, because there seems to be no
way of starting a sudden pulse without calling in
supernatural agencies which violate the equations
of mechanics. We may consider the regular train
of waves caused by the earth in its motion round
the sun. At a distant point in the ecliptic s, B
will vary with an annual periodicity; if it has a
maximum or minimum value at the instant when
the earth is seen to transit the sun, the inference
is that the wave of disturbance has travelled to us
at the same speed as the light. (It may perhaps be
objected that there is no proof that the disturbance
has been propagated from the earth; it might be
a stationary wave permanently located round the
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sun which is as much the cause as the effect of the
earth’s annual motion. I do not think the objection
is valid, but it requires examination.) There does
not seem to be any grave difficulty in treating this
problem; and it deserves investigation.

Further light has been obtained on the problem
whether the propagation of gravitation with the
fundamental velocity is more than a conventional
representation. We can show that the absolute dis-
turbance, measured independently of the particular
coordinate-system employed above, is propagated
with the velocity of light.

Let us make a small transformation of the
coordinate-system, viz.

o,/
xa = gp,xp, +€O¢7

where the ¢, are small quantities of the first order,
i.e. of the same order as n,,. Then by (23.22)

éa
O + h;w = (0ap + hap) (gﬁ + 3 )

ox),
855 65(1
= 6;“/ + hul/ + 6”587 + 5(x1/ oz’ ;
v "

correct to the first order. Hence the difference
between #,, and 5, is of the same order as the
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quantities themselves, and the law of propagation
of n,, will not apply even approximately to #,,.

Contrast this with the transformation of the
Riemann-Christoffel tensor, which is also of the

first order of small quantities

o, 9% 0¢ 23 0¢
=B (a4 ) (02 55 ) (58 ) (s + 5

p

=B

nropy

correct to the first order. Accordingly the law
of propagation of B,.,, will apply approximately
to B,,,- (We do not expect it to apply accurately
since the velocity of light is altered to the first
order by the transformation.)

Hence, whereas the propagation of »,, with the
velocity of light is the property of a particular
coordinate-system, the propagation of B,,,, with
this speed is general.

It is instructive to consider this problem in
detail for the case of plane gravitational waves. We
consider plane waves travelling with velocity v in
the direction z,. The coefficients »,, can be grouped
so as to correspond to three kinds of waves, which
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can exist independently of one another, viz.

transverse-transverse (1 1) waves, hao, ha, hss
longitudinal-transverse (LI') waves,  his.hos, hug, has
longitudinal-longitudinal (LL) waves. iy, huy, hag

The condition for empty space ¢, = o leads
to the following set of equations which must be
satisfied*:

haz + h3z =0, (57.91)

(1= V?)(ha2, has, haz) = 0, (57.92)
houw = Vhis:  has = Vs, (57.93)
hag — 2Vhiy + VZhi = 0. (57.94)

It follows from (57.92) that for 77 waves v =1, so that
these waves travel with the velocity of light. For
the other two classes of waves there is no reason
why v should be unity.

To understand the nature of rr and rr waves
which do not travel with the velocity of light

*Proc. Roy. Soc. 102 A. p. 268.
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We SUPPOSE hss, has, has = 0, SO that no 77 waves are
present. 'Then in consequence of conditions (57.93)
and (57.94) it is found that the Riemann-Christoffel
tensor vanishes altogether. Accordingly space-time
is flat, and no absolute disturbance is occurring.
rr and L waves are spurious; they are merely
sinuosities of our coordinate-system. They exist,
not in the world, but in our mental attitude,
and the only speed relevant to their propagation
is the “speed of thought.” 77 waves contribute
to the Riemann-Christoffel tensor and involve a
disturbance of the curvatures of space-time; we
have seen that these genuine waves have the speed
of light.

The special coordinate-system used above does
not necessarily eliminate all zz and 7 waves, but
it permits them only if they travel with the speed
of light. Spurious waves with this speed can take
advantage of their resemblance to the genuine
waves so as to slip through the censorship.

If we group the coeflicients of 77 waves in
the triad, hos + s, has — hss hos, €quation (57.91) shows
that the first of these is a type of wave which
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cannot exist in empty space. This is because
such a wave carries energy (real energy 77 not
the pseudo-energy ¢ carried by all 77 waves),
and space containing real energy is not to be
regarded as empty. Light-waves and other kinds
of electromagnetic waves belong to this class and
involve a propagation of hu + ha,.

A spinning rod sets up a train of gravitational
waves which travel away towards infinity. The in-
teresting question arises whether these waves will
carry away the energy of the rod so that it will
gradually come to rest of its own accord. The
analogous problem of spontaneous loss of energy
of rotation of a double star is of considerable as-
tronomical interest. 'The double star problem is
still unsolved; but the result for a spinning rod, or
for any rotating material bound together by cohe-
sive force, has been obtained by Einstein (Ber/in.
Sitzungsberichte, 1916, p. 688; 1918, p. 154). Ret-
erence may also be made to the author’s discussion
(Proc. Roy. Soc. 102 A, p. 268) which in principle
follows Einstein’s method and except for a factor 2
confirms his calculation.
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The result is that a rod of moment of inertia 7,
spinning with angular velocity v, loses energy at
the rate

2
%M%G (57.101)

per unit time, where & =1 for gravitational units
and r=27-10-% for C.G.S. units. The rate of decay
of the rotation is in all practical cases exceedingly
small.

The gravitational waves constitute a genuine
disturbance of space-time, but their energy, rep-
resented by the pseudo-tensor ¢, is regarded as
an analytical fiction as will be explained in § 59.
In Einstein’s original method the outward flow of
this pseudo-energy is calculated. Criticism was
directed against his investigation owing to the
employment of this fiction, but Einstein had no
difficulty in defending its validity. We may, how-
ever, look at the problem from another point of
view which ignores the fate of the lost energy,
and has a peculiar historic interest of its own. If
gravitation is not propagated instantaneously the
lag may cause tangential components of the force
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to occur, so that there will be a couple presumably
opposing the rotation. Laplace anticipated that
if gravitation were propagated with the speed of
light this disturbing couple would be large enough
to be appreciable in astronomical systems, and de-
duced from its absence that gravitation must have
a much greater speed. We now know that the
first order effect which Laplace expected is com-
pensated; but the loss of energy (s7.101) is actually
the residual Laplace effect of the third order of
small quantities, as determined by modern theory.
The rod comes to rest because, taking account of
the propagation from one end to the other, the
gravitational attraction of its particles on one an-
other is not exactly in the line of the rod and thus
creates a couple destroying the rotation—in short
the action and reaction are not equal and opposite.
The following new deduction of (s7.101), which is
somewhat shorter than the investigations above
quoted, brings out this aspect of the problem.
Setting =14 in (55.6)

8‘3:2 _ 1 a,@gaﬁ
or, 2t ot '
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Hence integrating over a three-dimensional region
enclosing the rod

% / Thav = 1 / gos 82‘25 dv, (57.102)
since the other terms on the left yield surface
integrals which vanish because the boundary does
not pass through matter. Equation (57.102) expresses
the rate of change of material energy 7: within the
region, i.e. in the rod which is the only material
system there.

In order to calculate the value of 94,5/t to be
substituted in (57.102) we use (57.7)

Ohap = 2Gap = —167(Tos — 30057T). (57.103)

'The solution of this wave-equation is studied fully

in § 74(d). We have by (74.71)

—

Here the square bracket is used to indicate appro-
priately antedated values; - is the distance from
the moving source 4v' at the appropriate moment

15— %%,BT/

av’. 57.104
0= Vv (57.104)
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to the point where 1., is to be calculated; and v, is
the component velocity of av’ towards this point.
Although we shall find it necessary to retain some-
what high powers of the velocity in the coefficients
of periodic terms, it is unnecessary to take account
of the FitzGerald factor s occurring as a constant
multiplier independent of the time. For the same
reason we can replace ¢ by 7¢¢ in (57.102). Squares
of n.; have been neglected.

Hence by (57.102) and (57.104) the rate of loss of
energy of the rod is

/ / {Taﬁa {1_11)] —5T % {GT_/UT)”dVdV’, (57.105)

since 75,5 = T to the adopted order of approxima-
tion. This integral exhibits the loss of energy as
arising from the mutual action of pairs of elements
of the rod, av and av'.

'The antedated values can be expanded in terms
of contemporaneous values of » and 77, by the
series*

T/B T’
. = " 57.106
L(lw)] sl aﬂ*z n; dtn L) (57.106)

*See (74.94).
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the quantities on the right noz being antedated.
Let the rod, spinning in the plane of uy, be
along the axis of » at the instant /- o, the origin
being at the centre. Let av then be at » and av’
at /. The varying distance of the source ¢v' from
the fixed point « instantaneously occupied by av, is

r =22+ 2”2 — 222’ coswt.

