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EDITOR’S FOREWORD

IS it right and proper today, in the year 2022 A.D., standing
as we are on the brink of the New Epoch of brotherhood of

all mankind, to publish a monograph on Special and General
Relativity, written by a physicist, who flourished nearly a
century ago? It is indeed. Sir Arthur Stanley Eddington
(1882–1944) was not “merely” the father of modern stellar
astrophysics, who started with the scraps of uncoordinated
patchwork of guesses about the internal constitution of stars,
which only marginally differed from the idle speculations
of antiquity, and proceeded to build the entire body of
observationally verified knowledge, which serves as the basis
of all stellar astronomy today. Neither was he “merely”
a lone genius physicist, who for the first time in history
predicted theoretically the value of the mass ratio of protons
and electrons, as well as that of the fine structure constant—a
feat standing unrivalled to this day. No, he was, first and
foremost, the greatest God-knowing physicist who ever lived
on this planet.

Theoretical physics of the XX century, alas, was not
immune to the dangers besetting the economico-political
structure of the world at the time. As is usually com-
mon in the poisoned atmosphere permeated by the “spirit
of democracy”, which, as we know, fosters the election of
base and ignorant rulers and glorifies mediocrity by placing
the universal suffrage in the hands of uneducated and in-
dolent majorities, the science was forced to pursue the false
materialistic goals of a few mediocre (relatively speaking)
men like Niels Bohr and Max Born, forgetting for a season
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the direction of the brilliant contributions made by the real
lovers of truth—men like Arthur Eddington, James Jeans,
Louis de Broglie in theoretical physics, Robert Millikan in
experimental physics, William Sadler in medicine and psy-
chology and others. And so, through its neglect of unbiased
approach to the truth, theoretical physics has wallowed in the
mire of purely materialistic attempts of the “interpretation of
Quantum Mechanics”, which inevitably led to the greatest
crisis since the days of Max Planck in 1900. This crisis is in-
dicated by the fact that since 1930s there have been no major
discoveries in the field of theoretical physics—the “progress”
usually boasted of consisting almost entirely of technological
advances. No new substantial knowledge of the material
reality was attained since the advent of General Relativity
(1915) and Quantum Mechanics (1927) and because of this
we now have no choice but to go back to those glorious days
of the true discoveries and peruse the words uttered by the
truth discoverers.

The chief value today of the work of men like Eddington
and Jeans is revealed by the recently established (see [1]
and [2]) fact, that these people happened to be the pivotal
individuals in the synthesis of all humanly accessible factual
knowledge as well as the highest spiritual strivings,— the
synthesis, which culminated in the publication of the Fifth
Epochal Revelation, known also as The Urantia Papers [2].
The very thoughts of those men, as well as their printed
words, were used in compiling and presentation of this great
Revelation, which undoubtedly will for a long time serve
universally as the common basis of elementary education for
all peoples and nations destined to survive into the New
Epoch. It devolves upon them to build the new civilisation
on the ruins made by those who arrived at an impasse, which
is an inexorable outcome of evolutionary processes, whenever
beauty is substituted with ugliness, truth with falsehood and
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goodness with evil and selfish deceit.

The monumental 1928–1939 trilogy on the philosophy of
science ([4], [5], [6]), written by A.S Eddington, if re-issued
today, might be bound in a single volume and furnished with
a not inappropriate title “Becoming a Spirit”. Having studied
practically all of Eddington’s published books and papers, as
well as most books written about him, I was almost tempted
to write such a book myself. However, being admonished
by Ecclesiastes 12:12 (“of making many books there is no end”)
I chose to exercise the Editor’s prerogative and attempted
to make a clarification and qualification of the essence of
Eddington’s fundamental research in this Foreword.

A flesh and bones mortal, speaking authoritatively on the
spirit state of being or how to become one, will no doubt
attract at least the following two kinds of caustic criticisms.

The first critic is an unbelieving and unfriendly type, who,
on the first hearing of the word “spirit” can think of nothing
else but the desire to touch you and see if you are made of
flesh and bones. And upon such “empirical confirmation”
he will gleefully declare you an impostor, who violated the,
in his opinion immutable, authority of the Scriptures as
expressed in Luke 24:35 (“… for a spirit hath not flesh and
bones”). He is quick to ridicule with disdain the very notion
of a possibility for a mortal to assert anything useful on the
“matters spiritual” and no matter how hard he tries, every
possible formulation of his objections will betray how alien
are the things of the spirit to the wretched and doomed mind
subservient to matter. To such a critic I have nothing to
answer, except—“come and see!”

The second type is a learned and cautious scholar, who
first studies the matter diligently, albeit not without deeply
ingrained preconceptions of the scope and utility of the
“scientific method”, and then proceeds to make the following
tactful enquiry: “We know of the reality of the spirit world
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and, moreover, that the Universe is basically spiritual, the
material aspect thereof being merely a shadow of the more
abiding spirit reality. But may we point out that during the
long career of the ascent of a typical evolutionary mortal of
animal origin, the attainment of even the first stage of spirit
is only possible after the sojourn on the mansion worlds and
on the other spheres of the morontia realm, that being the
intermediate stage between matter and spirit? Would it not,
therefore, be a little premature to speak of this ‘becoming a
spirit’ now, while we are not yet even morontia beings, let
alone spiritual?” Such honest doubts and sincere questionings
are not to be despised and are not evil per se. Though they may
delay the progressive journey towards perfection attainment,
they can never inhibit it. What follows may be considered
an answer to such a friendly critic.

Those who see in Eddington merely a physicist—even a
genius—completely miss both the potential goal of his life
and the actually and literally attained levels of spirit insight
as revealed in his writings. I admit that I myself, at first, had
just such an attitude when I approached the task of studying
Eddington’s works more than a decade ago. There is a certain
preordained path of studying one’s environment and what
makes the contribution of Eddington (and a few others)
unique is that he has walked this path to the triumphant
end. And the path is this—

Analysis of the material reality can be pursued until it disap-
pears from the sensory mechanism, yet remains real to the mind.
One can then continue this analysis by “mind alone” and arrive
at the epistemological basis of the fundamental laws of science,
but at some point the reality placed under scruity vanishes to
the (material or morontia) mind also and yet remains perceptible
to the insight of the spirit in the form of the supreme values of
entirely spiritual nature. And this is the meaning in which it can
be said, that “the Universe is basically spiritual”.
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Well, the critic says, this may all be well and good,

relating strictly to the abovementioned three philosophical
books, but what does it have to do with the purely technical
monograph on General Relativity that is supposed to be
discussed here? The division of knowledge into technical and
non-technical along the lines this is done today will become
obsolete in the New Epoch of brotherhood. Not because the
distinction will be blurred and the two kinds of knowledge
somehow merge into one, but for precisely the opposite rea-
son: there is a clear demarcation line between the structural
knowledge and the knowledge of the substance. The so-called
technical knowledge, that is expressible in mathematical lan-
guage, is nothing other than the knowledge of structure, i.e.
of the relations between entities, and is entirely abstracted
from the knowledge of the nature or essence of the entities
themselves,—their substance. Understanding this fundamen-
tal difference neither precludes the possibility nor obviates
the need for specialists, who are skilled in one particular
type of knowledge, more than in others, but it certainly does
remove all illusion of self-sufficiency, which was giving origin
to the arrogance on the part of members of one profession
towards the others. And who is better qualified to teach us
about one particular kind of knowledge, than the one who
has discovered that this is not the only kind and that there
are others?

The possibility of dissecting the two types of knowledge
should not be considered as something ephemeral, because it
has immediate practical implications. In fact, the very reason
I moved to the United Kingdom in 1994 (from Armenia,
then in a state of ruin after the destruction of Soviet Union)
was due to one such application, made by myself (then a
postgraduate theoretical physicist) independently and many
years prior to learning about Eddington’s research. Namely,
I have attempted and successfully performed a dissection
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of the formalism of Quantum Mechanics into “informa-
tion dynamics” (or infodynamics) and the specific features of
the microscopic world—these two being logically indepen-
dent. Having separated the purely infodynamical aspect of
Quantum Mechanics as a self-consistent set of rules for ma-
nipulation of structural knowledge, I then proceeded to apply
it to a completely unrelated domain of human activity—
economics. Given the functions of demand D(x, t) and supply
S(x, t), which regulate the actual price of a commodity x(t)

according to ẋ = D(x, t)− S(x, t) I constructed a “price momen-
tum” variable p(t) conjugated to x(t) and the corresponding
p-linear Hamiltonian, which upon canonical quantisantion
yielded a model for prediction of the evolution of the prob-
ability distribution |ψ(x, t)|2 of x as opposed to the “classical”
actual fixed value of x at the moment of time t. Moreover,
this model was free of all artificial constants (i.e. the “Planck
constant” equivalent) due to the p-linearity of the Hamilto-
nian. I have also pointed out that this approach is different
from the well-known “Quantum Economics” due to John
von Neumann. The resulting “New Quantum Economics”
scheme was described in a very brief paper, which I called
“On the New Method of Price Forecasting” and showed it to
the two economists from the UK, who visited Armenia and
they were sufficiently impressed to invite me to continue my
studies here in the UK.

I was pleasantly surprised when I discovered that a newly
typeset version of Eddington’s “The Mathematical Theory of
Relativity” has been produced recently by Andrew D. Hwang,
a professor of mathematics at College of the Holy Cross, who
made the fruits of his labours of love available under Public
Domain as part of the Gutenberg Project [3]. However, seeing
that Dr Hwang used the early edition (1923) of this excellent
book as the basis of his work, I have decided to update his
sources to the latest edition. During the course of editing,
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I decided to incorporate the material of the Supplementary
Notes into the body of the main text. This is similar to
the way it is done in the Russian translation of this book
as published in 1934. In the previous English editions this
material was delegated to the end in order to preserve the
pagination of the rest of the book. As there is obviously
no need to preserve the old pagination in a freshly retypeset
modern edition, moving the material into the main body
of text seemed desirable to prevent interrupting the reading
flow.

It is my hope that this edition will help those who wish to
understand the new and revolutionary concepts of time and
space as contained in both the General Relativity of Albert
Einstein and in its unification with the electromagnetism by
Hermann Weyl, masterfully presented by A.S. Eddington.

Tigran Aivazian.
6 March 2022.
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PREFACE

AFIRST draft of this book was published in 1921 as a math-
ematical supplement to the French Edition of Space,

Time and Gravitation. During the ensuing eighteen months
I have pursued my intention of developing it into a more
systematic and comprehensive treatise on the mathematical
theory of Relativity. The matter has been rewritten, the
sequence of the argument rearranged in many places, and
numerous additions made throughout; so that the work is
now expanded to three times its former size. It is hoped
that, as now enlarged, it may meet the needs of those who
wish to enter fully into these problems of reconstruction of
theoretical physics.

The reader is expected to have a general acquaintance with
the less technical discussion of the theory given in Space,
Time and Gravitation, although there is not often occasion to
make direct reference to it. But it is eminently desirable to
have a general grasp of the revolution of thought associated
with the theory of Relativity before approaching it along the
narrow lines of strict mathematical deduction. In the former
work we explained how the older conceptions of physics had
become untenable, and traced the gradual ascent to the ideas
which must supplant them. Here our task is to formulate
mathematically this new conception of the world and to
follow out the consequences to the fullest extent.

The present widespread interest in the theory arose from
the verification of certain minute deviations from Newtonian
laws. To those who are still hesitating and reluctant to leave
the old faith, these deviations will remain the chief centre of
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interest; but for those who have caught the spirit of the new
ideas the observational predictions form only a minor part
of the subject. It is claimed for the theory that it leads to
an understanding of the world of physics clearer and more
penetrating than that previously attained, and it has been my
aim to develop the theory in a form which throws most light
on the origin and significance of the great laws of physics.

It is hoped that difficulties which are merely analytical
have been minimised by giving rather fully the intermediate
steps in all the proofs with abundant cross-references to the
auxiliary formulae used.

For those who do not read the book consecutively atten-
tion may be called to the following points in the notation.
The summation convention (§ 22) is used. German letters
always denote the product of the corresponding English letter
by √

−g (§ 49). h is the symbol for “Hamiltonian differentia-
tion” introduced on § 60. An asterisk is prefixed to symbols
generalised so as to be independent of or covariant with the
gauge (§ 86).

A selected list of original papers on the subject is given in
the Bibliography at the end, and many of these are sources
(either directly or at second-hand) of the developments here
set forth. To fit these into a continuous chain of deduction
has involved considerable modifications from their original
form, so that it has not generally been found practicable to
indicate the sources of the separate sections. A frequent
cause of deviation in treatment is the fact that in the view
of most contemporary writers the Principle of Stationary
Action is the final governing law of the world; for reasons
explained in the text I am unwilling to accord it so exalted a
position. After the original papers of Einstein, and those of
de Sitter from which I first acquired an interest in the theory,
I am most indebted to Weyl’s Raum, Zeit, Materie. Weyl’s
influence will be especially traced in §§ 49, 58, 59, 61, 63, as
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well as in the sections referring to his own theory.

I am under great obligations to the officers and staff of
the University Press for their help and care in the intricate
printing.

A. S. E.
10 August 1922.



INTRODUCTION

THE subject of this mathematical treatise is not pure
mathematics but physics. The vocabulary of the physicist

comprises a number of words such as length, angle, velocity,
force, work, potential, current, etc., which we shall call
briefly “physical quantities.” Some of these terms occur
in pure mathematics also; in that subject they may have a
generalised meaning which does not concern us here. The
pure mathematician deals with ideal quantities defined as
having the properties which he deliberately assigns to them.
But in an experimental science we have to discover properties
not to assign them; and physical quantities are defined
primarily according to the way in which we recognise them
when confronted by them in our observation of the world
around us.

Consider, for example, a length or distance between two
points. It is a numerical quantity associated with the two
points; and we all know the procedure followed in practice
in assigning this numerical quantity to two points in nature.
A definition of distance will be obtained by stating the exact
procedure; that clearly must be the primary definition if we
are to make sure of using the word in the sense familiar
to everybody. The pure mathematician proceeds differently;
he defines distance as an attribute of the two points which
obeys certain laws—the axioms of the geometry which he
happens to have chosen—and he is not concerned with the
question how this “distance” would exhibit itself in practical
observation. So far as his own investigations are concerned,
he takes care to use the word self-consistently; but it does
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not necessarily denote the thing which the rest of mankind
are accustomed to recognise as the distance of the two points.