This must be used in (57.106) and ¢+ must be made
zero after the differentiations. In the present
application we can simplify (57.106) by noting that
if 7os is any component which does not vanish
when ¢ =0, 7, will be an even function of +, so that
derivatives of odd order disappear. Accordingly

for our application

o T, > 1d4
ot L(l —ﬁvr)} =T (;[3 - gw{Tég(Iz + 2% — 2za’ coswt)}
1 dG / 2 12 / 2 -
- EO%{TM(I + 2" — 2za’ coswt)} — ... (57.107)

'This must be substituted in (57.105) and the earliest
non-vanishing terms picked out. Assuming that
the rod is symmetrical (but not necessarily of
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uniform density) terms containing an odd power
of » or » will vanish on integration.

(a) Stress components, T, T2,

These are small compared with the momentum
and mass components and only the first term of
the expansion (s7.107) is required. Since » does
not appear, the double integration breaks up into
the product of two independent integrals. 'The
contribution to (57.105) is

—z/T“dv- dQ/Tl’ldV’ —2/T22dv- d2/T2’2dV’. (57.108)

dt? at?

If - is the line-density of the rod 722dv = sw?s?da,
so that

/ T22dV = Iw>.

'The component 7" represents the tension of the
rod and it is easily found by elementary dynamics
that its integral is —ru2.

For the moving source the corresponding inte-
grals are rw?cos2wt and —1w?cos2w0t. Hence (57.108) gives
the result 1672.5.
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v) Momentum components, 7>, 1+,

We have 1244v = owzdz, T3,dV’ = —o'wa'dz’ coswit.

The first term of (57107 now yields nothing,
owing to the odd powers of » and ». We take the
second term and obtain

72/ /awxd:c co'wa'da’ - L (2w)twa’ = — 18P
gives an equal contribution, making a total
of —2p20,

¢) Mass components, 7,1

T4V = odx, TjdV’' = odx'.

The third term of (57.107) is now required, giving
2//0dx-a’da; <135 (2w)° - 2222 = 321700,

The proper-density 7 and the coordinate-den-
sity 74 are practically the same, so that the term
in 7 cancels half the above amount, leaving 2.5
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Gathering together (a), () and (¢) the rate of loss
of energy is

(16 — 32 + 18P0’ = 21705,

agreeing with the result already stated.

If o is the order of magnitude of the linear di-
mensions of the system and v of the velocities, this
result is of order (a/a)%5. Since hy is of order (Mm/a)
the neglect of higher powers of ,, excludes from
the discussion terms of order (m/a)®v* and (a/a)*02.
'The former may possibly, and the latter will almost
certainly occur; the approximation accordingly as-
sumes that such terms are negligible in comparison
with (m/a2. There is no theoretical difficulty in
the existence of cohesive systems with small mass
and large velocities for which our approximation
is valid; but for gravitational systems, M/a is nec-
essarily of the same order of magnitude as .2, and
the approximation fails. Thus the decay of energy
(if any) of a double star cannot be investigated by
this method.

In a sense it is true that our success in solving
the problem for cohesive systems and our failure
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for gravitational systems is due to our comparative
ignorance of the nature of cohesive forces. Pre-
sumably cohesive forces are propagated with the
fundamental velocity and our assumption that the
tension in the spinning rod lies wholly in the line
of the rod may not be strictly true. On the other
hand the cohesion is between neighbouring par-
ticles and we must not think of it as propagated
from end to end of the rod in the way that the
gravitational attraction is propagated. For this rea-
son it seems plausible to neglect the propagation
of cohesion; but even if the effect is appreciable we
can scarcely suppose that the lag of the cohesive
forces taken alone would accelerate the rotation of
the rod, so that there seems no possibility of the
gravitational loss of energy found in this discus-
sion being neutralised. The problem of the double
star is more difficult; we should have to take ac-
count of the effect of the gravitational field in
disturbing the propagation of its own potentials
and we cannot be sure that even the sign of (57.101)
is correct.

'Ihe spontaneous loss of cnergy of a spinning
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rod is interesting in connection with the problem
of absolute rotation. We used often to hear the
suggestion that a moving star would gradually be
brought to rest owing to the back-pressure of its
own radiation. Obviously there must be a fallacy*
in the argument, since there is no “rest” for the
star to be brought to. Similarly it might be
thought that the conclusion that a spinning rod
spontaneously comes to rest must be fallacious.
But the relativity theory does not deny absolute
rotation; or at least if it does, its denial has not
the same plain meaning as its denial of absolute
translation.

58. Lagrangian form of the gravitational
equations.

'The Lagrangian function ¢ is defined by

L= g""V=g({na, BHvB, a} — {uv, a}{aB, B}), (58.1)

*The actual fallacy lay in the neglect of the gradual loss of
mass of the star which is radiating energy—a non-vanishing
torce d(Mw)/dt is not inconsistent with uniform velocity if M
varies.
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which forms part of the expression for e (=
9 G,,v=3). For any small variation of ¢

08 = {pa, B} 6(g"" V=g {vB, a}) + {vB,a} 6 (" V=g {na, })
—{ww,a} (9" V=g {aB, B}) — {aB, B} 6 (g"" V=g {pv,a})
— ({na, BH{wB, a} — {uv,a}{aB, B})d(g""V=g). (58.2)

The first term in (58.2)

ague 8956 895”
= 1 —g - g'vgee B
s {ua, B} 6 <\/TJ 99 (al'/j " B2, ~

93 (- )

3:65

4 s (va B ) by @

= —3{p,a}é (\/TQ %i::) . (58.31)

The second term reduces to the same.
'The third term becomes by (35.4)

[e%

ﬁ) . (58.32)

In the fourth term we have

2 (V)

v

9" =g {pv,a} =
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by (s141), since the divergence of ¢+ vanishes.
Hence with some alterations of dummy suffixes,
the fourth term becomes

(8,8} g5 6 (8;9(9“" ¢fg>> . (58.33)

Substituting these values in (58.2), we have

58 = [~} + 110815 (V) )
- [{:u'a’ B}{Vﬁv a} - {/Ll/, a}{aﬂa B}] 5(9””\/—79). (584)

We write

0
g/’”’ = g,ﬂ/,/— ; ggy = aT(guu'\/—g). (5845)

Then when ¢ is expressed as a function of the g
and g2, (584) gives

0L

ggiw = ~Lnes B, a} — (. a}{aB, 8], (58.51)
% = [Auv.a} +gi{vB,B}]. (58.52)

Comparing with (37.2) we have

0 0¢L 0L

= 9z, 097 Ogiv (58.6)
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This form resembles that of Lagrange’s equa-
tions in dynamics. Regarding ¢» as a coordinate q,
and z, as a four-dimensional time ¢, so that g~
is a velocity ¢, the gravitational equations G,, =0
correspond to the well-known form

a0 v
dt 0¢  dq

The two following formulae express important
properties of the Lagrangian function:

0L

1224 [

0 g = % (58.71)
, 0%

05 Hg = 2% (58.72)

The first is obvious from (ss1). To prove the
second, we have
0 = 50— (¢ \/=5) =V e+ "/ {acc)
@ 0z4 0z4 ’
= —=g[—{ea, u}g” — {ea,v}g" + {ae, e}g"" ]

by (30.1) since the covariant derivative of ¢+ van-
ishes.
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Hence by (58.52)

0L

ng

= \/jg[{,ul/, at{ea, utg” + {pv, a}{ea,v}g™® — {uv, a}{ae, eg"”
—{vB, BYg; {ea, u}g™ — {vB, BYgy {ea, vig™ + {vB, B}g;; {ae, e}g""],

which by change of dummy suffixes becomes

= V=9[{Bv, a}{pa, BYg"" + {uB, a}{va, BYg"" — {pw, a}{ap, B}g"”

—{vB, BHpa, a}g"” —{ap, BH{vu, a}g"™ +{vB, B}{pe, e}g"" ]
—2¢ by (58.1).

The equations (ss71) and (s872) show that the
Lagrangian function is a homogeneous function of

degree -1 in the “coordinates” and of degree 2 in
g“ o o » g
the “velocities.

We can derive a useful expression for &

& =g"G L
_ g 0 0L

s
Do D g" S by (58.6)

L0 (g P8 08, 08
0zq ogh’”

“ Ogh’ B Oghv
0 L 08
=519 v | —
0z, Ogh

(58.8)



CH. IV LAGRANGIAN FORM OF THE GRAVITATIONAL EQUATIONS 402

by (s8.71) and (58.72).

It will be seen that (s +¢) has the form of a
divergence (51.12); but the quantity of which it is
the d1vergence is not a vector-density, nor is ¢ a
scalar-density.

We shall derive another formula which will be

needed in § 59,
d(g"\/=5) = /=g(dg" + g" - Lg°F dges) DY (35.3).