To find out any physical quantity we perform certain
practical operations followed by calculations; the operations
are called experiments or observations according as the con-
ditions are more or less closely under our control. The
physical quantity so discovered is primarily the result of the
operations and calculations; it is, so to speak, a manufactured
article—manufactured by our operations. But the physicist
is not generally content to believe that the quantity he ar-
rives at is something whose nature is inseparable from the
kind of operations which led to it; he has an idea that if
he could become a god contemplating the external world,
he would see his manufactured physical quantity forming
a distinct feature of the picture. By finding that he can
lay x unit measuring-rods in a line between two points, he
has manufactured the quantity x which he calls the distance
between the points; but he believes that that distance x is
something already existing in the picture of the world—a
gulf which would be apprehended by a superior intelligence
as existing in itself without reference to the notion of op-
erations with measuring-rods. Yet he makes curious and
apparently illogical discriminations. The parallax of a star is
found by a well-known series of operations and calculations;
the distance across the room is found by operations with
a tape-measure. Both parallax and distance are quantities
manufactured by our operations; but for some reason we do
not expect parallax to appear as a distinct element in the true
picture of nature in the same way that distance does. Or
again, instead of cutting short the astronomical calculations
when we reach the parallax, we might go on to take the cube
of the result, and so obtain another manufactured quantity,
a “cubic parallax.” For some obscure reason we expect to see
distance appearing plainly as a gulf in the true world-picture;
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parallax does not appear directly, though it can be exhibited
as an angle by a comparatively simple construction; and cubic
parallax is not in the picture at all. The physicist would say
that he finds a length, and manufactures a cubic parallax; but
it is only because he has inherited a preconceived theory of
the world that he makes the distinction. We shall venture to
challenge this distinction.

Distance, parallax and cubic parallax have the same kind
of potential existence even when the operations of measure-
ment are not actually made—if you will move sideways you
will be able to determine the angular shift, if you will lay
measuring-rods in a line to the object you will be able to
count their number. Any one of the three is an indication to
us of some existent condition or relation in the world outside
us—a condition not created by our operations. But there
seems no reason to conclude that this world-condition resem-
bles distance any more closely than it resembles parallax or
cubic parallax. Indeed any notion of “resemblance” between
physical quantities and the world-conditions underlying them
seems to be inappropriate. If the length AB is double the
length CD, the parallax of B from A is half the parallax of D
from C; there is undoubtedly some world-relation which is
different for AB and CD, but there is no reason to regard the
world-relation of AB as being better represented by double
than by half the world-relation of CD.

The connection of manufactured physical quantities with
the existent world-condition can be expressed by saying that
the physical quantities are measure-numbers of the world-
condition. Measure-numbers may be assigned according to
any code, the only requirement being that the same mea-
sure-number always indicates the same world-condition and
that different world-conditions receive different measure-
numbers. Two or more physical quantities may thus be
measure-numbers of the same world-condition, but in differ-
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ent codes, e.g. parallax and distance; mass and energy; stellar
magnitude and luminosity. The constant formulae connect-
ing these pairs of physical quantities give the relation between
the respective codes. But in admitting that physical quan-
tities can be used as measure-numbers of world-conditions
existing independently of our operations, we do not alter
their status as manufactured quantities. The same series of
operations will naturally manufacture the same result when
world-conditions are the same, and different results when
they are different. (Differences of world-conditions which
do not influence the results of experiment and observation are
ipso facto excluded from the domain of physical knowledge.)
The size to which a crystal grows may be a measure-number
of the temperature of the mother-liquor; but it is none the
less a manufactured size, and we do not conclude that the
true nature of size is caloric.

The study of physical quantities, although they are the
results of our own operations (actual or potential), gives
us some kind of knowledge of the world-conditions, since
the same operations will give different results in different
world-conditions. It seems that this indirect knowledge is
all that we can ever attain, and that it is only through
its influences on such operations that we can represent to
ourselves a “condition of the world.” Any attempt to describe
a condition of the world otherwise is either mathematical
symbolism or meaningless jargon. To grasp a condition of
the world as completely as it is in our power to grasp it, we
must have in our minds a symbol which comprehends at the
same time its influence on the results of all possible kinds
of operations. Or, what comes to the same thing, we must
contemplate its measures according to all possible measure-
codes—of course, without confusing the different codes. It
might well seem impossible to realise so comprehensive an
outlook; but we shall find that the mathematical calculus
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of tensors does represent and deal with world-conditions
precisely in this way. A tensor expresses simultaneously
the whole group of measure-numbers associated with any
world-condition; and machinery is provided for keeping the
various codes distinct. For this reason the somewhat difficult
tensor calculus is not to be regarded as an evil necessity
in this subject, which ought if possible to be replaced by
simpler analytical devices; our knowledge of conditions in
the external world, as it comes to us through observation and
experiment, is precisely of the kind which can be expressed by
a tensor and not otherwise. And, just as in arithmetic we can
deal freely with a billion objects without trying to visualise
the enormous collection; so the tensor calculus enables us to
deal with the world-condition in the totality of its aspects
without attempting to picture it.

Having regard to this distinction between physical quan-
tities and world-conditions, we shall not define a physical
quantity as though it were a feature in the world-picture
which had to be sought out. A physical quantity is defined
by the series of operations and calculations of which it is the
result. The tendency to this kind of definition had pro-
gressed far even in pre-relativity physics. Force had become
“mass× acceleration,” and was no longer an invisible agent in
the world-picture, at least so far as its definition was con-
cerned. Mass is defined by experiments on inertial properties,
no longer as “quantity of matter.” But for some terms the
older kind of definition (or lack of definition) has been ob-
stinately adhered to; and for these the relativity theory must
find new definitions. In most cases there is no great difficulty
in framing them. We do not need to ask the physicist what
conception he attaches to “length”; we watch him measuring
length, and frame our definition according to the operations
he performs. There may sometimes be cases in which theory
outruns experiment and requires us to decide between two
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definitions, either of which would be consistent with present
experimental practice; but usually we can foresee which of
them corresponds to the ideal which the experimentalist has
set before himself. For example, until recently the practical
man was never confronted with problems of non-Euclidean
space, and it might be suggested that he would be uncertain
how to construct a straight line when so confronted; but as
a matter of fact he showed no hesitation, and the eclipse
observers measured without ambiguity the bending of light
from the “straight line.” The appropriate practical definition
was so obvious that there was never any danger of different
people meaning different loci by this term. Our guiding
rule will be that a physical quantity must be defined by
prescribing operations and calculations which will lead to
an unambiguous result, and that due heed must be paid to
existing practice; the last clause should secure that everyone
uses the term to denote the same quantity, however much
disagreement there may be as to the conception attached to it.

When defined in this way, there can be no question as to
whether the operations give us the real physical quantity or
whether some theoretical correction (not mentioned in the
definition) is needed. The physical quantity is the measure-
number of a world-condition in some code; we cannot assert
that a code is right or wrong, or that a measure-number
is real or unreal; what we require is that the code should
be the accepted code, and the measure-number the number
in current use. For example, what is the real difference of
time between two events at distant places? The operation
of determining time has been entrusted to astronomers, who
(perhaps for mistaken reasons) have elaborated a regular
procedure. If the times of the two events are found in
accordance with this procedure, the difference must be the
real difference of time; the phrase has no other meaning. But
there is a certain generalisation to be noticed. In cataloguing
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the operations of the astronomers, so as to obtain a definition
of time, we remark that one condition is adhered to in
practice evidently from necessity and not from design—the
observer and his apparatus are placed on the earth and move
with the earth. This condition is so accidental and parochial
that we are reluctant to insist on it in our definition of time;
yet it so happens that the motion of the apparatus makes
an important difference in the measurement, and without
this restriction the operations lead to no definite result and
cannot define anything. We adopt what seems to be the
commonsense solution of the difficulty. We decide that time
is relative to an observer; that is to say, we admit that an
observer on another star, who carries out all the rest of the
operations and calculations as specified in our definition,
is also measuring time—not our time, but a time relative
to himself. The same relativity affects the great majority
of elementary physical quantities*; the description of the
operations is insufficient to lead to a unique answer unless
we arbitrarily prescribe a particular motion of the observer
and his apparatus.

In this example we have had a typical illustration of
“relativity,” the recognition of which has had far-reaching
results revolutionising the outlook of physics. Any operation
of measurement involves a comparison between a measuring-
appliance and the thing measured. Both play an equal part
in the comparison and are theoretically, and indeed often
practically, interchangeable; for example, the result of an
observation with the meridian circle gives the right ascension
of the star or the error of the clock indifferently, and we
can regard either the clock or the star as the instrument
or the object of measurement. Remembering that physical
quantities are results of comparisons of this kind, it is clear

*The most important exceptions are number (of discrete entities),
action, and entropy.
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that they cannot be considered to belong solely to one
partner in the comparison. It is true that we standardise
the measuring appliance as far as possible (the method of
standardisation being explained or implied in the definition
of the physical quantity) so that in general the variability of
the measurement can only indicate a variability of the object
measured. To that extent there is no great practical harm in
regarding the measurement as belonging solely to the second
partner in the relation. But even so we have often puzzled
ourselves needlessly over paradoxes, which disappear when
we realise that the physical quantities are not properties
of certain external objects but are relations between these
objects and something else. Moreover, we have seen that
the standardisation of the measuring-appliance is usually left
incomplete, as regards the specification of its motion; and
rather than complete it in a way which would be arbitrary
and pernicious, we prefer to recognise explicitly that our
physical quantities belong not solely to the objects measured
but have reference also to the particular frame of motion that
we choose.

The principle of relativity goes still further. Even if
the measuring-appliances were standardised completely, the
physical quantities would still involve the properties of the
constant standard. We have seen that the world-condition
or object which is surveyed can only be apprehended in our
knowledge as the sum total of all the measurements in which
it can be concerned; any intrinsic property of the object must
appear as a uniformity or law in these measures. When
one partner in the comparison is fixed and the other partner
varied widely, whatever is common to all the measurements
may be ascribed exclusively to the first partner and regarded
as an intrinsic property of it. Let us apply this to the
converse comparison; that is to say, keep the measuring-
appliance constant or standardised, and vary as widely as
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possible the objects measured—or, in simpler terms, make
a particular kind of measurement in all parts of the field.
Intrinsic properties of the measuring-appliance should appear
as uniformities or laws in these measures. We are familiar
with several such uniformities; but we have not generally
recognised them as properties of the measuring-appliance.
We have called them laws of nature!

The development of physics is progressive, and as the
theories of the external world become crystallised, we often
tend to replace the elementary physical quantities defined
through operations of measurement by theoretical quantities
believed to have a more fundamental significance in the ex-
ternal world. Thus the vis viva mv2, which is immediately
determinable by experiment, becomes replaced by a gener-
alised energy, virtually defined by having the property of
conservation; and our problem becomes inverted—we have
not to discover the properties of a thing which we have
recognised in nature, but to discover how to recognise in
nature a thing whose properties we have assigned. This de-
velopment seems to be inevitable; but it has grave drawbacks
especially when theories have to be reconstructed. Fuller
knowledge may show that there is nothing in nature having
precisely the properties assigned; or it may turn out that
the thing having these properties has entirely lost its im-
portance when the new theoretical standpoint is adopted*.
When we decide to throw the older theories into the melt-
ing-pot and make a clean start, it is best to relegate to the
background terminology associated with special hypotheses

*We shall see in § 59 that this has happened in the case of
energy. The dead-hand of a superseded theory continues to embarrass
us, because in this case the recognised terminology still has implicit
reference to it. This, however, is only a slight drawback to set off
against the many advantages obtained from the classical generalisation
of energy as a step towards the more complete theory.
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of physics. Physical quantities defined by operations of mea-
surement are independent of theory, and form the proper
starting-point for any new theoretical development.

Now that we have explained how physical quantities are
to be defined, the reader may be surprised that we do
not proceed to give the definitions of the leading physical
quantities. But to catalogue all the precautions and provisos
in the operation of determining even so simple a thing as
length, is a task which we shirk. We might take refuge in the
statement that the task though laborious is straightforward,
and that the practical physicist knows the whole procedure
without our writing it down for him. But it is better to
be more cautious. I should be puzzled to say off-hand
what is the series of operations and calculations involved in
measuring a length of 10−15 cm.; nevertheless I shall refer to
such a length when necessary as though it were a quantity
of which the definition is obvious. We cannot be forever
examining our foundations; we look particularly to those
places where it is reported to us that they are insecure. I
may be laying myself open to the charge that I am doing the
very thing I criticise in the older physics—using terms that
have no definite observational meaning, and mingling with
my physical quantities things which are not the results of any
conceivable experimental operation. I would reply—

By all means explore this criticism if you regard it as
a promising field of inquiry. I here assume that you will
probably find me a justification for my 10−15 cm.; but you may
find that there is an insurmountable ambiguity in defining
it. In the latter event you may be on the track of something
which will give a new insight into the fundamental nature of
the world. Indeed it has been suspected that the perplexities
of quantum phenomena may arise from the tacit assumption
that the notions of length and duration, acquired primarily
from experiences in which the average effects of large num-
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bers of quanta are involved, are applicable in the study of
individual quanta. There may need to be much more excava-
tion before we have brought to light all that is of value in this
critical consideration of experimental knowledge. Meanwhile
I want to set before you the treasure which has already been
unearthed in this field.



CHAPTER I

ELEMENTARY PRINCIPLES

1. Indeterminateness of the space-time frame.

IT has been explained in the early chapters of Space, Time
and Gravitation that observers with different motions use

different reckonings of space and time, and that no one of
these reckonings is more fundamental than another. Our
problem is to construct a method of description of the world
in which this indeterminateness of the space-time frame of
reference is formally recognised.

Prior to Einstein’s researches no doubt was entertained
that there existed a “true even-flowing time” which was
unique and universal. The moving observer, who adopts a
time-reckoning different from the unique true time, must
have been deluded into accepting a fictitious time with
a fictitious space-reckoning modified to correspond. The
compensating behaviour of electromagnetic forces and of
matter is so perfect that, so far as present knowledge extends,
there is no test which will distinguish the true time from
the fictitious. But since there are many fictitious times and,
according to this view, only one true time, some kind of
distinction is implied although its nature is not indicated.

Those who still insist on the existence of a unique “true
time” generally rely on the possibility that the resources
of experiment are not yet exhausted and that some day a
discriminating test may be found. But the off-chance that a
future generation may discover a significance in our utterances
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is scarcely an excuse for making meaningless noises.

Thus in the phrase true time, “true” is an epithet whose
meaning has yet to be discovered. It is a blank label. We do
not know what is to be written on the label, nor to which
of the apparently indistinguishable time-reckonings it ought
to be attached. There is no way of progress here. We return
to firmer ground, and note that in the mass of experimental
knowledge which has accumulated, the words time and space
refer to one of the “fictitious” times and spaces—primarily
that adopted by an observer travelling with the earth, or with
the sun—and our theory will deal directly with these space-
time frames of reference, which are admittedly fictitious or,
in the more usual phrase, relative to an observer with particular
motion.

The observers are studying the same external events,
notwithstanding their different space-time frames. The
space-time frame is therefore something overlaid by the
observer on the external world; the partitions representing
his space and time reckonings are imaginary surfaces drawn
in the world like the lines of latitude and longitude drawn on
the earth. They do not follow the natural lines of structure of
the world, any more than the meridians follow the lines of
geological structure of the earth. Such a mesh-system is of
great utility and convenience in describing phenomena, and
we shall continue to employ it; but we must endeavour not
to lose sight of its fictitious and arbitrary nature.

It is evident from experience that a four-fold mesh-system
must be used; and accordingly an event is located by four
coordinates, generally taken as x, y, z, t. To understand the
significance of this location, we first consider the simple case
of two dimensions. If we describe the points of a plane
figure by their rectangular coordinates x, y, the description of
the figure is complete and would enable anyone to construct
it; but it is also more than complete, because it specifies
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an arbitrary element, the orientation, which is irrelevant to
the intrinsic properties of the figure and ought to be cast
aside from a description of those properties. Alternatively
we can describe the figure by stating the distances between
the various pairs of points in it; this description is also
complete, and it has the merit that it does not prescribe the
orientation or contain anything else irrelevant to the intrinsic
properties of the figure. The drawback is that it is usually
too cumbersome to use in practice for any but the simplest
figures.

Similarly our four coordinates x, y, z, t may be expected
to contain an arbitrary element, analogous to an orientation,
which has nothing to do with the properties of the configu-
ration of events. A different set of values of x, y, z, t may be
chosen in which this arbitrary element of the description is
altered, but the configuration of events remains unchanged.
It is this arbitrariness in coordinate specification which ap-
pears as the indeterminateness of the space-time frame. The
other method of description, by giving the distances between
every pair of events (or rather certain relations between pairs
of events which are analogous to distance), contains all that
is relevant to the configuration of events and nothing that is
irrelevant. By adopting this latter method we can strip away
the arbitrary part of the description, leaving only that which
has an exact counterpart in the configuration of the external
world.

To put the contrast in another form, in our common out-
look the idea of position or location seems to be fundamental.
From it we derive distance or extension as a subsidiary notion,
which covers part but not all of the conceptions which we
associate with location. Position is looked upon as the phys-
ical fact—a coincidence with what is vaguely conceived of
as an identifiable point of space—whereas distance is looked
upon as an abstraction or a computational result calculable
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when the positions are known. The view which we are going
to adopt reverses this. Extension (distance, interval) is now
fundamental; and the location of an object is a computa-
tional result summarising the physical fact that it is at certain
intervals from the other objects in the world. Any idea
contained in the concept location which is not expressible by
reference to distances from other objects, must be dismissed
from our minds. Our ultimate analysis of space leads us
not to a “here” and a “there,” but to an extension such as
that which relates “here” and “there.” To put the conclusion
rather crudely—space is not a lot of points close together; it
is a lot of distances interlocked.

Accordingly our fundamental hypothesis is that—
Everything connected with location which enters into obser-

vational knowledge—everything we can know about the configu-
ration of events—is contained in a relation of extension between
pairs of events.

This relation is called the interval, and its measure is
denoted by ds.

If we have a system S consisting of events A, B, C, D, …,
and a system S′ consisting of events A′, B′, C ′, D′, …, then
the fundamental hypothesis implies that the two systems
will be exactly alike observationally if, and only if, all pairs
of corresponding intervals in the two systems are equal,
AB = A′B′, AC = A′C ′, …. In that case if S and S′ are material
systems they will appear to us as precisely similar bodies or
mechanisms; or if S and S′ correspond to the same material
body at different times, it will appear that the body has
not undergone any change detectable by observation. But
the position, motion, or orientation of the body may be
different; that is a change detectable by observation, not
of the system S, but of a wider system comprising S and
surrounding bodies.

Again let the systems S and S′ be abstract coordinate-
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frames of reference, the events being the corners of the
meshes; if all corresponding intervals in the two systems are
equal, we shall recognise that the coordinate-frames are of
precisely the same kind—rectangular, polar, unaccelerated,
rotating, etc.

2. The fundamental quadratic form.

We have to keep side by side the two methods of describ-
ing the configurations of events by coordinates and by the
mutual intervals, respectively—the first for its conciseness,
and the second for its immediate absolute significance. It is
therefore necessary to connect the two modes of description
by a formula which will enable us to pass readily from one
to the other. The particular formula will depend on the
coordinates chosen as well as on the absolute properties of
the region of the world considered; but it appears that in all
cases the formula is included in the following general form—

The interval ds between two neighbouring events with
coordinates (x1, x2, x3, x4) and (x1 + dx1, x2 + dx2, x3 + dx3, x4 + dx4) in
any coordinate-system is given by

ds2 = g11 dx
2
1 + g22 dx

2
2 + g33 dx

2
3 + g44 dx

2
4

+ 2g12 dx1 dx2 + 2g13 dx1 dx3 + 2g14 dx1 dx4

+ 2g23 dx2 dx3 + 2g24 dx2 dx4 + 2g34 dx3 dx4, (2.1)

where the coefficients g11, etc. are functions of x1, x2, x3, x4.
That is to say, ds2 is some quadratic function of the differences
of coordinates.

This is, of course, not the most general case conceivable;
for example, we might have a world in which the interval
depended on a general quartic function of the dx’s. But, as
we shall presently see, the quadratic form (2.1) is definitely
indicated by observation as applying to the actual world.
Moreover near the end of our task (§ 97) we shall find in the
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general theory of relation-structure a precise reason why a
quadratic function of the coordinate-differences should have
this paramount importance.

Whilst the form of the right-hand side of (2.1) is that
required by observation, the insertion of ds2 on the left,
rather than some other function of ds, is merely a convention.
The quantity ds is a measure of the interval. It is necessary
to consider carefully how measure-numbers are to be affixed
to the different intervals occurring in nature. We have seen
in the last section that equality of intervals can be tested
observationally; but so far as we have yet gone, intervals are
merely either equal or unequal, and their differences have
not been further particularised. Just as wind-strength may
be measured by velocity, or by pressure, or by a number
on the Beaufort scale, so the relation of extension between
two events could be expressed numerically according to
many different plans. To conform to (2.1) a particular
code of measure-numbers must be adopted; the nature and
advantages of this code will be explained in the next section.

The pure geometry associated with the general for-
mula (2.1) was studied by Riemann, and is generally called
Riemannian geometry. It includes Euclidean geometry as a
special case.

3. Measurement of intervals.

Consider the operation of proving by measurement that
a distance AB is equal to a distance CD. We take a con-
figuration of events LMNOP…, viz. a measuring-scale, and
lay it over AB, and observe that A and B coincide with two
particular events P , Q (scale-divisions) of the configuration.
We find that the same configuration* can also be arranged

*The logical point may be noticed that the measuring-scale in
two positions (necessarily at different times) represents the same
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so that C and D coincide with P and Q respectively. Further
we apply all possible tests to the measuring-scale to see if it
has “changed” between the two measurements; and we are
only satisfied that the measures are correct if no observable
difference can be detected. According to our fundamental
axiom, the absence of any observable difference between the
two configurations (the structure of the measuring-scale in
its two positions) signifies that the intervals are unchanged;
in particular the interval between P and Q is unchanged. It
follows that the interval A to B is equal to the interval C to D.
We consider that the experiment proves equality of distance;
but it is primarily a test of equality of interval.

In this experiment time is not involved; and we conclude
that in space considered apart from time the test of equality
of distance is equality of interval. There is thus a one-to-one
correspondence of distances and intervals. We may therefore
adopt the same measure-number for the interval as is in
general use for the distance, thus settling our plan of affixing
measure-numbers to intervals. It follows that, when time is
not involved, the interval reduces to the distance.

It is for this reason that the quadratic form (2.1) is
needed in order to agree with observation, for it is well
known that in three dimensions the square of the distance
between two neighbouring points is a quadratic function of
their infinitesimal coordinate-differences—a result depending
ultimately on the experimental law expressed by Euclid I, 47.

When time is involved other appliances are used for mea-
suring intervals. If we have a mechanism capable of cyclic
motion, its cycles will measure equal intervals provided the
mechanism, its laws of behaviour, and all relevant surround-
ing circumstances, remain precisely similar. For the phrase
“precisely similar” means that no observable differences can

configuration of events, not the same events.
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be detected in the mechanism or its behaviour; and that,
as we have seen, requires that all corresponding intervals
should be equal. In particular the interval between the events
marking the beginning and end of the cycle is unaltered.
Thus a clock primarily measures equal intervals; it is only
under more restricted conditions that it also measures the
time-coordinate t.

In general any repetition of an operation under similar
conditions, but for a different time, place, orientation and
velocity (attendant circumstances which have a relative but
not an absolute significance*), tests, equality of interval.

It is obvious from common experience that intervals which
can be measured with a clock cannot be measured with a
scale, and vice versa. We have thus two varieties of intervals,
which are provided for in the formula (2.1), since ds2 may
be positive or negative and the measure of the interval
will accordingly be expressed by a real or an imaginary
number. The abbreviated phrase “imaginary interval” must
not be allowed to mislead; there is nothing imaginary in
the corresponding relation; it is merely that in our arbitrary
code an imaginary number is assigned as its measure-number.
We might have adopted a different code, and have taken,
for example, the antilogarithm of ds2 as the measure of the
interval; in that case space-intervals would have received
code-numbers from 1 to ∞, and time-intervals numbers
from 0 to 1. When we encounter √

−1 in our investigations,
we must remember that it has been introduced by our choice
of measure-code, and must not think of it as occurring with
some mystical significance in the external world.

*They express relations to events which are not concerned in the
test, e.g. to the sun and stars.
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4. Rectangular coordinates and time.

Suppose that we have a small region of the world through-
out which the g’s can be treated as constants*. In that case
the right-hand side of (2.1) can be broken up into the sum
of four squares, admitting imaginary coefficients if necessary.
Thus writing

y1 = a1x1 + a2x2 + a3x3 + a4x4,

y2 = b1x1 + b2x2 + b3x3 + b4x4, etc.,

so that

dy1 = a1 dx1 + a2 dx2 + a3 dx3 + a4 dx4, etc.,

we can choose the constants a1, b1, … so that (2.1) becomes

ds2 = dy21 + dy22 + dy23 + dy24. (4.1)

For, substituting for the dy’s and comparing coefficients
with (2.1), we have only 10 equations to be satisfied by the
16 constants. There are thus many ways of making the
reduction. Note, however, that the reduction to the sum
of four squares of complete differentials is not in general
possible for a large region, where the g’s have to be treated as
functions, not constants.

Consider all the events for which y4 has some specified
value. These will form a three-dimensional world. Since dy4 is
zero for every pair of these events, their mutual intervals are
given by

ds2 = dy21 + dy22 + dy23. (4.2)

*It will be shown in § 36 that it is always possible to transform the
coordinates so that the first derivatives of the g’s vanish at a selected
point. We shall suppose that this preliminary transformation has
already been made, in order that the constancy of the g’s may be a
valid approximation through as large a region as possible round the
selected point.
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But this is exactly like familiar space in which the interval
(which we have shown to be the same as the distance for
space without time) is given by

ds2 = dx2 + dy2 + dz2, (4.3)

where x, y, z are rectangular coordinates.
Hence a section of the world by y4 = const. will appear

to us as space, and y1, y2, y3 will appear to us as rectangular
coordinates. The coordinate-frames y1, y2, y3, and x, y, z,
are examples of the systems S and S′ of § 1, for which
the intervals between corresponding pairs of mesh-corners
are equal. The two systems are therefore exactly alike
observationally; and if one appears to us to be a rectangular
frame in space, so also must the other. One proviso must be
noted; the coordinates y1, y2, y3 for real events must be real, as
in familiar space, otherwise the resemblance would be only
formal.

Granting this proviso, we have reduced the general ex-
pression to

ds2 = dx2 + dy2 + dz2 + dy24, (4.4)

where x, y, z will be recognised by us as rectangular coordi-
nates in space. Clearly y4 must involve the time, otherwise
our location of events by the four coordinates would be in-
complete; but we must not too hastily identify it with the
time t.

I suppose that the following would be generally accepted
as a satisfactory (pre-relativity) definition of equal time-
intervals:—if we have a mechanism capable of cyclic motion,
its cycles will measure equal durations of time anywhere and
anywhen, provided the mechanism, its laws of behaviour, and
all outside influences remain precisely similar. To this the
relativist would add the condition that the mechanism (as a
whole) must be at rest in the space-time frame considered,
because it is now known that a clock in motion goes slow in
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comparison with a fixed clock. The non-relativist does not
disagree in fact, though he takes a slightly different view; he
regards the proviso that the mechanism must be at rest as
already included in his enunciation, because for him motion
involves progress through the aether, which (he considers)
directly affects the behaviour of the clock, and is one of those
“outside influences” which have to be kept “precisely similar.”