Hence, using (35.2),
Guu d(glw V _g) =V _g(_G/W dguu + %Ggaﬁ dgozﬁ)

—(GH — %gwg)\/fg - dgu
= 87T dg,,. (58.91)

Accordingly

dg
s 2 — G0
T axa I a

(9 9e o
_GQ 8]}6 89;” ag””

0 0L 0 0L 0L
= pv — M. — g . .92
axﬁ (g(x 89;”) axﬁ goc agglj ga aguy (58 9 )

Now

oL oL g oL Oy

0ra  0g" Oza | 0L Ora
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and since )
Og5" g dgh
Or,  Oxa0xs  Oxp’

we see that (58.92) reduces to

dg d oe oL
uv ny o v
S e~ 0 (ga ag“”> Ora
d oL
= % { e P gas} (58.93)

59. Pseudo-energy-tensor of the gravitational

field.

The formal expression of the conservation of
the material energy and momentum is contained

in the equations
oz,
ox,

=0, (59.1)

or, if we name the coordinates , v, -, ¢,

Oc1 O n 05 0on_
833T“+8T+8T+8t¢“ 0.

Multiply by drdyd- and integrate through a given
three-dimensional region. The last term is

9 4
@// L, drdydz.
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'The other three terms yield surface-integrals over
the boundary of the region. Thus the law (s9.1)
states that the rate of change of f/f <4 dzdyd- is equal
to certain terms which describe something going
on at the boundary of the region. In other words,
changes of this integral cannot be created in the
interior of the region, but are always traceable to
transmission across the boundary. 'This is clearly
what is meant by conservation of the integral.

This equation (s9.1) applies only in the special
case when the coordinates are such that there is
no field of force. We have generalised it by sub-
stituting the corresponding tensor equation 7z, = 0;
but this is no longer a formal expression of the
conservation of anything. It is of interest to com-
pare the traditional method of generalising (59.1) in
which formal conservation is adhered to.

In classical mechanics the law of conserva-
tion is restored by recognising another form of
energy—potential energy—which is not included
in 57. 'This is supposed to be stored up in the
gravitational field; and similarly the momentum
and stress components may have their invisible
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complements in the gravitational field. We have
therefore to add to 1, a complementary expres-
sion ¢, denoting potential energy, momentum and
stress; and conservation is only asserted for the
sum. If

S =T+t (59.2)

then (59.1) is generalised in the form

o8
o0z,

0. (59.3)

Accordingly the difference between the rela-
tivity treatment and the classical treatment is as
follows. In both theories it is recognised that in
certain cases 17, is conserved, but that in the general
case this conservation breaks down. The relativity
theory treats the general case by discovering a more
exact formulation of what happens to 17 when it
is not strictly conserved, viz. 1, —=o. 'The classical
theory treats it by introducing a supplementary
energy, so that conservation is still maintained but
for a different quantity, viz. os/ax, = 0. 'The relativ-
ity treatment adheres to the physical quantity and
modifies the law; the classical treatment adheres
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to the law and modifies the physical quantity.
Of course, both methods should be expressible by
equivalent formulae; and we have in our previous
work spoken of 1, -0 as the law of conservation
of energy and momentum, because, although it
is not formally a law of conservation, it expresses
exactly the phenomena which classical mechanics
attributes to conservation.

The relativity treatment has enabled us to dis-
cover the exact equations, and we may now apply
these to obtain the corresponding exact expres-
sion for the quantity e, introduced in the classical
treatment.

It is clear that ¢ and therefore e; cannot be
tensor-densities, because ¢ vanishes when natu-
ral coordinates are used at a point, and would
therefore always vanish if it were a tensor-density.
We call ¢ the pseudo-tensor-density of potential
energy.

The explicit value of ¢, must be calculated from
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the condition (59.3), or

oy, 0%}
dr, O,
Jg
— _lgapdaf
2 e, by (55.6)
1 9 oL
—_ ag Y~ -
167 Oz, {g“ 693[3 guﬂ} by (58.93)
Hence
s OS

16mt, =g, £ — g

s (59.4)

'This may remind us of the Hamiltonian integral
of energy

L
—h=L-Y ¢ STI/
in general dynamics.
We can form a pseudo-scalar-density by con-
traction of (59.4)

"ot

—2¢ by (s.72).

l6mt=4L —g¢g

Thus we obtain the interesting comparison

with (54.4)
£ =8nrt }
(59.5)

6 =87%
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It should be understood that in this section we
have been occupied with the transition between
the old and new points of view. The quantity ¢
represents the potential energy of classical me-
chanics, but we do not ourselves recognise it as an
energy of any kind. It is not a tensor-density and
it can be made to vanish at any point by suitably
choosing the coordinates; we do not associate it
with any absolute feature of world-structure. In
fact finite values of ¢ can be produced in an empty
world containing no gravitating matter merely by
choice of coordinates. The tensor-density s com-
prises all the energy which we recognise; and we
call it gravitational or material energy indiscrimi-
nately according as it is expressed in terms of 4.,
Or pgy uy vy w.

This difference between the classical and the
relativity view of energy recalls the remarks on the
definition of physical quantities made in the Intro-
duction. As soon as the principle of conservation
of energy was grasped, the physicist practically
made it his definition of energy, so that energy
was that something which obeyed the law of con-
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servation. He followed the practice of the pure
mathematician, defining energy by the properties
he wished it to have, instead of describing how
he had measured it. This procedure has turned
out to be rather unlucky in the light of the new
developments. It is true that a quantity &/ can
be found which obeys the definition, but it is not
a tensor and is therefore not a direct measure of
an intrinsic condition of the world. Rather than
saddle ourselves with this quantity, which is not
now of primary interest, we go back to the more
primitive idea of wis viva—generalised, it is true,
by admitting heat or molecular vis viva but not
potential energy. We find that this is not in all
cases formally conserved, but it obeys the law that
its divergence vanishes; and from our new point of
view this is a simpler and more significant property
than strict conservation.

Integrating over an isolated material body we
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may set

///‘Iﬁdxdydz:—Mu, —Mv, —Mw, M,

///Gﬁdxdydz:fM/u’, —M"', —M'w', M,

where the latter expression includes the potential
energy and momentum of the body. Changes
of m'w, etc. can only occur by transfer from regions
outside the body by action passing through the
boundary; whereas changes of mu, etc. can be
produced by the mutual attractions of the particles
of the body. It is clear that the kinematical
velocity, or direction of the world-line of the
body, corresponds to w:v:w:1; the direction of
W o w1 can be varied at will by choosing
different coordinate-systems.

The components (,¢,¢) constitute a “Poynting
vector” representing the flow of potential energy
at any point. No physical significance can be
attached to the localisation of the energy flow,
but the zofa/ flux of this vector through a closed
surface in empty space will by (s0.3) give correctly
the rate of diminution of material and potential
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energy (34 +«) within the surface. If there is
within the surface a material system in periodic
motion, coordinates will naturally be chosen so
that ¢ undergoes no secular change; the flux will
then give the secular change of 1, i.e. the loss
of energy from the material system due to the
gravitational waves produced by it.

60. Action.

'The invariant integral

A= |[[[[ oov=gar (60.11)

represents the action of the matter in a four-
dimensional region.

By (49.42),
A:////podes

= / mds, (60.12)

where m is the invariant mass or energy.
Thus the action of a particle having energy m
for a proper-time ds is equal to mds, agreeing with
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the definition of action in ordinary mechanics as
energy multiplied by time. By (546) another form

1S
a= & [[ff ovg @2

so that (ignoring the numerical factor) ¢y=j, or s,
represents the action-density of the gravitational
field. Note that material action and gravitational
action are alternative aspects of the same thing;
they are not to be added together to give a total
action.

But in stating that the gravitational action and
the material action are necessarily the same thing,
we have to bear in mind a very peculiar conception
which is almost always associated with the term
Action. From its first introduction, action has
always been looked upon as something whose sole
raison détre is to be varied—and, moreover, varied
in such a way as to defy the laws of nature! We have
thus to remember that when a writer begins to
talk about action, he is probably going to consider
impossible conditions of the world. (That does not
mean that he is talking nonsense—he brings out
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the important features of the possible conditions
by comparing them with impossible conditions.)
'Thus we may not always disregard the difference
between material and gravitational action; it is
impossible that there should be any difference, but
then we are about to discuss impossibilities.

We have to bear in mind the two aspects of
action in this subject. It is primarily a physical
quantity having a definite numerical value, given
indifferently by (0.11) or (60.2), which is of special
importance because it is invariant. But it also
denotes a mathematical function of the variables;
the functional form, which is all important, will
differ according to which of the two expressions is
used. In particular we have to consider the partial
derivatives, and these will depend on the variables
in terms of which the action is expressed.