Since then it is agreed that the mechanism as a whole
is to be at rest, and the moving parts return to the same
positions after a complete cycle, we shall have for the two
events marking the beginning and end of the cycle

dx, dy, dz = 0.

Accordingly (4.4) gives for this case

ds2 = dy24.

We have seen in § 3 that the cycles of the mechanism in all
cases correspond to equal intervals ds; hence they correspond
to equal values of dy4. But by the above definition of time
they also correspond to equal lapses of time dt; hence we must
have dy4 proportional to dt, and we express this proportionality
by writing

dy4 = ic dt, (4.5)

where i =
√
−1, and c is a constant. It is, of course, possible

that c may be an imaginary number, but provisionally we
shall suppose it real. Then (4.4) becomes

ds2 = dx2 + dy2 + dz2 − c2dt2. (4.6)

A further discussion is necessary before it is permissible
to conclude that (4.6) is the most general possible form for ds2
in terms of ordinary space and time coordinates. If we had
reduced (2.1) to the rather more general form

ds2 = dx2 + dy2 + dz2 − c2dt2 − 2cα dx dt− 2cβ dy dt− 2cγ dz dt, (4.7)
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this would have agreed with (4.6) in the only two cases yet
discussed, viz. (1) when dt = 0, and (2) when dx, dy, dz = 0. To
show that this more general form is inadmissible we must
examine pairs of events which differ both in time and place.

In the preceding pre-relativity definition of t our clocks
had to remain stationary and were therefore of no use for
comparing time at different places. What did the pre-
relativity physicist mean by the difference of time dt between
two events at different places? I do not think that we
can attach any meaning to his hazy conception of what
dt signified; but we know one or two ways in which he was
accustomed to determine it. One method which he used was
that of transport of chronometers. Let us examine then what
happens when we move a clock from (x1, 0, 0) at the time t1 to
another place (x2, 0, 0) at the time t2.

We have seen that the clock, whether at rest or in motion,
provided it remains a precisely similar mechanism, records
equal intervals; hence the difference of the clock-readings at
the beginning and end of the journey will be proportional to
the integrated interval

2∫
1

ds. (4.81)

If the transport is made in the direct line (dy = 0, dz = 0), we
shall have according to (4.7)

−ds2 = c2 dt2 + 2cα dx dt− dx2 = c2 dt2

{
1 +

2α

c

dx

dt
− 1

c2

(
dx

dt

)2
}
.

Hence the difference of the clock-readings (4.81) is propor-
tional to

t2∫
t1

dt

√
1 +

2αu

c
− u2

c2
, (4.82)

where u = dx/dt, i.e. the velocity of the clock. The integral
will not in general reduce to t2 − t1; so that the difference of
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time at the two places is not given correctly by the reading
of the clock. Even when α = 0, the moving clock does not
record correct time.

Now introduce the condition that the velocity u is very
small, remembering that t2 − t1 will then become very large.
Neglecting u2/c2, (4.82) becomes approximately

t2∫
t1

dt

(
1 +

α

c

dx

dt

)
= (t2 − t1) +

α

c
(x2 − x1).

The clock, if moved sufficiently slowly, will record the correct
time-difference if, and only if, α = 0. Moving it in other
directions, we must have, similarly, β = 0, γ = 0. Thus (4.6) is
the most general formula for the interval, when the time at
different places is compared by slow transport of clocks from
one place to another.

I do not know how far the reader will be prepared to
accept the condition that it must be possible to correlate
the times at different places by moving a clock from one to
the other with infinitesimal velocity. The method employed
in accurate work is to send an electromagnetic signal from
one to the other, and we shall see in § 11 that this leads to
the same formulae. We can scarcely consider that either of
these methods of comparing time at different places is an
essential part of our primitive notion of time in the same
way that measurement at one place by a cyclic mechanism is;
therefore they are best regarded as conventional. Let it be
understood, however, that although the relativity theory has
formulated the convention explicitly, the usage of the word
time-difference for the quantity fixed by this convention is in
accordance with the long established practice in experimental
physics and astronomy.

Setting α = 0 in (4.82), we see that the accurate formula for
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the clock-reading will be

t2∫
t1

dt

√
1− u2

c2
=

√
1− u2

c2
(t2 − t1) (4.9)

for a uniform velocity u. Thus a clock travelling with
finite velocity gives too small a reading—the clock goes slow
compared with the time-reckoning conventionally adopted.

To sum up the results of this section, if we choose
coordinates such that the general quadratic form reduces to

ds2 = dy21 + dy22 + dy23 + dy24, (4.95)

then y1, y2, y3 and y4
√
−1 will represent ordinary rectangular

coordinates and time. If we choose coordinates for which

ds2 = dy21 + dy22 + dy23 + dy24 + 2αdy1 dy4 + 2β dy2 dy4 + 2γ dy3 dy4, (4.96)

these coordinates also will agree with rectangular coordinates
and time so far as the more primitive notions of time are
concerned; but the reckoning by this formula of differences
of time at different places will not agree with the reck-
oning adopted in physics and astronomy according to long
established practice. For this reason it would only introduce
confusion to admit these coordinates as a permissible space
and time system.

We who regard all coordinate-frames as equally fictitious
structures have no special interest in ruling out the more
general form (4.96). It is not a question of ascribing greater
significance to one frame than to another, but of discovering
which frame corresponds to the space and time reckoning
generally accepted and used in standard works such as the
Nautical Almanac.

As far as § 14 our work will be subject to the condition
that we are dealing with a region of the world in which the
g’s are constant, or approximately constant. A region having
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this property is called flat. The theory of this case is called
the “special” theory of relativity; it was discussed by Einstein
in 1905—some ten years before the general theory. But it
becomes much simpler when regarded as a special case of the
general theory, because it is no longer necessary to defend
the conditions for its validity as being essential properties of
space-time. For a given region these conditions may hold, or
they may not. The special theory applies only if they hold;
other cases must be referred to the general theory.

5. The Lorentz transformation.

Make the following transformation of coordinates

x = β(x′ − ut′), y = y′, z = z′, t = β(t′ − ux′/c2), (5.1)

β =
1√

1− u2

c2

,

where u is any real constant not greater than c.
We have by (5.1)

dx2 − c2 dt2 = β2
{
(dx′ − u dt′)2 − c2(dt′ − u dx′/c2)2

}
= β2

{(
1− u2

c2

)
dx′2 − (c2 − u2) dt′2

}
= dx′2 − c2 dt′2.

Hence from (4.6)

ds2 = dx2 + dy2 + dz2 − c2dt2 = dx′2 + dy′2 + dz′2 − c2dt′2. (5.2)

The accented and unaccented coordinates give the same
formula for the interval, so that the intervals between corre-
sponding pairs of mesh-corners will be equal, and therefore
in all observable respects they will be alike. We shall recog-
nise x′, y′, z′ as rectangular coordinates in space, and t′ as the
associated time. We have thus arrived at another possible



CH. I THE LORENTZ TRANSFORMATION 45
way of reckoning space and time—another fictitious space-
time frame, equivalent in all its properties to the original
one. For convenience we say that the first reckoning is that
of an observer S and the second that of an observer S′, both
observers being at rest in their respective spaces*.

The constant u is easily interpreted. Since S is at rest in
his own space, his location is given by x = const. By (5.1) this
becomes, in S′’s coordinates, x′−ut′ = const.; that is to say, S is
travelling in the x′-direction with velocity u. Accordingly the
constant u is interpreted as the velocity of S relative to S′.

It does not follow immediately that the velocity of S′

relative to S is −u; but this can be proved by algebraical
solution of the equations (5.1) to determine x′, y′, z′, t′. We
find

x′ = β(x+ ut), y′ = y, z′ = z, t′ = β(t+ ux/c2), (5.3)

showing that an interchange of S and S′ merely reverses the
sign of u.

The essential property of the foregoing transformation
is that it leaves the formula for ds2 unaltered (5.2), so that
the coordinate-systems which it connects are alike in their
properties. Looking at the matter more generally, we have
already noted that the reduction to the sum of four squares
can be made in many ways, so that we can have

ds2 = dy21 + dy22 + dy23 + dy24 = dy′21 + dy′22 + dy′23 + dy′24 . (5.4)

*This is partly a matter of nomenclature. A sentient observer can
force himself to “recollect that he is moving” and so adopt a space
in which he is not at rest; but he does not so readily adopt the time
which properly corresponds; unless he uses the space-time frame in
which he is at rest, he is likely to adopt a hybrid space-time which
leads to inconsistencies. There is no ambiguity if the “observer” is
regarded as merely an involuntary measuring apparatus, which by the
principles of § 4 naturally partitions a space and time with respect to
which it is at rest.
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The determination of the necessary connection between any
two sets of coordinates satisfying this equation is a problem
of pure mathematics; we can use freely the conceptions of
four-dimensional geometry and imaginary rotations to find
this connection, whether the conceptions have any physical
significance or not. We see from (5.4) that ds is the distance
between two points in four-dimensional Euclidean space,
the coordinates (y1, y2, y3, y4) and (y′1, y

′
2, y

′
3, y

′
4) being rectangular

systems (real or imaginary) in that space. Accordingly these
coordinates are related by the general transformations from
one set of rectangular axes to another in four dimensions, viz.
translations and rotations. Translation, or change of origin,
need not detain us; nor need a rotation of the space-axes
(y1, y2, y3) leaving time unaffected. The interesting case is a
rotation in which y4 is involved, typified by

y1 = y′1 cos θ − y′4 sin θ, y4 = y′1 sin θ + y′4 cos θ.

Writing u = ic tan θ, so that β = cos θ, this leads to the Lorentz
transformation (5.1).

Thus, apart from obvious trivial changes of axes, the
Lorentz transformations are the only ones which leave the
form (4.6) unaltered.

Historically this transformation was first obtained for the
particular case of electromagnetic equations. Its more general
character was pointed out by Einstein in 1905.

6. The velocity of light.

Consider a point moving along the x-axis whose velocity
measured by S′ is v′, so that

v′ =
dx′

dt′
. (6.1)



CH. I THE VELOCITY OF LIGHT 47
Then by (5.1) its velocity measured by S is

v =
dx

dt
=

β(dx′ − u dt′)

β(dt′ − u dx′/c2)

=
v′ − u

1− uv′/c2
by (6.1). (6.2)

In non-relativity kinematics we should have taken it as
axiomatic that v = v′ − u.

If two points move relatively to S′ with equal velocities in
opposite directions +v′ and −v′, their velocities relative to S

are
v′ − u

1− uv′/c2
and − v′ + u

1 + uv′/c2
.

As we should expect, these speeds are usually unequal; but
there is an exceptional case when v′ = c. The speeds relative
to S are then also equal, both in fact being equal to c.

Again it follows from (5.2) that when(
dx′

dt′

)2

+

(
dy′

dt′

)2

+

(
dz′

dt′

)2

= c2,

ds = 0, and hence (
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

= c2.

Thus when the resultant velocity relative to S′ is c, the velocity
relative to S is also c, whatever the direction. We see that the
velocity c has a unique and very remarkable property.

According to the older views of absolute time this result
appears incredible. Moreover we have not yet shown that
the formulae have practical significance, since c might be
imaginary. But experiment has revealed a real velocity with
this remarkable property, viz. 299,860 km. per sec. We shall
call this the fundamental velocity.

By good fortune there is an entity—light—which travels
with the fundamental velocity. It would be a mistake to
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suppose that the existence of such an entity is responsible
for the prominence accorded to the fundamental velocity c

in our scheme; but it is helpful in rendering it more directly
accessible to experiment. The Michelson-Morley experiment
detected no difference in the velocity of light in two direc-
tions at right angles. Six months later the earth’s orbital
motion had altered the observer’s velocity by 60 km. per sec.,
corresponding to the change from S′ to S, and there was still
no difference. Hence the velocity of light has the distinctive
property of the fundamental velocity.

Strictly speaking the Michelson-Morley experiment did
not prove directly that the velocity of light was constant in
all directions, but that the average to-and-fro velocity was
constant in all directions. The experiment compared the
times of a journey “there-and-back.” If v(θ) is the velocity of
light in the direction θ, the experimental result is

1

v(θ)
+

1

v(θ + π)
= const. = C

1

v′(θ)
+

1

v′(θ + π)
= const. = C ′

 (6.3)

for all values of θ. The constancy has been established to
about 1 part in 1010.

It is exceedingly unlikely that the first equation could hold
unless

v(θ) = v(θ + π) = const.;
and it is fairly obvious that the existence of the second
equation excludes the possibility altogether. However, on
account of the great importance of the identification of the
fundamental velocity with the velocity of light, we give a
formal proof.

Let a ray travelling with velocity v traverse a distance R in
a direction θ, so that

dt =
R

v
, dx = R cos θ, dy = R sin θ.
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Let the relative velocity of S and S′ be small so that u2/c2 is
neglected. Then by (5.3)

dt′ = dt+ u dx/c2, dx′ = dx+ u dt, dy′ = dy.

Writing δR, δθ, δv for the change in R, θ, v when a transfor-
mation is made to S′’s system, we obtain

δ(
R

v
) = dt′ − dt =

uR cos θ
c2

,

δ(R cos θ) = dx′ − dx =
uR

v
,

δ(R sin θ) = dy′ − dy = 0.

Whence the values of δR, δθ, δ(1/v) are found as follows:

δR =
uR cos θ

v
,

δθ = −u sin θ
v

,

δ

(
1

v

)
= u cos θ

(
1

c2
− 1

v2

)
.

Here δ(1/v) refers to a comparison of velocities in the
directions θ in S’s system and θ′ in S′’s system. Writing ∆(1/v)

for a comparison when the direction is θ in both systems

∆

(
1

v

)
= δ

(
1

v

)
− ∂

∂θ

(
1

v

)
· δθ

=
u

c2
cos θ − u

v2
cos θ + u sin θ

v

∂

∂θ

(
1

v

)
=
u

c2
cos θ + 1

2
u sin3 θ

∂

∂θ

(
1

v2 sin2 θ

)
.

Hence
∆

(
1

v(θ)
+

1

v(θ + π)

)
= 1

2
u sin3 θ

∂

∂θ

{
1

sin2 θ

(
1

v2(θ)
− 1

v2(θ + π)

)}
.

By (6.3) the left-hand side is independent of θ, and equal to
the constant C ′ − C. We obtain on integration

1

v2(θ)
− 1

v2(θ + π)
=
C ′ − C

u
(sin2 θ · log tan 1

2
θ − cos θ),
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or

1

v(θ)
− 1

v(θ + π)
=
C ′ − C

C
· 1
u
(sin2 θ · log tan 1

2
θ − cos θ).

It is clearly impossible that the difference of 1/v in opposite
directions should be a function of θ of this form; because
the origin of θ is merely the direction of relative motion
of S and S′, which may be changed at will in different
experiments, and has nothing to do with the propagation
of light relative to S. Hence C ′ − C = 0, and v(θ) = v(θ + π).
Accordingly by (6.3) v(θ) is independent of θ; and similarly
v′(θ) is independent of θ. Thus the velocity of light is uniform
in all directions for both observers and is therefore to be
identified with the fundamental velocity.

When this proof is compared with the statement com-
monly (and correctly) made that the equality of the forward
and backward velocity of light cannot be deduced from ex-
periment, regard must be paid to the context. The use of
the Michelson-Morley experiment to fill a particular gap in a
generally deductive argument must not be confused with its
use (e.g. in Space, Time and Gravitation) as the basis of a pure
induction from experiment. Here we have not even used the
fact that it is a second-order experiment. We have deduced
the Lorentz transformation from the fundamental hypothesis
of § 1, and have already introduced a conventional system
of time-reckoning explained in § 4. The present argument
shows that the convention that time is defined by the slow
transport of chronometers is equivalent to the convention
that the forward velocity of light is equal to the backward
velocity. The proof of this equivalence is mainly deductive
except for one hiatus—the connection of the propagation of
light and the fundamental velocity—and for that step appeal
is made to the Michelson-Morley experiment.

The law of composition of velocities (6.2) is well illustrated
by Fizeau’s experiment on the propagation of light along a
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moving stream of water. Let the observer S′ travel with the
stream of water, and let S be a fixed observer. The water is
at rest relatively to S′ and the velocity of the light relative
to him will thus be the ordinary velocity of propagation in
still water, viz. v′ = c/µ, where µ is the refractive index. The
velocity of the stream being w, −w is the velocity of S relative
to S′; hence by (6.2) the velocity v of the light relative to S is

v =
v′ + w

1 + wv′/c2
=

c/µ+ w

1 + w/µc
≈ c/µ+ w(1− 1/µ2)

neglecting the square of w/c.
Accordingly the velocity of the light is not increased by

the full velocity of the stream in which it is propagated, but
by the fraction (1− 1/µ2)w. For water this is about 0.44w. The
effect can be measured by dividing a beam of light into two
parts which are sent in opposite directions round a circulating
stream of water. The factor (1 − 1/µ2) is known as Fresnel’s
convection-coefficient; it was confirmed experimentally by
Fizeau in 1851.

If the velocity of light in vacuo were a constant c′ differing
from the fundamental velocity c, the foregoing calculation
would give for Fresnel’s convection-coefficient

1− c′2

c2
· 1

µ2
.

Thus Fizeau’s experiment provides independent evidence that
the fundamental velocity is at least approximately the same
as the velocity of light. In the most recent repetitions of this
experiment made by Zeeman* the agreement between theory
and observation is such that c′ cannot differ from c by more
than 1 part in 500.

*Amsterdam Proceedings, vol. XVIII, pp. 398 and 1240.
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7. Timelike and spacelike intervals.

We make a slight change of notation, the quantity hitherto
denoted by ds2 being in all subsequent formulae replaced by
−ds2, so that (4.6) becomes

ds2 = c2dt2 − dx2 − dy2 − dz2. (7.1)

There is no particular advantage in this change of sign; it is
made in order to conform to the customary notation.

The formula may give either positive or negative values
of ds2, so that the interval between real events may be a real
or an imaginary number. We call real intervals timelike, and
imaginary intervals spacelike.

From (7.1) (
ds

dt

)2

= c2 −
(
dx

dt

)2

−
(
dy

dt

)2

−
(
dz

dt

)2

= c2 − v2, (7.2)

where v is the velocity of a point describing the track along
which the interval lies. The interval is thus real or imaginary
according as v is less than or greater than c. Assuming
that a material particle cannot travel faster than light, the
intervals along its track must be timelike. We ourselves are
limited by material bodies and therefore can only have direct
experience of timelike intervals. We are immediately aware
of the passage of time without the use of our external senses;
but we have to infer from our sense perceptions the existence
of spacelike intervals outside us.

From any event x, y, z, t, intervals radiate in all directions*
to other events; and the real and imaginary intervals are
separated by the cone

0 = c2 dt2 − dx2 − dy2 − dz2,

*It should be noted that a four-dimensional “direction” corresponds
to velocity in space xyz, for such a direction can be defined by the
expression dx : dy : dz : dt, or u : v : w : 1.
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which is called the null-cone. Since light travels with veloc-
ity c, the track of any light-pulse proceeding from the event
lies on the null-cone. When the g’s are not constants and the
fundamental quadratic form is not reducible to (7.1), there is
still a null-surface, given by ds = 0 in (2.1), which separates
the timelike and spacelike intervals. There can be little doubt
that in this case also the light-tracks lie on the null-surface,
but the property is perhaps scarcely self-evident, and we shall
have to justify it in more detail later.

The formula (6.2) for the composition of velocities in the
same straight line may be written

tanh−1
v/c = tanh−1

v′/c− tanh−1
u/c. (7.3)

The quantity tanh−1
v/c has been called by Robb the rapidity

corresponding to the velocity v. Thus (7.3) shows that relative
rapidities in the same direction compound according to the
simple addition-law. Since tanh−1

1 = ∞ , the velocity of light
corresponds to infinite rapidity. We cannot reach infinite
rapidity by adding any finite number of finite rapidities;
therefore we cannot reach the velocity of light by compound-
ing any finite number of relative velocities less than that of
light.

There is an essential discontinuity between speeds greater
than and less than that of light which is illustrated by the
following example. If two points move in the same direction
with velocities

v1 = c+ ϵ, v2 = c− ϵ

respectively, their relative velocity is by (6.2)

v1 − v2
1− v1v2/c2

=
2ϵ

1− (c2 − ϵ2)/c2
=

2c2

ϵ
,

which tends to infinity as ϵ is made infinitely small! If
the fundamental velocity is exactly 300,000 km. per sec.,
and two points move in the same direction with speeds
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of 300,001 and 299,999 km. per sec., the speed of one
relative to the other is 180,000,000,000 km. per sec. The
barrier at 300,000 km. per sec. is not to be crossed by
approaching it. A particle which is aiming to reach a speed
of 300,001 km. per sec. might naturally hope to attain its
object by continually increasing its speed; but when it has
reached 299,999 km. per sec., and takes stock of the position,
it sees its goal very much farther off than when it started.

A particle of matter is a structure whose linear extension is
timelike. We might perhaps imagine an analogous structure
ranged along a spacelike track. That would be an attempt to
picture a particle travelling with a velocity greater than that
of light; but since the structure would differ fundamentally
from matter as known to us, there seems no reason to think
that it would be recognised by us as a particle of matter, even
if its existence were possible. For a suitably chosen observer a
spacelike track can lie wholly in an instantaneous space. The
structure would exist along a line in space at one moment; at
preceding and succeeding moments it would be non-existent.
Such instantaneous intrusions must profoundly modify the
continuity of evolution from past to future. In default of any
evidence of the existence of these spacelike particles we shall
assume that they are impossible structures.

8. Immediate consciousness of time.

Our minds are immediately aware of a “flight of time”
without the intervention of external senses. Presumably there
are more or less cyclic processes occurring in the brain, which
play the part of a material clock, whose indications the mind
can read. The rough measures of duration made by the
internal time-sense are of little use for scientific purposes,
and physics is accustomed to base time-reckoning on more
precise external mechanisms. It is, however, desirable to
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examine the relation of this more primitive notion of time to
the scheme developed in physics.

Much confusion has arisen from a failure to realise that
time as currently used in physics and astronomy deviates
widely from the time recognised by the primitive time-sense.
In fact the time of which we are immediately conscious is not
in general physical time, but the more fundamental quantity
which we have called interval (confined, however, to timelike
intervals).

Our time-sense is not concerned with events outside
our brains; it relates only to the linear chain of events
along our own track through the world. We may learn
from another observer similar information as to the time-
succession of events along his track. Further we have
inanimate observers—clocks—from which we may obtain
similar information as to their local time-successions. The
combination of these linear successions along different tracks
into a complete ordering of the events in relation to one
another is a problem that requires careful analysis, and is
not correctly solved by the haphazard intuitions of pre-
relativity physics. Recognising that both clocks and time-
sense measure ds between pairs of events along their respective
tracks, we see that the problem reduces to that which we
have already been studying, viz. to pass from a description in
terms of intervals between pairs of events to a description in
terms of coordinates.

The external events which we see appear to fall into
our own local time-succession; but in reality it is not the
events themselves, but the sense-impressions to which they
indirectly give rise, which take place in the time-succession of
our consciousness. The popular outlook does not trouble to
discriminate between the external events themselves and the
events constituted by their light-impressions on our brains;
and hence events throughout the universe are crudely located
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in our private time-sequence. Through this confusion the idea
has arisen that the instants of which we are conscious extend
so as to include external events, and are world-wide; and the
enduring universe is supposed to consist of a succession of
instantaneous states. This crude view was disproved in 1675
by Römer’s celebrated discussion of the eclipses of Jupiter’s
satellites; and we are no longer permitted to locate external
events in the instant of our visual perception of them. The
whole foundation of the idea of world-wide instants was
destroyed 250 years ago, and it seems strange that it should
still survive in current physics. But, as so often happens,
the theory was patched up although its original raison d’être*
had vanished. Obsessed with the idea that the external
events had to be put somehow into the instants of our
private consciousness, the physicist succeeded in removing
the pressing difficulties by placing them not in the instant of
visual perception but in a suitable preceding instant. Physics
borrowed the idea of world-wide instants from the rejected
theory, and constructed mathematical continuations of the
instants in the consciousness of the observer, making in this
way time-partitions throughout the four-dimensional world.
We need have no quarrel with this very useful construction
which gives physical time. We only insist that its artificial
nature should be recognised, and that the original demand
for a world-wide time arose through a mistake. We should
probably have had to invent universal time-partitions in any
case in order to obtain a complete mesh-system; but it might
have saved confusion if we had arrived at it as a deliberate
invention instead of an inherited misconception. If it is found
that physical time has properties which would ordinarily be
regarded as contrary to common sense, no surprise need be
felt; this highly technical construct of physics is not to be

*ground for existence. (Ed.)
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confounded with the time of common sense. It is important
for us to discover the exact properties of physical time; but
those properties were put into it by the astronomers who
invented it.

It is clear from current debates on the relativity theory
that the distinction between the time of consciousness and
the scheme of time in physical and astronomical reckoning
is not always appreciated. The word “time” is in common
use for two distinct quantities which are translated into
mathematical language by different symbols dt and ds. They
present an important contrast, viz.

ds is an invariant; dt is not;
dt is a perfect differential; ds is not;

Naturally confusion will arise when we try to answer such
ambiguious questions as whether time is absolute or whether
two observers have necessarily existed for the same time
between two meetings.

Great prominence has been given to the following deduc-
tion from the theory, which is an example of equation (4.9).
An observer B leaves the earth with a velocity about 15 km.
per sec. less than the velocity of light; after a while his
motion is suddenly reversed and he returns to the earth. His
journey has lasted 1 year as judged by his consciousness, his
physiological growth, or by a chronometer travelling with
him; but he finds that an observer A, who has remained on
the earth, has aged 100 years as judged by similar criteria. So
far there is no real difficulty. Proper-time or “time lived” is
ds; the time of physics and astronomy or “time represented”
is dt. The world-lines of A and B are different tracks which
intersect at the beginning and end of the journey, say at P1

and P2. Since ds is not a perfect differential, ∫ 2

1
ds will be dif-

ferent for the two tracks, i.e. the time lived will be different.
Moreover since the world-line of an undisturbed observer is
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such that this integral is a maximum (15.7) the time lived by A

is greater than that lived by B whose motion was disturbed
by reversal. On the other hand ∫ 2

1
dt is the same for both*,

and physical time was purposely introduced in order to have
a reckoning which would secure this consistency.

It is urged, however, that B is entitled to regard himself
as at rest all the time, and that he will observe A to have
a large velocity relative to him which undergoes a sudden
reversal. From his point of view A is the disturbed person
and ought to have lived the shorter time. We cannot admit
this; disturbance (in the sense here used) is not a question of
point of view; it is absolute. B could if he wished detect the
molecular bombardment or electromagnetic pressure which
reversed his motion; he can learn observationally that it is
he who has been disturbed, not A. But if B knows that he
has undergone an absolute disturbance, is he still entitled
to regard himself as at rest? I do not think we can forbid
him, since he is following our own example. On the surface
of the earth we are disturbed by molecular bombardment of
the ground, yet we consider ourselves at rest; whereas an
undisturbed stone is considered to be accelerated. Thus B

may consider A to be accelerated, but he may not consider
him to be disturbed. It is because the kinematical acceleration
is not generally coordinated with the physical disturbance
that acceleration is relative; if the two were coordinated the
disturbance would become an absolute acceleration.

The problem may be modified by supposing that B reverses
his motion by travelling like a comet round a massive star. In
that case both A and B have “undisturbed” tracks (geodesies),
and we cannot immediately predict which will have lived the
longer proper-time. There is, however, no reason to expect
their lives to be equal; in particular, there is no support for

*I.e., for both as objects observed, not as observers (since dt is not
invariant).
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the idea that B must live through the lost 99 years in the
brief time (dt) occupied by the reversal of his motion. It
is easy to deduce from (38.8) that the proper time for B is
not appreciably altered by substituting a gravitational field
for a supernatural reversal, so that the conclusions of the
elementary theory as to the respective ages of A and B are
upheld.