The Hamiltonian method of variation of an in-
tegral is of great importance in this subject; several
examples of it will be given presently. I think it
is unfortunate that this valuable method is nearly
always applied in the form of a principle of sta-
tionary action. By considering the variation of the
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integral for small variations of the g,,, or other
variables, we obtain a kind of generalised differen-
tial coefhcient which I will call the Hamiltonian
derivative. It may be possible to construct integrals
for which the Hamiltonian derivatives vanish, so
that the integral has the stationary property. But
just as in the ordinary differential calculus we are
not solely concerned with problems of maxima and
minima, and we take some interest in differential
coefhicients which do not vanish; so Hamiltonian
derivatives may be worthy of attention even when
they disappoint us by failing to vanish.

Let us consider the variation of the gravitational
action in a region, viz.

8mdA = 6/G\/—gd7'7

for arbitrary small variations g, which vanish at
and near* the boundary of the region. By (8.8)

0 0L
— - _ I w717
(5/G\/ gdr 5/£d7+6/awa (g aggl,)dr

*So that their first derivatives also vanish.
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Also since ¢ is a function of ¢ and g~

v, 08 o
/5£d7—/<8 W(‘S“ -l-aggu(Sgg)dT,

and, by partial integration of the second term,

oL 0 0L
= 124 puv
/(39“” Oxq Ogh” )6 ar +/3 ( )dT'

By (s86) the first integrand becomes -, 5, so
that we have

0 o
5/G\/jng:/G#,,5(g“”\/Tg)dT+/ e <gw5<aggy>)d7'.
(60.3)
The second term can be integrated immediately

giving a triple integral over the boundary of the
four-dimensional region; and it vanishes because
all variations vanish at the boundary by hypothesis.
Hence

5 / GV=gdr = / G (g™ /=g) dr (60.41)
=— /(GW - 39" G) bgu/—gdr (60.42)

by (s8.91).
I call the coefhicient —(cw—1gwva) the Hamiltonian
derivative of ¢ with respect to g, writing it
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symbolically

hG
hguw

— —(G"™ — 1" @) = 8xTH. (60.43)

We see from (60.42) that the action 4 is only
stationary when the energy-tensor 7+ vanishes,
that is to say in empty space. In fact action is only
stationary when it does not exist—and not always
then.

It would thus appear that the Principle of Sta-
tionary Action is in general untrue. Nevertheless
some modified statement of the principle appears
to have considerable significance. In the actual
world the space occupied by matter (electrons)
is extremely small compared with the empty re-
gions. 'Thus the Principle of Stationary Action,
although not universally true, expresses a very
general tendency—a tendency with exceptions*.
Our theory does not account for this atomicity

*[ do not regard electromagnetic fields as constituting an
exception, because they have not yet been taken into account
in our work. But the action of matter has been fully included,
so that the break-down of the principle as applied to matter
is a definite exception.
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of matter; and in the stationary variation of ac-
tion we seem to have an indication of a way of
approaching this difficult problem, although the
precise formulation of the law of atomicity is not
yet achieved. It is suspected that it may involve
an “action” which is capable only of discontinuous
variation.

It is not suggested that there is anything in-
correct in the principle of least action as used in
classical mechanics. The break-down occurs when
we attempt to generalise it for variations of the
state of the system beyond those hitherto con-
templated. Indeed it is obvious that the principle
must break down if pressed to extreme general-
ity. We may discriminate (o) possible states of
the world, ) states which although impossible
are contemplated, (¢ impossible states which are
not contemplated. Generalisation of the princi-
ple consists in transferring states from class (¢) to
class (); there must be some limit to this, for
otherwise we should find ourselves asserting that
the equation s4 # 0 is not merely not a possible
equation but also not even an impossible equation.
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61. A property of invariants.

Let x be any invariant function of the 4,, and
their derivatives up to any order, so that

/ Ky—gdr 1S an invariant.

The small variations s(xy=g) can be expressed
as a linear sum of terms involving 6., §(dg/dz.),
5(0%g, /dra dzg), etc. By the usual method of partial
integration employed in the calculus of variations,
these can all be reduced to terms in 4., together
with complete differentials.

Thus for variations which vanish at the bound-
ary of the region, we can write

5/K\/—gd7'= /P‘“’ 0Guw v/ —g dr, (61.1)

where the coefficients, here written pw, can be

evaluated when the analytical expression for x is

given. 'The complete differentials yield surface-

integrals over the boundary, so that they do not

contribute to the variations. In accordance with

our previous notation (60.43), we have
hK

PH = .
hguw

(61.2)
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We take p to be symmetrical in , and v, since
any antisymmetrical part would be meaningless
owing to the inner multiplication by s,,. Also
since 4dg,, is an arbitrary tensor p+ must be a
tensor.

Consider the case in which the 4g,, arise merely
from a transformation of coordinates.  Then
(61.1) Vanishes, not from any Stationary property,
but because of the invariance of x. 'The 4, are
not now arbitrary independent variations, so that
it does not follow that p# vanishes.

Comparing g.. and g,, +dg. by (23.22), since they
correspond to a transformation of coordinates,

O(xa +6za) O(zs + b2p)

9w = (9ap + 09ap)

Ox,, oz,
o) 2 G s 490 5 s
But
gijgﬁ% gﬁf -4 by (223).
Hence

0(0xp) 0(0zxy)
Guv = G V+6gtu+gz,/3 +go¢V .
. " ! ! ox, Oz,
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This is a comparison of the fundamental tensor
at z, + 6z, in the new coordinate-system with the
value at =, in the old system. There would be no
objection to using this value of sg,, provided that
we took account of the corresponding s@r). We
prefer, however, to keep ¢ fixed in the comparison,
and must compare the values at =, in both systems.
It is therefore necessary to subtract the change
520 - D9 /0za Of g, in the distance sz.; hence

0(6x 00z q 09,
—0G, = Gug E,) p) + gav E?a: )+ 8!;# 0T q. (61.3)
w «

Hence (61.1) becomes

5/K\/?gdr

0 0 09y
— / P*\/—g <9ua 87(5.%&) + Gva 87(6%‘) + 89; 6:ra> dr

j2

which, by partial integration,

/ {68 (Gua P/ —g) + (gmp v/=g) — P /=g %g,w} 52

—9 / 9 DU ag’” Sz dr
ZMV ¢ T

=2 /Pgu S1ov/—gdr by (51.51). (61.4)
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'This has to vanish for all arbitrary variations sz,—
deformations of the mesh-system—and accord-

ingly

(P), =0. (61.5)

We have thus demonstrated the general theorem-

The Hamiltonian derivative of any fundamental
invariant is a tensor whose divergence vanishes.

The theorem of § 52 is a particular case, since
r+ is the Hamiltonian derivative of ¢ by (60.43).

62. Alternative energy-tensors.

We have hitherto identified the energy-tensor
with ¢ - 1g2¢ mainly because the divergence of
the latter vanishes identically; but the theorem just
proved enables us to derive other fundamental ten-
sors whose divergence vanishes, so that alternative
identifications of the energy-tensor would seem
to be possible. The three simplest fundamental
invariants are

K=G, K =G,G" K'=B:,, B"". (62.1)

nuvo
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Hitherto we have taken nx/ng,, to be the energy-
tensor; but if sx’/hg, were substituted, the laws of
conservation of energy and momentum would be
satisfied, since the divergence vanishes. Similarly
K" /hg,, could be used.

The condition for empty space is given by the
vanishing of the energy-tensor. Hence for the
three possible hypotheses, the law of gravitation in
empty space is

hK hK' hK"
b9’ B9’ bgu

0 (62.2)

respectively.

It is easy to see that the last two tensors contain
fourth derivatives of the 4,.; so that if we can
lay it down as an essential condition that the law
of gravitation in empty space must be expressed
by differential equations of the second order, the
only possible energy-tensor is the one hitherto
accepted. For fourth-order equations the question
of the nature of the boundary conditions necessary
to supplement the differential equations would
become very difficult; but this does not seem to be
a conclusive reason for rejecting such equations.
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'The two alternative tensors are excessively com-
plicated expressions; but when applied to deter-
mine the field of an isolated particle, they become
not unmanageable. The field, being symmetrical,
must be of the general form (382), so that we
have only to determine the disposable coefhicients
» and » both of which must be functions of » only.
k' can be calculated in terms of A and » without
difficulty from equations (3s.6); but the expression
for k7 turns out to be rather simpler and I shall

deal with it. By the method of § 38, we find

R = K"\/=g = 2e2(M7) sinf{e (N2 4+ 1?)

+2r2e ANV — 22 — D)2+ 2(1— e M) r?). (62.3)

It is clear that the integral of & will be stationary
for variations from the symmetrical condition, so
that we need only consider variations of A and v
and their derivatives with respect to r. Thus the
gravitational equations " /vg,, = 0 are equivalent to

bK//_O hK"
bA b

=0. (62.4)
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Now for a variation of A

5/ﬁd7’ /(3ﬁ O+ a—ﬁ(”\/ OR 5)\">dT

N N
0RO (0R\ 9 [ 0R :
_/{8)\ - (ax) o (w)} sxdr +surface-integra

Hence our equations (624) take the Lagrangian

form
bE" 0RO OR" | 97 0R”
BA  ON  Or ON  OrZ 9N
bK// - 8.@” B ﬁaﬁ// +i28ﬁl/
by  Ov  Or oV  Or2ov
From these » and » are to be determined.
It can be shown that one exact solution is the

same as in § 38, viz.

=0
(62.5)

=0

et=¢e"=y=1-2m/r (62.6)

For taking the partial derivatives of (62.3), and
applying (62.6) after the differentiation,

OR 1—e m?
N —gﬁ”+47( Tf ) 9630+ ing — ( 72 T+ 16— )sine,
oR" TO+) o —2X\y/ 22X/l 102 1 i\ g
v = 2e2 sin0{2e AN +r2e (AN — 12 - L)'}
m? my\ .
= <247'3 - 87‘2> Sin 9,
aﬁ//

N’ = O’
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aﬁ// 2
= %ﬁ” = 247:—4 sin 6,

ov
OR" 1, N o 2
o 2e20) sin 0{2e 7N + dr?e P (A — % = ) (RN — 5)}
m2 m .
= <_407’3 + 872> 31r19,
oR"
EYZ ~2020) sin g 2rie P (INY — 12 - L)

2
= (16m2 - 8m) sin 6.
r r

On substituting these values, (62.5) is verified ex-
actly.

'The alternative law yx7/ng,, =0 is also satisfied by
the same solution. For

5(G G J=g) = G, 5(G"'/=g) + G" /=g 6G,,

hence the variation of x’,/=g vanishes wherever ¢,, =
0. Any field of gravitation agreeing with Einstein’s
law will satisfy the alternative law proposed, but
not usually wvice versa.

There are doubtless other symmetrical solutions
for the alternative laws of gravitation which are not
permitted by Einsteins law, since the differential
equations are now of the fourth order and involve
two extra boundary conditions either at the particle
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or at infinity. It may be asked, Why should these
be excluded in nature? We can only answer that
it may be for the same reason that negative mass,
doublets, electrons of other than standard mass,
or other theoretically possible singularities in the
world, do not occur; the ultimate particle satisfies
conditions which are at present unknown to us.

It would seem therefore that there are three
admissible laws of gravitation (e22). Each can
give precisely the same gravitational field of the
sun, and all astronomical phenomena are the same
whichever law is used. Small differences may
appear in the cross-terms due to two or more
attracting bodies; but as was shown in our discus-
sion of the lunar theory these are too small to be
detected by astronomical observation. Each law
gives precisely the same mechanical phenomena,
since the conservation of energy and momentum
is satisfied. When we ask which of the three is
the law of the actual world, I am not sure that
the question has any meaning. The subject is very
mystifying, and the following suggestions are put
forward very tentatively.
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'The energy-tensor has been regarded as giving
the definition of matter, since it comprises the
properties by which matter is described in physics.
Our three energy-tensors give us three alternative
material worlds; and the question is which of the
three are we looking at when we contemplate the
world around us; but if these three material worlds
are each doing the same thing (within the limits
of observational accuracy) it seems impossible to
decide whether we are observing one or other or
all three.

To put it another way, an observation involves
the relation of the 77 of our bodies to the 7 of
external objects, or alternatively of the respective
7 or 7. If these are the same relation it seems
meaningless to ask which of the three bodies
and corresponding worlds the relation is between.
After all it is the relation which is the reality. In
accepting 77 as the energy-tensor we are simply
choosing the simplest of three possible modes of
representing the observation.

One cannot but suspect that there is some iden-
tical relation between the Hamiltonian derivatives
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of the three fundamental invariants. If this rela-
tion were discovered it would perhaps clear up a
rather mysterious subject.

63. Gravitational flux from a particle.

Let us consider an empty region of the world,
and try to create in it one or more particles of
small mass sm by variations of the g4, within the
region. By (60.12) and (60.2),

5/G\/—g dr = 87726771 - ds, (63.1)

and by (6042) the left-hand side is zero because
the space is initially empty. In the actual world
particles for which sm-ds is negative do not exist;
hence it is impossible to create any particles in
an empty region, so long as we adhere to the
condition that the 4, and their first derivatives
must not be varied on the boundary. To permit
the creation of particles we must give up this
restriction and accordingly resurrect the term

Jovmmar= [ 2 (ws (L))o o
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which was discarded from (60.3. On performing
the first integration, (63.2) gives the flux of the
normal component of

g § (f;’) = TGS a) + g2 (B BY] (63.3)

across the three-dimensional surface of the region.
The close connection of this expression with the
value of ¢ in (59.6) should be noticed.

Take the region in the form of a long tube and
create a particle of gravitational mass sm along its
axis. The flux (63.3) is an invariant, since om-ds 1S
invariant, so we may choose the special coordinates
of § 38 for which the particle is at rest. Take the
tube to be of radius » and calculate the flux for
a length of tube @ —ds. The normal component
of (63.3) is given by o =1 and accordingly the flux is

/ /=g 6[~ {1} + g {vB, BY] db do dt

0
ox,

=dnr?ds- | —g" §{pv, 1} + g"* 6 < log \/—g>} , (63.4)
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which by (3s.5)

5(rsin?fe?)

= 4nrids {e_’\ S(3N) — 3 S(re ) —

— e o(Le” ,/)eka(i)}. (63.5)

Remembering that the variations involve only sm,
this reduces to

47r? ds (—57' — ié'y)

= 8w dm - ds. (63.6)

We have ignored the flux across the two ends of
the tube. It is clear that these will counterbalance
one another.

This verification of the general result (63.1) for
the case of a single particle gives another proof
of the identity of gravitational mass with inertial
mass.

We see then that a particle is attended by a
certain flux of the quantity (63.3) across all sur-
rounding surfaces. It is this flux which makes the
presence of a massive particle known to us, and
characterises it; in an observational sense the flux
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is the particle. So long as the space is empty
the flux is the same across all surrounding surfaces
however distant, the radius » of the tube having
disappeared in the result; so that in a sense the
Newtonian law of the inverse square has a direct
analogue in Einstein’s theory.

In general the flux is modified in passing
through a region containing other particles or
continuous matter, since the first term on the
right of (60.3) no longer vanishes. This may be
ascribed analytically to the non-linearity of the
field equations, or physically to the fact that the
outflowing influence can scarcely exert its action
on other matter without being modified in the
process. In our verification for the single particle
the flux due to sm was independent of the value
of m originally present; but this is an exceptional
case due to symmetrical conditions which cause
the integral of 754, to vanish although 7+ is not
zero. Usually the flux due to sm will be modified
if other matter is initially present.

For an isolated particle mds in any region is
stationary for variations of its track, this condition
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being equivalent to (s6.6). Hence for this kind of
variation the action sy mds in a region is stationary.
'The question arises how this is to be reconciled
with our previous result (§ 60) that the principle of
stationary action is untrue for regions containing
matter. The reason is this:—when we give arbitrary
variations to the 4,,, the matter in the tube will
in general cease to be describable as a particle,
because it has lost the symmetry of its field*. The
action therefore is only stationary for a special
kind of variation of 4, in the neighbourhood of
each particle which deforms the track without
destroying the symmetry of the particle; it is not
stationary for unlimited variations of the g,.,.

The fact that the variations which cause the
failure of the principle of stationary action—those
which violate the symmetry of the particles—
are impossible in the actual world is irrelevant.
Variations of the track of the particle are equally
impossible, since in the actual world a particle
cannot move in any other way than that in which

*[t will be remembered that in deriving (56.6) we had to
assume the symmetry of the particle.
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it does move. The whole point of the Principle
of Stationary Action is to show the relation of an
actual state of the world to slightly varied states
which cannot occur. Thus the break-down of the
principle cannot be excused. But we can see now
why it gives correct results in ordinary mechanics,
which takes the tracks of the particles as the sole
quantities to be varied, and disregards the more
general variations of the state of the world for
which the principle ceases to be true.

64. Retrospect.

We have developed the mathematical theory
of a continuum of four dimensions in which the
points are connected in pairs by an absolute rela-
tion called the interval. In order that this theory
may not be merely an exercise in pure mathemat-
ics, but may be applicable to the actual world, the
quantities appearing in the theory must at some
point be tied on to the things of experience. In
the earlier chapters this was done by identifying
the mathematical interval with a quantity which
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is the result of practical measurement with scales
and clocks. In the present chapter this point of
contact of theory and experience has passed into
the background, and attention has been focussed
on another opportunity of making the connection.
'The quantity ¢ -1g/¢ appearing in the theory is, on
account of its property of conservation, now iden-
tified with matter, or rather with the mechanical
abstraction of matter which comprises the mea-
surable properties of mass, momentum and stress
sufficing for all mechanical phenomena. By mak-
ing the connection between mathematical theory
and the actual world at this point, we obtain a
great lift forward.