9. The “3 + 1 dimensional” world.

The constant c2 in (7.1) is positive according to experiments
made in regions of the world accessible to us. The 3 minus
signs with 1 plus sign particularise the world in a way
which we could scarcely have predicted from first principles.
H. Weyl expresses this specialisation by saying that the world
is 3 + 1 dimensional. Some entertainment may be derived by
considering the properties of a 2 + 2 or a 4 + 0 dimensional
world. A more serious question is, Can the world change
its type? Is it possible that in making the reduction of (2.1)

to the sum or difference of squares for some region remote
in space or time, we might have 4 minus signs? I think not;
because if the region exists it must be separated from our
3 + 1 dimensional region by some boundary. On one side of
the boundary we have

ds2 = −dx2 − dy2 − dz2 + c21dt
2,

and on the other side

ds2 = −dx2 − dy2 − dz2 − c22dt
2.

The transition can only occur through a boundary where

ds2 = −dx2 − dy2 − dz2 + 0 dt2,

so that the fundamental velocity is zero. Nothing can move
at the boundary, and no influence can pass from one side
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to another. The supposed region beyond is thus not in any
spatio-temporal relation to our own universe—which is a
somewhat pedantic way of saying that it does not exist.

This barrier is more formidable than that which stops
the passage of light round the world in de Sitter’s spherical
space-time (Space, Time and Gravitation, p. 160). The latter
stoppage was relative to the space and time of a distant
observer; but everything went on normally with respect to
the space and time of an observer at the region itself. But
here we are contemplating a barrier which does not recede as
it is approached.

The passage to a 2 + 2 dimensional world would occur
through a transition region where

ds2 = −dx2 − dy2 + 0 dz2 + c2dt2.

Space here reduces to two dimensions, but there does not
appear to be any barrier. The conditions on the far side,
where time becomes two-dimensional, defy imagination.

10. The FitzGerald contraction.

We shall now consider some of the consequences deducible
from the Lorentz transformation.

The first equation of (5.3) may be written

x′/β = x+ ut,

which shows that S, besides making the allowance ut for the
motion of his origin, divides by β all lengths in the x-direction
measured by S′. On the other hand the equation y′ = y shows
that S accepts S′’s measures in directions transverse to their
relative motion. Let S′ take his standard metre (at rest
relative to him, and therefore moving relative to S) and
point it first in the transverse direction y′ and then in the
longitudinal direction x′. For S′ its length is 1 metre in each
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position, since it is his standard; for S the length is 1 metre
in the transverse position and 1/β metres in the longitudinal
position. Thus S finds that a moving rod contracts when
turned from the transverse to the longitudinal position.

The question remains, How does the length of this moving
rod compare with the length of a similarly constituted rod
at rest relative to S? The answer is that the transverse
dimensions are the same whilst the longitudinal dimensions
are contracted. We can prove this by a reductio ad absurdum.
For suppose that a rod moving transversely were longer than
a similar rod at rest. Take two similar transverse rods A and A′

at rest relatively to S and S′ respectively. Then S must regard
A′ as the longer, since it is moving relatively to him; and
S′ must regard A as the longer, since it is moving relatively to
him. But this is impossible since, according to the equation
y = y′, S and S′ agree as to transverse measures.

We see that the Lorentz transformation (5.1) requires that
(x, y, z, t) and (x′, y′, z′, t′) should be measured with standards of
identical material constitution, but moving respectively with
S and S′. This was really implicit in our deduction of the
transformation, because the property of the two systems is
that they give the same formula (5.2) for the interval; and the
test of complete similarity of the standards is equality of all
corresponding intervals occurring in them.

The fourth equation of (5.1) is

t = β(t′ − ux′/c2).

Consider a clock recording the time t′, which accordingly is
at rest in S′’s system (x′ = const.). Then for any time-lapse by
this clock, we have

δt = β δt′,

since δx′ = 0. That is to say, S does not accept the time as
recorded by this moving clock, but multiplies its readings
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by β, as though the clock were going slow. This agrees with
the result already found in (4.9).

It may seem strange that we should be able to deduce the
contraction of a material rod and the retardation of a material
clock from the general geometry of space and time. But it
must be remembered that the contraction and retardation do
not imply any absolute change in the rod and clock. The
“configuration of events” constituting the four-dimensional
structure which we call a rod is unaltered; all that happens
is that the observer’s space and time partitions cross it in a
different direction.

Further we make no prediction as to what would happen
to the rod set in motion in an actual experiment. There
may or may not be an absolute change of the configuration
according to the circumstances by which it is set in motion.
Our results apply to the case in which the rod after being set
in motion is (according to all experimental tests) found to be
similar to the rod in its original state of rest*.

When a number of phenomena are connected together it
becomes somewhat arbitrary to decide which is to be regarded
as the explanation of the others. To many it will seem easier
to regard the strange property of the fundamental velocity as
explained by these differences of behaviour of the observers’
clocks and scales. They would say that the observers arrive at
the same value of the velocity of light because they omit the
corrections which would allow for the different behaviour of
their measuring-appliances. That is the relative point of view,
in which the relative quantities, length, time, etc., are taken
as fundamental. From the absolute point of view, which has

*It may be impossible to change the motion of a rod without
causing a rise of temperature. Our conclusions will then not apply
until the temperature has fallen again, i.e. until the temperature-test
shows that the rod is precisely similar to the rod before the change of
motion.
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regard to intervals only, the standards of the two observers
are equal and behave similarly; the so-called explanations of
the invariance of the velocity of light only lead us away from
the root of the matter.

Moreover the recognition of the FitzGerald contraction
does not enable us to avoid paradox. From (5.3) we found that
S′’s longitudinal measuring-rods were contracted relatively to
those of S. From (5.1) we can show similarly that S’s rods
are contracted relatively to those of S′. There is complete
reciprocity between S and S′. This paradox is discussed more
fully in Space, Time and Gravitation, p. 55.

11. Simultaneity at different places.

It will be seen from the fourth equation of (5.1), viz.

t = β(t′ − ux′/c2),

that events at different places which are simultaneous for S′

are not in general simultaneous for S. In fact, if dt′ = 0,

dt = −βu dx′/c2. (11.1)

It is of some interest to examine in detail how this
difference of reckoning of simultaneity arises. It has been
explained in § 4 that by convention the time at two places
is compared by transporting a clock from one to the other
with infinitesimal velocity. Our formulae are based on
this convention; and, of course, (11.1) will only be true if
the convention is adhered to. The fact that infinitesimal
velocity relative to S′ is not the same as infinitesimal velocity
relative to S, leaves room for the discrepancy of reckoning
of simultaneity to creep in. Consider two points A and B at
rest relative to S′, and distant x′ apart. Take a clock at A and
move it gently to B by giving it an infinitesimal velocity du′

for a time x′/du′. Owing to the motion, the clock will by (4.9)
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be retarded in the ratio (1 − du′2/c2)−

1
2 ; this continues for a

time x′/du′ and the total loss is thus{
1− (1− du′2/c2)

1
2
}
x′/du′,

which tends to zero when du′ is infinitely small. S′ may
accordingly accept the result of the comparison without
applying any correction for the motion of the clock.

Now consider S’s view of this experiment. For him the
clock had already a velocity u, and accordingly the time
indicated by the clock is only (1 − u2/c2)

1
2 of the true time

for S. By differentiation, an additional velocity du* causes a
supplementary loss

(1− u2/c2)−
1
2u du/c2 clock seconds (11.2)

per true second. Owing to the FitzGerald contraction of the
length AB, the distance to be travelled is x′/β, and the journey
will occupy a time

x′/β du true seconds. (11.3)

Multiplying (11.2) and (11.3), the total loss due to the journey
is

ux′/c2 clock seconds,
or

βux′/c2 true seconds for S. (11.4)

Thus, whilst S′ accepts the uncorrected result of the
comparison, S has to apply a correction βux′/c2 for the
disturbance of the chronometer through transport. This is
precisely the difference of their reckonings of simultaneity
given by (11.1).

In practice an accurate comparison of time at differ-
ent places is made, not by transporting chronometers, but

*Note that du will not be equal to du′.
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by electromagnetic signals—usually wireless time-signals for
places on the earth, and light-signals for places in the solar
system or stellar universe. Take two clocks at A and B,
respectively. Let a signal leave A at clock-time t1, reach B at
time tB by the clock at B, and be reflected to reach A again at
time t2. The observer S′, who is at rest relatively to the clocks,
will conclude that the instant tB at B was simultaneous with
the instant 1

2
(t1 + t2) at A, because he assumes that the forward

velocity of light is equal to the backward velocity. But for S
the two clocks are moving with velocity u; therefore he cal-
culates that the outward journey will occupy a time x/(c − u)

and the homeward journey a time x/(c+ u). Now

x

c− u
=
x(c+ u)

c2 − u2
=
β2x

c2
(c+ u),

x

c+ u
=
x(c− u)

c2 − u2
=
β2x

c2
(c+ u).

Thus the instant tB of arrival at B must be taken as β2xu/c2 later
than the half-way instant 1

2
(t1 + t2). This correction applied

by S, but not by S′, agrees with (11.4) when we remember that
owing to the FitzGerald contraction x = x′/β.

Thus the same difference in the reckoning of simultaneity
by S and S′ appears whether we use the method of transport
of clocks or of light-signals. In either case a convention
is introduced as to the reckoning of time-differences at
different places; this convention takes in the two methods
the alternative forms—

(1) A clock moved with infinitesimal velocity from one
place to another continues to read the correct time at its new
station, or

(2) The forward velocity of light along any line is equal to
the backward velocity*.

*The chief case in which we require for practical purposes an
accurate convention as to the reckoning of time at places distant from
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Neither statement is by itself a statement of observable

fact, nor does it refer to any intrinsic property of clocks or
of light; it is simply an announcement of the rule by which
we propose to extend fictitious time-partitions through the
world. But the mutual agreement of the two statements is a
fact which could be tested by observation, though owing to
the obvious practical difficulties it has not been possible to
verify it directly. We have here given a theoretical proof of
the agreement, depending on the truth of the fundamental
axiom of § 1.

The two alternative forms of the convention are closely
connected. In general, in any system of time-reckoning, a
change du in the velocity of a clock involves a change of
rate proportional to du, but there is a certain turning-point
for which the change of rate is proportional to du2. In
adopting a time-reckoning such that this stationary point
corresponds to his own motion, the observer is imposing a
symmetry on space and time with respect to himself, which
may be compared with the symmetry imposed in assuming
a constant velocity of light in all directions. Analytically we
imposed the same general symmetry by adopting (4.6) instead
of (4.7) as the form for ds2, making our space-time reckoning
symmetrical with respect to the interval and therefore with
respect to all observational criteria.

12. Momentum and mass.

Besides possessing extension in space and time, matter
possesses inertia. We shall show in due course that inertia,

the earth, is in calculating the elements and mean places of planets and
comets. In these computations the velocity of light in any direction is
taken to be 300,000 km. per sec., an assumption which rests on the
convention (2). All experimental methods of measuring the velocity
of light determine only an average to-and-fro velocity.
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like extension, is expressible in terms of the interval relation;
but that is a development belonging to a later stage of our
theory. Meanwhile we give an elementary treatment based
on the empirical laws of conservation of momentum and
energy rather than on any deep-seated theory of the nature
of inertia.

For the discussion of space and time we have made use of
certain ideal apparatus which can only be imperfectly realised
in practice—rigid scales and perfect cyclic mechanisms or
clocks, which always remain similar configurations from the
absolute point of view. Similarly for the discussion of inertia
we require some ideal material object, say a perfectly elastic
billiard ball, whose condition as regards inertial properties
remains constant from an absolute point of view. The
difficulty that actual billiard balls are not perfectly elastic
must be surmounted in the same way as the difficulty that
actual scales are not rigid. To the ideal billiard ball we can
affix a constant number, called the invariant mass*, which
will denote its absolute inertial properties; and this number
is supposed to remain unaltered throughout the vicissitudes
of its history, or, if temporarily disturbed during a collision,
is restored at the times when we have to examine the state of
the body.

With the customary definition of momentum, the com-
ponents

M
dx

dt
, M

dy

dt
, M

dz

dt
(12.1)

cannot satisfy a general law of conservation of momentum
unless the mass M is allowed to vary with the velocity. But
with the slightly modified definition

m
dx

ds
, m

dy

ds
, m

dz

ds
(12.2)

the law of conservation can be satisfied simultaneously in all

*Or proper-mass.
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space-time systems, m being an invariant number. This was
shown in Space, Time and Gravitation, p. 142.

Comparing (12.1) and (12.2), we have

M = m
dt

ds
. (12.3)

We call m the invariant mass, and M the relative mass, or
simply the mass.

The term “invariant” signifies unchanged for any transfor-
mation of coordinates, and, in particular, the same for all
observers; constancy during the life-history of the body is an
additional property of m attributed to our ideal billiard balls,
but not assumed to be true for matter in general.

Choosing units of length and time so that the velocity of
light is unity, we have by (7.2)

ds

dt
= (1− v2)

1
2 .

Hence by (12.3)

M = m(1− v2)−
1
2 . (12.4)

The mass increases with the velocity by the same factor as
that which gives the FitzGerald contraction; and when v = 0,
M = m. The invariant mass is thus equal to the mass at rest.

It is natural to extend (12.2) by adding a fourth component,
thus

m
dx

ds
, m

dy

ds
, m

dz

ds
, m

dt

ds
. (12.5)

By (12.3) the fourth component is equal to M . Thus the mo-
menta and mass (relative mass) form together a symmetrical
expression, the momenta being space-components, and the
mass the time-component. We shall see later that the expres-
sion (12.5) constitutes a vector, and the laws of conservation of
momentum and mass assert the conservation of this vector.

The following is an analytical proof of the law of variation
of mass with velocity directly from the principle of conser-
vation of mass and momentum. Let M1, M ′

1 be the mass of
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a body as measured by S and S′ respectively, v1, v′1 being its
velocity in the x-direction. Writing

β1 = (1− v21/c
2)−

1
2 , β′

1 = (1− v′21 /c
2)−

1
2 , β = (1− u2/c2)−

1
2 ,

we can easily verify from (6.2) that

β1v1 = ββ′
1(v

′
1 − u). (12.6)

Let a number of such particles be moving in a straight
line subject to the conservation of mass and momentum as
measured by S′, viz.∑

M ′
1 and

∑
M ′

1v
′
1 are conserved.