Having now two points of contact with the
physical world, it should become possible to con-
struct a complete cycle of reasoning. 'There is
one chain of pure deduction passing from the
mathematical interval to the mathematical en-
ergy-tensor. 'The other chain binds the physical
manifestations of the energy-tensor and the inter-
val; it passes from matter as now defined by the
energy-tensor to the interval regarded as the re-
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sult of measurements made with this matter. The
discussion of this second chain still lies ahead of
us.

If actual matter had no other properties save
such as are implied in the functional form of
@y, - tgua, it would, I think, be impossible to make
measurements with it. The property which makes
it serviceable for measurement is discontinuity (not
necessarily in the strict sense, but discontinuity
from the macroscopic standpoint, i.e. atomicity).
So far our only attempt to employ the new-found
matter for measuring intervals has been in the
study of the dynamics of a particle in § 56; we
had there to assume that discrete particles exist
and further that they have necessarily a symmetry
of field; on this understanding we have completed
the cycle for one of our most important test-
bodies—the moving particle—the geodesic motion
of which is used, especially in astronomy, for
comparing intervals. But the theory of the use
of matter for the purpose of measuring intervals
will be taken up in a more general way at the
beginning of the next chapter, and it will be seen
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how profoundly the existence of the complete
cycle has determined that outlook on the world
which we express in our formulation of the laws
of mechanics.

It is a feature of our attitude towards nature
that we pay great regard to that which is per-
manent; and for the same reason the creation of
anything in the midst of a region is signalised
by us as more worthy of remark than its entry
in the orthodox manner through the boundary.
'Thus when we consider how an invariant depends
on the variables used to describe the world, we
attach more importance to changes which result
in creation than to changes which merely involve
transfer from elsewhere. It is perhaps for this rea-
son that the Hamiltonian derivative of an invariant
gives a quantity of greater significance for us than,
for example, the ordinary derivative. The Hamil-
tonian derivative has a creative quality, and thus
stands out in our minds as an active agent working
in the passive field of space-time. Unless this id-
iosyncrasy of our practical outlook is understood,
the Hamiltonian method with its casting away
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of boundary integrals appears somewhat artificial;
but it is actually the natural method of deriv-
ing physical quantities prominent in our survey
of the world, because it is guided by those prin-
ciples which have determined their prominence.
The particular form of the Hamiltonian method
known as Least Action, in which special search
is made for Hamiltonian derivatives which vanish,
does not appear at present to admit of any very
general application. In any case it seems better
adapted to give neat mathematical formulae than
to give physical insight; to grasp the equality or
identity of two physical quantities is simpler than
to ponder over the behaviour of the quantity which
is their difference—distinguished though it may be
by the important property of being incapable of
existing!

According to the views reached in this chapter
the law of gravitation ¢,, =0 is not to be regarded
as an expression for the natural texture of the
continuum, which can only be forcibly broken at
points where some extraneous agent (matter) is
inserted. 'The differentiation of occupied and un-
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occupied space arises from our particular outlook
on the continuum, which, as explained above, is
such that the Hamiltonian derivatives of the prin-
cipal invariant ¢ stand out as active agents against
the passive background. It is therefore the re-
gions in which these derivatives vanish which are
regarded by us as unoccupied; and the law ¢, =0
merely expresses the discrimination made by this
process.

Among the minor points discussed, we have
considered the speed of propagation of gravita-
tional influence. It is presumed that the speed is
that of light, but this does not appear to have been
established rigorously. ~Any absolute influence
must be measured by an invariant, particularly the
invariant B, w7, The propagation of this invariant
does not seem to have been investigated.

'The ordinary potential energy of a weight raised
to a height is not counted as energy in our theory
and does not appear in our energy-tensor. It
is found superfluous because the property of our
energy-tensor has been formulated as a general law
which from the absolute point of view is simpler
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than the formal law of conservation. The potential
energy and momentum ¢, needed if the formal law
of conservation is preserved is not a tensor, and
must be regarded as a mathematical fiction, not as
representing any significant condition of the world.
The pseudo-energy-tensor ¢ can be created and
destroyed at will by changes of coordinates; and
even in a world containing no attracting matter
(flat space-time) it does not necessarily vanish. It
is therefore impossible to regard it as of a nature

homogeneous with the proper energy-tensor.



CHAPTER YV
CURVATURE OF SPACE AND TIME

65. Curvature of a four-dimensional manifold.

N the general Riemannian geometry admitted in
I our theory the 4, may be any 10 functions of
the four coordinates z,..

A four-dimensional continuum obeying Rie-
mannian geometry can be represented graphically
as a surface of four dimensions drawn in a Eu-
clidean hyperspace of a sufhicient number of di-
mensions. Actually 10 dimensions are required,
corresponding to the number of the 4.. For
let (41,42, 5s.....910) be rectangular Euclidean coordi-
nates, and (s1,22,23,2,) parameters on the surface;
the equations of the surface will be of the form

y1 = filzr, @2, 23,24), ..., yio = fro(x1, 22, T3, Z4).
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For an interval on the surface, the Euclidean
geometry of the s gives

—ds® = dy} + dy3 + dy; + -+ + dyi,

(RN, (0f2)° 9f10\°\ ,
()« (32 (e oo

_|_{aflafl+.. +8f10 8f10}2d581dl‘2+"‘-

0x1 Oxy " Owy Oy

Equating the coefficients to the given functions ..,
we have 10 partial differential equations of the form

of1 O0fr O0f10 0f10

+ “ e frng s
Oz, Oz, Oz, Oz, Gpuw

to be satisfied by the 10 s. Clearly it would not be
possible to satisfy these equations with less than 10
f’s except in special cases.

When we use the phrase “curvature” in con-
nection with space-time, we always think of it
as embedded in this way in a Euclidean space
of higher dimensions. It is not suggested that
the higher space has any existence; the purpose
of the representation is to picture more vividly
the metrical properties of the world. It must be
remembered too that a great variety of four-di-
mensional surfaces in 10 dimensions will possess
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the same metric, i.e. be applicable to one another
by bending without stretching, and any one of
these can be chosen to represent the metric of
space-time. 'Thus a geometrical property of the
chosen representative surface need not necessar-
ily be a property belonging intrinsically to the
space-time continuum.

A four-dimensional surface free to twist about
in six additional dimensions has bewildering possi-
bilities. We consider first the simple case in which
the surface, or at least a small portion of it, can be
drawn in Euclidean space of five dimensions.

Take a point on the surface as origin. Let
(a1, 72,73, 24) De rectangular coordinates in the tangent
plane (four-dimensional) at the origin; and let the
fifth rectangular axis along the normal be :. Then
by Euclidean geometry

—ds® = da? + da3 + daj + dai + d2?, (65.1)
imaginary values of 4s corresponding as usual to

real distances in space. The four-dimensional sur-
tace will be specified by a single equation between
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the five coordinates, which we may take to be

= f(371796279€3,$4)-

If the origin is a regular point this can be expanded
in powers of the .’s. The deviation from the
tangent plane is of the second order compared
with distances parallel to the plane; consequently
> does not contain linear terms in the zs. 'The
expansion accordingly starts with a homogeneous
quadratic function, and the equation is of the form

22 = QT Ty, (65.2)

correct to the second order. For a fixed value of
the quadric (65.2) is called the indicatrix.

'The radius of curvature of any normal section
of the surface is found by the well-known method.
If + is the radius of the indicatrix in the direction
of the section (direction cosines i, I, I3, L), the
radius of curvature is

12 1

T2 auldy

P

In particular, if the axes are rotated so as to
coincide with the principal axes of the indicatrix,
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(65.2) becomes
22 = ky dai + ko dx3 + ks daj + ka da], (65.3)

and the principal radii of curvature of the surface
are the reciprocals of ki, ks, ks, ki
Differentiating (65.2)

dz = ayx, do,, dz? = Ty ATy - QorZTo AT, .
Hence, substituting in (65.1)
—ds® = dx% + dz% + dx% + d:L'?1 + (e orz,ts) dz, da,

for points in the four-dimensional continuum.

Accordingly
~Gur =9, + Applorlyle. (654)

Hence at the origin the 4., are Euclidean; their
first derivatives vanish; and their second derivatives
are given by

gur
0x,, 0z,

= _(a,uuaa'r + aaua;m’);

by (35.5).
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Calculating the Riemann-Christoffel tensor
by (345), since the first derivatives vanish,

B :1 99op gy _ Yo . 9Gvp
Hrop = 9 O0r, 0z, Ox,0x, Ox,0r, Or,0z,

= Quvagp — QpueAup- (6551)

Hence, remembering that the ¢~ have Euclidean
values —¢z,

G;w = gapBuuop = _a,uv(all + ag2 + asz + a44) + Guolyo- (65.52)
In particular

2 2 2 2
G11 = —a11(a11 + a22 + ags + aas) + aj; + ajy + ajs +ajy

= (G%Q — (111(122) + (0%3 — (111(133) + (aﬁ — (1116L44). (6553)
Also

G = QWGW =—G11 — Gy — G333 — Gy
= —2{(aly — ar1a22) + (af3 — ar1as3) + (a3, — an1au)
+ (a33 — aszass) + (a34 — assaus) + (a3s — assass)}.  (65.54)
When the principal axes are taken as in (65.3),

these results become

G11 = —ki(k2 + k3 + k4)
G22 = —kz(/ﬁ + k3 + k4); CtC.

(65.55)
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and
G = 2(k1ko + k1ks + k1ka + kaks + kaky + k3k4). (65.6)

'The invariant ¢ has thus a comparatively simple
interpretation in terms of the principal radii of cur-
vature. It is a generalisation of the well-known in-
variant for two-dimensional surfaces 1/p,p5, OF kiks.
But this interpretation is only possible in the
simple case of five dimensions. In general five
dimensions are not sufficient to represent even the
small portion of the surface near the origin; for if
we set G,, =0 in (65.55), we obtain k, =0, and hence
by (65.51) By, =0. Thus it is not possible to represent
a natural gravitational field (¢,, =0, B..., #0) in five
Euclidean dimensions.

In the more general case we continue to call the
invariant ¢ the Gaussian curvature although the
interpretation in terms of normal curvatures no
longer holds. It is convenient also to introduce a
quantity called the radius of spherical curvature, viz.
the radius of a hypersphere which has the same
Gaussian curvature as the surface considered.

*A hypersphere of four dimensions is by definition a
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Considering the geometry of the general case,
in 10 dimensions the normal is a six-dimensional
continuum in which we can take rectangular axes
41, 2, ..., %. 1he surface is then defined by six
equations which near the origin take the form

2z, = arpzx,  (r=1,2,...,6).
The radius of curvature of a normal section in the

direction 1, is then

t2 1

p= = :
2\/2% + Z% + -+ Zg \/(allwl,ull/)Q + -+ (aﬁu,l/l/tlu)Q

It is, however, of little profit to develop the prop-
erties of normal curvature, which depend on the
surface chosen to represent the metric of space-
time and are not intrinsic in the metric itself. We
therefore follow a difterent plan, introducing the
radius of spherical curvature which has invariant
properties.

four-dimensional surface drawn in five dimensions so that
(65.6) applies to it. Accordingly if its radius is R, we
have G = 12/R%. For three dimensions G = 6/R?; for two
dimensions G = 2/ R2.
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Reverting for the moment to five dimensions,
consider the three-dimensional space formed by
the section of our surface by «, —=o. Let G, be its
Gaussian curvature. ‘Then ¢, is formed from ¢
by dropping all terms containing the suffix 1—a
dimension which no longer enters into consider-
ation. Accordingly ¢ -, consists of those terms
of ¢ which contain the suffix 1; and by (65.53)
and (65.54) we have

3(G - Gay) = =G (65.71)
Introducing the value 4, = -1 at the origin
G11 — %gnG = %G(l). (65.72)

This result obtained for five dimensions is per-
fectly general. From the manner in which (65.4) was
obtained, it will be seen that each of the six :’s
will make contributions to ¢, which are simply
additive; we have merely to sum a4, 2,2, for the
six values of q,,4,. contributed by the six terms d4:2.
All the subsequent steps involve linear equations
and the work will hold for six :’s just as well as
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for one -. Hence (65.72) is true in the general case

when the representation requires 10 dimensions.
Now consider the invariant quadric

(G — 29, G) dz, dz,, = 3. (65.81)

Let p, be the radius of this quadric in the 2, direc-
tion, so that dx, = (p:,0,0,0) is a point on the quadric;
the equation gives

(G11 — 2911G)pi = 3,

so that by (65.72)

Ga) = (65.82)

3o

But for a hypersphere of radius r of zhree
dimensions (& =k, = ks = 1/R; k disappears) the
Gaussian curvature is ¢/52. Hence p, is the radius
of spherical curvature of the three-dimensional
section of the world perpendicular to the axis «,.

Now the quadric (65.81) is invariant, so that the
axis = may be taken in any arbitrary direction.
Accordingly we see that—

The radius of the quadric (G, = 19,,G)duv, dz, = 3 in
any direction is equal to the radius of spherical curva-
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ture of the corresponding three-dimensional section of
the world.
We call this quadric the quadric of curvature.

66. Interpretation of Einstein’s law of gravi-
tation.

We take the later form of Einstein’s law (37.4)
G,ul/ == )\g;w, (661)

in empty space, A being a universal constant at
present unknown but so small as not to upset
the agreement with observation established for the
original form ¢,, = 0. We at once obtain ¢ =4\, and
hence

Guv — 59uwG = —Aguu-

Substituting in (65.81) the quadric of curvature be-
comes
—Aguw dxy dzy, = 3,
or
—ds?® = 3/\. (66.2)
That is to say, the quadric of curvature is a sphere
of radius /37, and the radius of curvature in every
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direction* and at every point in empty space has
the constant length /3/x.

Conversely if the directed radius of curvature in
empty space is homogeneous and isotropic Ein-
stein’s law will hold.

The statement that the radius of curvature is a
constant length requires more consideration before
its full significance is appreciated. Length is not
absolute, and the result can only mean constant
relative to the material standards of length used in
all our measurements and in particular in those
measurements which verify @, = Ag... In order to
make a direct comparison the material unit must
be conveyed to the place and pointed in the di-
rection of the length to be measured. It is true
that we often use indirect methods avoiding ac-
tual transfer or orientation; but the justification of
these indirect methods is that they give the same

*For brevity I use the phrase “radius of curvature in a
direction” to mean the radius of spherical curvature of the
three-dimensional section of the world at right angles to that
direction. There is no other radius of curvature associated with
a direction likely to be confused with it.
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result as a direct comparison, and their validity
depends on the truth of the fundamental laws of
nature. We are here discussing the most funda-
mental of these laws, and to admit the validity of
the indirect methods of comparison at this stage
would land us in a vicious circle. Accordingly the
precise statement of our result is that the radius
of curvature at any point and in any direction is
in constant proportion to the length of a speci-
fied material unit placed at the same point and
orientated in the same direction.

'This becomes more illuminating if we invert the
comparison—

The length of a specified material structure bears a
constant ratio to the radius of curvature of the world
at the place and in the direction in which it lies. (66.3)

'The law no longer appears to have any reference
to the constitution of an empty continuum. It is
a law of material structure showing what dimen-
sions a specified collection of molecules must take
up in order to adjust itself to equilibrium with
surrounding conditions of the world.
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'The possibility of the existence of an electron
in space is a remarkable phenomenon which we
do not yet understand. The details of its structure
must be determined by some unknown set of equa-
tions, which apparently admit of only two discrete
solutions, the one giving a negative electron and
the other a positive electron or proton. If we solve
these equations to find the radius of the electron
in any direction, the result must necessarily take
the form

radius of electron in given direction -
numerical constant x some function of
the conditions in the space into which
the electron was inserted.

And since the quantity on the left is a directed
length, the quantity on the right must be a di-
rected length. We have just found one directed
length characteristic of the empty space in which
the electron was introduced, viz. the radius of
spherical curvature of a corresponding section of
the world. Presumably by going to third or fourth

derivatives of the ¢, other independent directed
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lengths could be constructed; but that seems to
involve an unlikely complication. There is strong
ground then for anticipating that the solution of
the unknown equations will be

radius of electron in any direction - nu-
merical constant x radius of curvature of
space-time in that direction.

This leads at once to the law (66.3).

As with the electron, so with the atom and
aggregations of atoms forming the practical units
of material structure. Thus we see that Einstein’s
law of gravitation is the almost inevitable outcome
of the use of material measuring-appliances for
surveying the world, whatever may be the actual
laws under which material structures are adjusted
in equilibrium with the empty space around them.

Imagine first a world in which the curvature,
referred to some chosen (non-material) standard
of measurement, was not isotropic. An electron
inserted in this would need to have the same
anisotropy in order that it might obey the same
detailed conditions of equilibrium as a symmet-
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rical electron in an isotropic world. 'The same
anisotropy persists in any material structure formed
of these electrons. Finally when we measure the
world, i.e. make comparisons with material struc-
tures, the anisotropy occurs on both sides of the
comparison and is eliminated. Einstein’s law of
gravitation expresses the result of this elimination.
'The symmetry and homogeneity expressed by Ein-
stein’s law is not a property of the external world,
but a property of the operation of measurement.

From this point of view it is inevitable that the
constant A cannot be zero; so that empty space
has a finite radius of curvature relative to familiar
standards. An electron could never decide how
large it ought to be unless there existed some
length independent of itself for it to compare itself
with.