Since β and u are constants it follows that∑
M ′

1β(v
′
1 − u) is conserved.

Therefore by (12.6)∑
M ′

1β1v1/β
′
1 is conserved. (12.71)

But since momentum must also be conserved for the ob-
server S ∑

M1v1 is conserved. (12.72)

The results (12.71) and (12.72) will agree if

M1/β1 =M ′
1/β

′
1,

and it is easy to see that there can be no other general
solution. Hence for different values of v1, M1 is proportional
to β1, or

M = m(1− v2/c2)−
1
2 ,

where m is a constant for the body.
It requires a greater impulse to produce a given change of

velocity δv in the original direction of motion than to produce
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an equal change δw at right angles to it. For the momenta in
the two directions are initially

mv(1− v2/c2)−
1
2 , 0,

and after a change δv, δw, they become

m(v + δv)
[
1−

{
(v + δv)2 + (δw)2

}
/c2

]− 1
2 ,

m δw
[
1−

{
(v + δv)2 + (δw)2

}
/c2

]− 1
2 .

Hence to the first order in δv, δw the changes of momentum
are

m(1− v2/c2)−
3
2 δv, m(1− v2/c2)−

1
2 δw,

or
Mβ2 δv, M δw,

where β is the FitzGerald factor for velocity v. The coefficient
Mβ2 was formerly called the longitudinal mass, M being the
transverse mass; but the longitudinal mass is of no particular
importance in the general theory, and the term is dropping
out of use.

13. Energy.

When the units are such that c = 1, we have

M = m(1− v2)−
1
2

= m+ 1
2
mv2 approximately, (13.1)

if the speed is small compared with the velocity of light. The
second term is the kinetic energy, so that the change of mass
is the same as the change of energy, when the velocity alters.
This suggests the identification of mass with energy. It may
be recalled that in mechanics the total energy of a system is
left vague to the extent of an arbitrary additive constant, since
only changes of energy are defined. In identifying energy
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with mass we fix the additive constant m for each body, and
m may be regarded as the internal energy of constitution of
the body.

The approximation used in (13.1) does not invalidate the
argument. Consider two ideal billiard balls colliding. The
conservation of mass (relative mass) states that∑

m(1− v2)−
1
2 is unaltered.

The conservation of energy states that∑
m(1 + 1

2
v2) is unaltered.

But if both statements were exactly true we should have two
equations determining unique values of the speeds of the
two balls; so that these speeds could not be altered by the
collision. The two laws are not independent, but one is an
approximation to the other. The first is the accurate law
since it is independent of the space-time frame of reference.
Accordingly the expression 1

2
mv2 for the kinetic energy in

elementary mechanics is only an approximation in which
terms in v4, etc. are neglected.

When the units of length and time are not restricted by
the condition c = 1, the relation between the mass M and the
energy E is

M = E/c2. (13.2)

Thus the energy corresponding to a gram is 9 · 1020 ergs. This
does not affect the identity of mass and energy—that both are
measures of the same world-condition. A world-condition
can be examined by different kinds of experimental tests,
and the units gram and erg are associated with different tests
of the mass-energy condition. But when once the measure
has been made it is of no consequence to us which of the
experimental methods was chosen, and grams or ergs can be
used indiscriminately as the unit of mass. In fact, measures
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made by energy-tests and by mass-tests are convertible like
measures made with a yard-rule and a metre-rule.

The principle of conservation of mass has thus become
merged in the principle of conservation of energy. But
there is another independent phenomenon which perhaps
corresponds more nearly to the original idea of Lavoisier
when he enunciated the law of conservation of matter. I refer
to the permanence of invariant mass attributed to our ideal
billiard balls but not supposed to be a general property of
matter. The conservation of m is an accidental property like
rigidity; the conservation of M is an invariable law of nature.

When radiant heat falls on a billiard ball so that its
temperature rises, the increased energy of motion of the
molecules causes an increase of mass M . The invariant
mass m also increases since it is equal to M for a body at
rest. There is no violation of the conservation of M , because
the radiant heat has mass M which it transfers to the ball;
but we shall show later that the electromagnetic waves have
no invariant mass, and the addition to m is created out of
nothing. Thus invariant mass is not conserved in general.

To some extent we can avoid this failure by taking the
microscopic point of view. The billiard ball can be analysed
into a very large number of constituents—electrons and
protons—each of which is believed to preserve the same
invariant mass for life. But the invariant mass of the
billiard ball is not exactly equal to the sum of the invariant
masses of its constituents*. The permanence and permanent
similarity of all electrons seems to be the modern equivalent
of Lavoisier’s “conservation of matter.” It is still uncertain
whether it expresses a universal law of nature; and we are

*This is because the invariant mass of each electron is its relative
mass referred to axes moving with it; the invariant mass of the billiard
ball is the relative mass referred to axes at rest in the billiard ball as a
whole.
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willing to contemplate the possibility that occasionally a
positive and negative electron may coalesce and annul one
another. In that case the mass M would pass into the
electromagnetic waves generated by the catastrophe, whereas
the invariant mass m would disappear altogether. Again
if ever we are able to synthesise helium out of hydrogen,
0.8% of the invariant mass will be annihilated, whilst the
corresponding proportion of relative mass will be liberated as
radiant energy.

It will thus be seen that although in the special problems
considered the quantity m is usually supposed to be perma-
nent, its conservation belongs to an altogether different order
of ideas from the universal conservation of M .

14. Density and temperature.

Consider a volume of space delimited in some invariant
way, e.g. the content of a material box. The counting of a
number of discrete particles continually within (i.e. moving
with) the box is an absolute operation; let the absolute
number be N . The volume V of the box will depend on
the space-reckoning, being decreased in the ratio β for an
observer moving relatively to the box and particles, owing to
the FitzGerald contraction of one of the dimensions of the
box. Accordingly the particle-density σ = N/V satisfies

σ′ = σβ, (14.1)

where σ′ is the particle-density for an observer in relative
motion, and σ the particle-density for an observer at rest
relative to the particles.

It follows that the mass-density ρ obeys the equation
ρ′ = ρβ2, (14.2)

since the mass of each particle is increased for the moving
observer in the ratio β.
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Quantities referred to the space-time system of an ob-

server moving with the body considered are often distin-
guished by the prefix proper- (German, Eigen-), e.g. proper-
length, proper-volume, proper-density, proper-mass = in-
variant mass.

The transformation of temperature for a moving observer
does not often concern us. In general the word obviously
means proper-temperature, and the motion of the observer
does not enter into consideration. In thermometry and in the
theory of gases it is essential to take a standard with respect
to which the matter is at rest on the average, since the
indication of a thermometer moving rapidly through a fluid
is of no practical interest. But thermodynamical temperature
is defined by

dS = dM/T, (14.3)

where dS is the change of entropy for a change of energy dM .
The temperature T defined by this equation will depend on
the observer’s frame of reference. Entropy is clearly meant
to be an invariant, since it depends on the probability of
the statistical state of the system compared with other states
which might exist. Hence T must be altered by motion in
the same way as dM , that is to say

T ′ = βT. (14.4)

But it would be useless to apply such a transformation to the
adiabatic gas-equation

T = kργ−1,

for, in that case, T is evidently intended to signify the
proper-temperature and ρ the proper-density.

In general it is unprofitable to apply the Lorentz trans-
formation to the constitutive equations of a material medium
and to coefficients occurring in them (permeability, specific
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inductive capacity, elasticity, velocity of sound). Such equa-
tions naturally take a simpler and more significant form for
axes moving with the matter. The transformation to mov-
ing axes introduces great complications without any evident
advantages, and is of little interest except as an analytical
exercise.

15. General transformations of coordinates.

We obtain a transformation of coordinates by taking new
coordinates x′

1, x′
2, x′

3, x′
4 which are any four functions of the

old coordinates x1, x2, x3, x4. Conversely, x1, x2, x3, x4 are
functions of x′

1, x′
2, x′

3, x′
4. It is assumed that multiple values

are excluded, at least in the region considered, so that values
of (x1, x2, x3, x4) and (x′

1, x
′
2, x

′
3, x

′
4) correspond one to one.

If

x1 = f1(x
′
1, x

′
2, x

′
3, x

′
4); x2 = f2(x

′
1, x

′
2, x

′
3, x

′
4); etc.,

dx1 =
∂f1
∂x′

1

dx′
1 +

∂f1
∂x′

2

dx′
2 +

∂f1
∂x′

3

dx′
3 +

∂f1
∂x′

4

dx′
4; etc., (15.1)

or it may be written simply,

dx1 =
∂x1

∂x′
1

dx′
1 +

∂x1

∂x′
2

dx′
2 +

∂x1

∂x′
3

dx′
3 +

∂x1

∂x′
4

dx′
4; etc., (15.2)

Substituting from (15.2) in (2.1) we see that ds2 will be a
homogeneous quadratic function of the differentials of the
new coordinates; and the new coefficients g′11, g′22, etc. could
be written down in terms of the old, if desired.

For an example consider the usual transformation to axes
revolving with constant angular velocity ω, viz.

x = x′
1 cosωx′

4 − x′
2 sinωx′

4

y = x′
1 sinωx′

4 + x′
2 cosωx′

4

z = x′
3

t = x′
4


. (15.3)
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Hence

dx = dx′
1 cosωx′

4 − dx′
2 sinωx′

4 + ω(−x′
1 sinωx′

4 − x′
2 cosωx′

4) dx
′
4,

dy = dx′
1 sinωx′

4 + dx′
2 cosωx′

4 + ω(x′
1 cosωx′

4 − x′
2 sinωx′

4) dx
′
4,

dz = dx′
3,

dt = dx′
4.

Taking units of space and time so that c = 1, we have for our
original fixed coordinates by (7.1)

ds2 = −dx2 − dy2 − dz2 + dt2.

Hence, substituting the values found above,

ds2 = −dx′2
1 − dx′2

2 − dx′2
3 +

{
1− ω2(x′2

1 + x′2
2 )

}
dx′2

4

+ 2ωx′
2 dx

′
1 dx

′
4 − 2ωx′

1 dx
′
2 dx

′
4. (15.4)

Remembering that all observational differences of coordi-
nate-systems must arise via the interval, this formula must
comprise everything which distinguishes the rotating system
from a fixed system of coordinates.

In the transformation (15.3) we have paid no attention to
any contraction of the standards of length or retardation of
clocks due to motion with the rotating axes. The formulae
of transformation are those of elementary kinematics, so
that x′

1, x′
2, x′

3, x′
4 are quite strictly the coordinates used in the

ordinary theory of rotating axes. But it may be suggested that
elementary kinematics is now seen to be rather crude, and
that it would be worth while to touch up the formulae (15.3) so
as to take account of these small changes of the standards. A
little consideration shows that the suggestion is impracticable.
It was shown in § 4 that if x′

1, x′
2, x′

3, x′
4 represent rectangular

coordinates and time as partitioned by direct readings of
scales and clocks, then

ds2 = −dx′2
1 − dx′2

2 − dx′2
3 + c2dx′2

4 , (15.45)
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so that coordinates which give any other formula for the
interval cannot represent the immediate indications of scales
and clocks. As shown at the end of § 5, the only transfor-
mations which give (15.45) are Lorentz transformations. If we
wish to make a transformation of a more general kind, such
as that of (15.3), we must necessarily abandon the association
of the coordinate-system with uncorrected scale and clock
readings. It is useless to try to “improve” the transformation
to rotating axes, because the supposed improvement could
only lead us back to a coordinate-system similar to the fixed
axes with which we started.

The inappropriateness of rotating axes to scale and clock
measurements can be regarded from a physical point of view.
We cannot keep a scale or clock at rest in the rotating
system unless we constrain it, i.e. subject it to molecular
bombardment—an “outside influence” whose effect on the
measurements must not be ignored.

In the x, y, z, t system of coordinates the scale and clock are
the natural equipment for exploration. In other systems they
will, if unconstrained, continue to measure ds; but the reading
of ds is no longer related in a simple way to the differences
of coordinates which we wish to determine; it depends on
the more complicated calculations involved in (2.1). The scale
and clock to some extent lose their pre-eminence, and since
they are rather elaborate appliances it may be better to refer
to some simpler means of exploration. We consider then two
simpler test-objects—the moving particle and the light-pulse.

In ordinary rectangular coordinates and time x, y, z, t an
undisturbed particle moves with uniform velocity, so that its
track is given by the equations

x = a+ bt, y = c+ dt, z = e+ ft, (15.5)

i.e. the equations of a straight line in four dimensions. By
substituting from (15.3) we could find the equations of the
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track in rotating coordinates; or by substituting from (15.2)

we could obtain the differential equations for any desired
coordinates. But there is another way of proceeding. The
differential equations of the track may be written

d2x

ds2
,

d2y

ds2
,

d2z

ds2
,

d2t

ds2
= 0, (15.6)

which on integration, having regard to the condition (7.1),
give equations (15.5).

The equations (15.6) are comprised in the single statement∫
ds is stationary (15.7)

for all arbitrary small variations of the track which vanish
at the initial and final limits—a well-known property of the
straight line.

In arriving at (15.7) we use freely the geometry of the x, y,
z, t system given by (7.1); but the final result does not allude
to coordinates at all, and must be unaltered whatever system
of coordinates we are using. To obtain explicit equations for
the track in any desired system of coordinates, we substitute
in (15.7) the appropriate expression (2.1) for ds and apply the
calculus of variations. The actual analysis will be given in
§ 28.

The track of a light-pulse, being a straight line in four
dimensions, will also satisfy (15.7); but the light-pulse has
the special velocity c which gives the additional condition
obtained in § 7, viz.

ds = 0. (15.8)

Here again there is no reference to any coordinates in the
final result.

We have thus obtained equations (15.7) and (15.8) for the
behaviour of the moving particle and light-pulse which must
hold good whatever the coordinate-system chosen. The
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indications of our two new test-bodies are connected with
the interval, just as in § 3 the indications of the scale and
clock were connected with the interval. It should be noticed
however that whereas the use of the older test-bodies depends
only on the truth of the fundamental axiom, the use of the
new test-bodies depends on the truth of the empirical laws
of motion and of light-propagation. In a deductive theory
this appeal to empirical laws is a blemish which we must
seek to remove later.