It will be noticed that our rectangular coordi-
nates (e,,zsx5.24) in this and the previous section
approximate to Euclidean, not Galilean, coordi-
nates. Consequently z, is imaginary time, and
Gu 1s not in any real direction in the world. There
is no radius of curvature in a real timelike direc-
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tion. This does not mean that our discussion is
limited to three dimensions; it includes all direc-
tions in the four-dimensional world outside the
light-cone, and applies to the space-dimensions of
material structures moving with any speed up to
the speed of light. The real quadric of curvature
terminates at the light-cone, and the mathematical
continuation of it lies not inside the cone but in
directions of imaginary time which do not concern
us.

By consideration of extension in timelike di-
rections we obtain a confirmation of these views,
which is, I think, not entirely fantastic. We have
said that an electron would not know how large
it ought to be unless there existed independent
lengths in space for it to measure itself against.
Similarly it would not know how long it ought to
exist unless there existed a length in time for it
to measure itself against. But there is no radius
of curvature in a timelike direction; so the elec-
tron does not know how long it ought to exist.
Therefore it just goes on existing indefinitely.

The alternative laws of gravitation discussed in
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§ 62 would be obtained if the radius of the unit
of material structure adjusted itself as a definite
fraction not of the radius of curvature, but of
other directed lengths (of a more complex origin)
characteristic of empty space-time.

In § 56 it was necessary to postulate that the
gravitational field due to an ultimate particle of
matter has symmetrical properties. This has now
been justified. We have introduced a new and far-
reaching principle into the relativity theory, viz.
that symmetry itself can only be relative; and the
particle, which so far as mechanics is concerned
is to be identified with its gravitational field, is
the standard of symmetry. We reach the same
result if we attempt to define symmetry by the
propagation of light, so that the cone ds =0 is taken
as the standard of symmetry. It is clear that if the
locus ds =0 has complete symmetry about an axis
(taken as the axis of +) ds* must be expressible by
the formula (38.12).

'The double-linkage of field and matter, matter
and field, will now be realised. Matter is derived
from the fundamental tensor 4. by the expres-
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sion @7 - lgvG; but it is matter so derived which
is initially used to measure the fundamental ten-
sor g,. We have in this section considered one
simple consequence of this cycle—the law of grav-
itation. It needs a broader analysis to follow out

the full consequences, and this will be attempted

in Chapter VII, Part II.

67. Cylindrical and spherical space-time.

According to the foregoing section A does not
vanish, and there is a small but finite curvature at
every point of space and time. This suggests the
consideration of the shape and size of the world
as a whole.

Two forms of the world have been suggested—

(1) Einstein’s cylindrical world. Here the space-
dimensions correspond to a sphere, but the time-
dimension is uncurved.

(2) De Sitter’s spherical world. Here all dimen-
sions are spherical; but since it is imaginary time
which is homogeneous with the space-coordinates,
sections containing real time become hyperbolas
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instead of circles.

We must describe these two forms analytically.
A point on the surface of a sphere of radius r is
described by two angular variables ¢, ¢, such that

—ds® = R*(d6? + sin? 0 d¢?).

Extending this to three dimensions, we have three
angular variables such that

—ds® = Rz{d)(2 + sin” x (d6? + sin® 0 d(bQ)}. (67.11)

Accordingly in Einstein’s form the interval is
given by

ds®> = —R*dx* — R?sin? x (d6? + sin® 0 d¢?) + dt*. (67.12)

Of course this form applies only to a survey of
the world on the grand scale. Trifling irregularities
due to the aggregation of matter into stars and
stellar systems are treated as local deviations which
can be disregarded.

Proceeding from the origin in any direction,
Ry is the distance determined by measurement
with rigid scales. But the measured area of a
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sphere of radius ry is not 4rr?* but 4rr?sin?y. There
is not so much elbow-room in distant parts as
Euclid supposed. We reach a “greatest sphere”
at the distance irr; proceeding further, successive
spheres contract and decrease to a single point at a
distance ~r—the greatest distance which can exist.

'The whole volume of space (determined by rigid

scales) is finite and equal to
/ 4mR?sin y - Rdy = 2m*R®. (67.2)
0

Although the volume of space is finite, there is
no boundary; nor is there any centre of spherical
space. Every point stands in the same relation to
the rest of space as every other point.

To obtain de Sitter’s form, we generalise (67.11)
to four dimensions (i.e. a spherical four-dimen-
sional surface drawn in Euclidean space of five
dimensions). We have four angular variables w, ¢,
0, , and

—ds® = R*[dw?® + sin® w{d(® + sin® (d6 + sin® 6 dp*) }]. (67.31)

In order to obtain a coordinate-system whose
physical interpretation is more easily recognisable,
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we make the transformation

COsSw = €os Y cos it,

cot ( = cot y sinit,
which gives
sin x = sin( sinw
(67.32)

tan it = cos  tan w.

Working out the results of this substitution, we
obtain

ds* = —R*dx?* — R*sin® x (d6? + sin® 0 d¢?) + R? cos® x - dt*.  (67.33)

So far as space (v,6,¢) is concerned, this agrees
with Einstein’s form (67.12); but the variable ¢, which
will be regarded as the “time™ in this world, has
different properties. For a clock at rest (x, 9,
¢ = const.) we have

ds = Rcos x dt, (67.4)

so that the “time” of any cycle is proportional
to secy. 1he clock-beats become longer and longer

*The velocity of light at the origin is now R. In the usual
units the time would be Rt.
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as we recede from the origin; in particular the vi-
brations of an atom become slower. Moreover we
can detect by practical measurement this slowing
down of atomic vibrations, because it is preserved
in the transmission of the light to us. The coor-
dinates (67.33) form a statical system, the velocity
of light being independent of # hence the light-
pulses are all delayed in transmission by the same
“time” and reach us at the same intervals of ¢ as
they were emitted. Spectral lines emanating from
distant sources at rest should consequently appear
displaced towards the red.

At the “horizon” x = ir, any finite value of ds
corresponds to an infinite 4. It takes an infinite
“time” for anything to happen. All the processes
of nature have come to a standstill so far as the
observer at the origin can have evidence of them.

But we must recall that by the symmetry of
the original formula (67.31), any point of space
and time could be chosen as origin with similar
results. 'Thus there can be no actual difference
in the natural phenomena at the horizon and at
the origin. The observer on the horizon does not
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perceive the stoppage—in fact he has a horizon of
his own at a distance i=r where things appear to
him to have come to a standstill.

Let us send a ray of light from the origin to
the horizon and back again. (We take the dou-
ble journey because the time-lapse can then be
recorded by a single clock at the origin; the phys-
ical significance of the time for a single journey
is less obvious.) Setting ds =0, the velocity of the

light is given by
0= —R*dx* + R® cos® y dt?,

so that
dt = +sec x dy,

whence
t = +logtan(m + £ x). (67.5)

This must be taken between the limits x =0 and Lr;
and again with reversed sign between the limits i«
and o. 'The result is infinite, and the journey can
never be completed.

De Sitter accordingly dismisses the paradox of
the arrest of time at the horizon with the remark
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that it only affects events which happen before the
beginning or after the end of eternity. But we
shall discuss this in greater detail in § 70.

68. Elliptical space.

The equation (67.11) for spherical space, which
appears in both de Sitter’s and Einstein’s form of
the interval, can also be construed as representing
a slightly modified kind of space called “elliptical
space.” From the modern standpoint the name
is rather unfortunate, and does not in any way
suggest its actual nature. We can approach the
problem of elliptical space in the following way—

Suppose that in spherical space the physical
processes going on at every point are exactly the
same as those going on at the antipodal point, so
that one half of the world is an exact replica of the
other half. Let apap be four points 9 apart on a
great circle. Let us proceed from »/, via 4, to B;
on continuing the journey along B4’ it is impos-
sible to tell that we are not repeating the journey
p'A already performed. We should be tempted to
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think that the arc 4 was in fact the immediate
continuation of 45, B and B being the same point
and only represented as wide apart through some
fault in our projective representation—just as in
a Mercator Chart we see the same Behring Sea
represented at both edges of the map. We may
leave to the metaphysicist the question whether
two objects can be exactly alike, both intrinsi-
cally and in relation to all surroundings, and yet
differ in identity; physics has no conception of
what is meant by this mysterious differentiation
of identity; and in the case supposed, physics
would unhesitatingly declare that the observer was
re-exploring the same hemisphere.

'Thus the spherical world in the case considered
does not consist of two similar halves, but of a sin-
gle hemisphere imagined to be repeated twice over
for convenience of projective representation. 'The
differential geometry is the same as for a sphere,
as given by (e67.11), but the connectivity is differ-
ent; just as a plane and a cylinder have the same
differential geometry but different connectivity.
At the limiting circle of any hemisphere there is a
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cross-connection of opposite ends of the diameters
which it is impossible to represent graphically; but
that is, of course, no reason against the existence
of the cross-connection.

This hemisphere which returns on itself by
cross-connections is the type of elliptical space. In
what follows we shall not need to give separate
consideration to elliptical space. It is sufficient
to bear in mind that in adopting spherical space
we may be representing the physical world in
duplicate; for ex