16. Fields of force.

Suppose that an observer has chosen a definite system of
space-coordinates and of time-reckoning (x1, x2, x3, x4) and that
the geometry of these is given by

ds2 = g11 dx
2
1 + g22 dx

2
2 + . . .+ 2g12 dx1 dx2 + . . . . (16.1)

Let him be under the mistaken impression that the geometry
is

ds20 = −dx2
1 − dx2

2 − dx2
3 + dx2

4, (16.2)

that being the geometry with which he is most familiar in
pure mathematics. We use ds0 to distinguish his mistaken
value of the interval. Since intervals can be compared
by experimental methods, he ought soon to discover that
his ds cannot be reconciled with observational results, and
so realise his mistake. But the mind does not so readily
get rid of an obsession. It is more likely that our observer
will continue in his opinion, and attribute the discrepancy
of the observations to some influence which is present and
affects the behaviour of his test-bodies. He will, so to speak,
introduce a supernatural agency which he can blame for the
consequences of his mistake. Let us examine what name he
would apply to this agency.



CH. I FIELDS OF FORCE 80
Of the four test-bodies considered the moving particle is

in general the most sensitive to small changes of geometry,
and it would be by this test that the observer would first
discover discrepancies. The path laid down for it by our
observer is ∫

ds0 is stationary,

i.e. a straight line in the coordinates (x1, x2, x3, x4). The particle,
of course, pays no heed to this, and moves in the different
track ∫

ds is stationary.

Although apparently undisturbed it deviates from “uniform
motion in a straight line.” The name given to any agency
which causes deviation from uniform motion in a straight
line is force according to the Newtonian definition of force.
Hence the agency invoked through our observer’s mistake is
described as a “field of force.”

The field of force is not always introduced by inadvertence
as in the foregoing illustration. It is sometimes introduced
deliberately by the mathematician, e.g. when he introduces
the centrifugal force. There would be little advantage and
many disadvantages in banishing the phrase “field of force”
from our vocabulary. We shall therefore regularise the
procedure which our observer has adopted. We call (16.2)

the abstract geometry of the system of coordinates (x1, x2, x3, x4);
it may be chosen arbitrarily by the observer. The natural
geometry is (16.1).

A field of force represents the discrepancy between the nat-
ural geometry of a coordinate-system and the abstract geometry
arbitrarily ascribed to it.

A field of force thus arises from an attitude of mind.
If we do not take our coordinate-system to be something
different from that which it really is, there is no field of
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force. If we do not regard our rotating axes as though they
were non-rotating, there is no centrifugal force.

Coordinates for which the natural geometry is

ds2 = −dx2
1 − dx2

2 − dx2
3 + dx2

4

are called Galilean coordinates. They are the same as those
we have hitherto called ordinary rectangular coordinates and
time (the velocity of light being unity). Since this geometry
is familiar to us, and enters largely into current conceptions
of space, time and mechanics, we usually choose Galilean
geometry when we have to ascribe an abstract geometry. Or
we may use slight modifications of it, e.g. substitute polar for
rectangular coordinates.

It has been shown in § 4 that when the g’s are constants,
coordinates can be chosen so that Galilean geometry is actu-
ally the natural geometry. There is then no need to introduce
a field of force in order to enjoy our accustomed outlook;
and if we deliberately choose non-Galilean coordinates and
attribute to them abstract Galilean geometry, we recognise
the artificial character of the field of force introduced to
compensate the discrepancy. But in the more general case
it is not possible to make the reduction of § 4 accurately
throughout the region explored by our experiments; and no
Galilean coordinates exist. In that case it has been usual
to select some system (preferably an approximation to a
Galilean system) and ascribe to it the abstract geometry of
the Galilean system. The field of force so introduced is called
“Gravitation.”

It should be noticed that the rectangular coordinates and
time in current use can scarcely be regarded as a close
approximation to the Galilean system, since the powerful
force of terrestrial gravitation is needed to compensate the
error.

The naming of coordinates (e.g. time) usually follows the
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abstract geometry attributed to the system. In general the
natural geometry is of some complicated kind for which no
detailed nomenclature is recognised. Thus when we call a
coordinate t the “time,” we may either mean that it fulfils the
observational conditions discussed in § 4, or we may mean
that any departure from those conditions will be ascribed to
the interference of a field of force. In the latter case “time”
is an arbitrary name, useful because it fixes a consequential
nomenclature of velocity, acceleration, etc.

To take a special example, an observer at a station on the
earth has found a particular set of coordinates x1, x2, x3, x4 best
suited to his needs. He calls them x, y, z, t in the belief that
they are actually rectangular coordinates and time, and his
terminology—straight line, circle, density, uniform velocity,
etc.—follows from this identification. But, as shown in § 4,
this nomenclature can only agree with the measures made by
clocks and scales provided (16.2) is satisfied; and if (16.2) is
satisfied, the tracks of undisturbed particles must be straight
lines. Experiment immediately shows that this is not the
case; the tracks of undisturbed particles are parabolas. But
instead of accepting the verdict of experiment and admitting
that x1, x2, x3, x4 are not what he supposed they were, our
observer introduces a field of force to explain why his test
is not fulfilled. A certain part of this field of force might
have been avoided if he had taken originally a different set of
coordinates (not rotating with the earth); and in so far as the
field of force arises on this account it is generally recognised
that it is a mathematical fiction—the centrifugal force. But
there is a residuum which cannot be got rid of by any choice
of coordinates; there exists no extensive coordinate-system
having the simple properties which were ascribed to x, y, z, t.
The intrinsic nature of space-time near the earth is not of the
kind which admits coordinates with Galilean geometry. This
irreducible field of force constitutes the field of terrestrial



CH. I THE PRINCIPLE OF EQUIVALENCE 83
gravitation. The statement that space-time round the earth
is “curved”—that is to say, that it is not of the kind which
admits Galilean coordinates—is not an hypothesis; it is an
equivalent expression of the observed fact that an irreducible
field of force is present, having regard to the Newtonian
definition of force. It is this fact of observation which
demands the introduction of non-Galilean space-time and
non-Euclidean space into the theory.

17. The Principle of Equivalence.

In § 15 we have stated the laws of motion of undisturbed
material particles and of light-pulses in a form independent
of the coordinates chosen. Since a great deal will depend
upon the truth of these laws it is desirable to consider what
justification there is for believing them to be both accurate
and universal. Three courses are open:

(a) It will be shown in Chapters IV and VI that these
laws follow rigorously from a more fundamental discussion
of the nature of matter and of electromagnetic fields; that
is to say, the hypotheses underlying them may be pushed a
stage further back.

(b) The track of a moving particle or light-pulse under
specified initial conditions is unique, and it does not seem to
be possible to specify any unique tracks in terms of intervals
only other than those given by equations (15.7) and (15.8).

(c) We may arrive at these laws by induction from experi-
ment.

If we rely solely on experimental evidence we cannot
claim exactness for the laws. It goes without saying that
there always remains a possibility of small amendments of
the laws too slight to affect any observational tests yet
tried. Belief in the perfect accuracy of (15.7) and (15.8) can
only be justified on the theoretical grounds (a) or (b). But
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the more important consideration is the universality, rather
than the accuracy, of the experimental laws; we have to
guard against a spurious generalisation extended to conditions
intrinsically dissimilar from those for which the laws have
been established observationally.

We derived (15.7) from the equations (15.5) which describe
the observed behaviour of a particle moving under no field of
force. We assume that the result holds in all circumstances.
The risky point in the generalisation is not in introducing a
field of force, because that may be due to an attitude of mind
of which the particle has no cognizance. The risk is in passing
from regions of the world where Galilean coordinates (x, y, z, t)

are possible to intrinsically dissimilar regions where no such
coordinates exist—from flat space-time to space-time which
is not flat.

The Principle of Equivalence asserts the legitimacy of this
generalisation. It is essentially an hypothesis to be tested
by experiment as opportunity offers. Moreover it is to be
regarded as a suggestion, rather than a dogma admitting of
no exceptions. It is likely that some of the phenomena will be
determined by comparatively simple equations in which the
components of curvature of the world do not appear; such
equations will be the same for a curved region as for a flat
region. It is to these that the Principle of Equivalence applies.
It is a plausible suggestion that the undisturbed motion of
a particle and the propagation of light are governed by laws
of this specially simple type; and accordingly (15.7) and (15.8)

will apply in all circumstances. But there are more complex
phenomena governed by equations in which the curvatures of
the world are involved; terms containing these curvatures will
vanish in the equations summarising experiments made in a
flat region, and would have to be reinstated in passing to the
general equations. Clearly there must be some phenomena
of this kind which discriminate between a flat world and
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a curved world; otherwise we could have no knowledge of
world-curvature. For these the Principle of Equivalence
breaks down.

The Principle of Equivalence thus asserts that some of
the chief differential equations of physics are the same for a
curved region of the world as for an osculating flat region*.
There can be no infallible rule for generalising experimental
laws; but the Principle of Equivalence offers a suggestion for
trial, which may be expected to succeed sometimes, and fail
sometimes.

The Principle of Equivalence has played a great part as a
guide in the original building up of the generalised relativity
theory; but now that we have reached the new view of the
nature of the world it has become less necessary. Our present
exposition is in the main deductive. We start with a general
theory of world-structure and work down to the experimental
consequences, so that our progress is from the general to the
special laws, instead of vice versa.

18. Retrospect.

The investigation of the external world in physics is a
quest for structure rather than substance. A structure can best
be represented as a complex of relations and relata; and in
conformity with this we endeavour to reduce the phenomena
to their expressions in terms of the relations which we call
intervals and the relata which we call events.

If two bodies are of identical structure as regards the
complex of interval relations, they will be exactly similar as

*The correct equations for a curved world will necessarily include
as a special case those already obtained for a flat world. The practical
point on which we seek the guidance of the Principle of Equivalence
is whether the equations already obtained for a flat world will serve as
they stand or will require generalisation.
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regards observational properties*, if our fundamental hypoth-
esis is true. By this we show that experimental measurements
of lengths and duration are equivalent to measurements of
the interval relation.

To the events we assign four identification-numbers or
coordinates according to a plan which is arbitrary within wide
limits. The connection between our physical measurements of
interval and the system of identification-numbers is expressed
by the general quadratic form (2.1). In the particular case
when these identification-numbers can be so assigned that
the product terms in the quadratic form disappear leaving
only the four squares, the coordinates have the metrical
properties belonging to rectangular coordinates and time,
and are accordingly so identified. If any such system exists
an infinite number of others exist connected with it by the
Lorentz transformation, so that there is no unique space-time
frame. The relations of these different space-time reckonings
have been considered in detail. It is shown that there must
be a particular speed which has the remarkable property that
its value is the same for all these systems; and by appeal to
the Michelson-Morley experiment or to Fizeau’s experiment
it is found that this is a distinctive property of the speed of
light.

But it is not possible throughout the world to choose
coordinates fulfilling the current definitions of rectangular
coordinates and time. In such cases we usually relax the
definitions, and attribute the failure of fulfilment to a field
of force pervading the region. We have now no definite
guide in selecting what coordinates to take as rectangular
coordinates and time; for whatever the discrepancy, it can
always be ascribed to a suitable field of force. The field

*At present this is limited to extensional properties (in both space
and time). It will be shown later that all mechanical properties are also
included. Electromagnetic properties require separate consideration.
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of force will vary according to the system of coordinates
selected; but in the general case it is not possible to get rid of
it altogether (in a large region) by any choice of coordinates.
This irreducible field of force is ascribed to gravitation. It
should be noticed that the gravitational influence of a massive
body is not properly expressed by a definite field of force,
but by the property of irreducibility of the field of force. We
shall find later that the irreducibility of the field of force is
equivalent to what in geometrical nomenclature is called a
curvature of the continuum of space-time.

For the fuller study of these problems we require a special
mathematical calculus which will now be developed ab initio.



CHAPTER II
THE TENSOR CALCULUS

19. Contravariant and covariant vectors.

WE consider the transformation from one system of
coordinates x1, x2, x3, x4 to another system x′

1, x′
2, x′

3, x′
4.

The differentials (dx1, dx2, dx3, dx4) are transformed according
to the equations (15.2), viz.

dx′
1 =

∂x′
1

∂x1

dx1 +
∂x′

1

∂x2

dx2 +
∂x′

1

∂x3

dx3 +
∂x′

1

∂x4

dx4; etc.,

which may be written shortly

dx′
µ =

4∑
α=1

∂x′
µ

∂xα
dxα,

four equations being obtained by taking µ = 1, 2, 3, 4,
successively.

Any set of four quantities transformed according to this
law is called a contravariant vector. Thus if (A1, A2, A3, A4)

becomes (A′1, A′2, A′3, A′4) in the new coordinate-system, where

A′µ =

4∑
α=1

∂x′
µ

∂xα
Aα, (19.1)

then (A1, A2, A3, A4), denoted briefly as Aµ, is a contravariant
vector. The upper position of the suffix (which is, of course,
not an exponent) is reserved to indicate contravariant vectors.

If ϕ is an invariant function of position, i.e. if it has a fixed
value at each point independent of the coordinate-system
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employed, the four quantities(

∂ϕ

∂x1

,
∂ϕ

∂x2

,
∂ϕ

∂x3

,
∂ϕ

∂x4

)
are transformed according to the equations

∂ϕ

∂x′
1

=
∂x1

∂x′
1

∂ϕ

∂x1

+
∂x2

∂x′
1

∂ϕ

∂x2

+
∂x3

∂x′
1

∂ϕ

∂x3

+
∂x4

∂x′
1

∂ϕ

∂x4

; etc.

which may be written shortly

∂ϕ

∂x′
µ

=

4∑
α=1

∂xα
∂x′

µ

∂ϕ

∂xα
.

Any set of four quantities transformed according to this law
is called a covariant vector. Thus if Aµ is a covariant vector, its
transformation law is

A′
µ =

4∑
α=1

∂xα
∂x′

µ

Aα. (19.2)

We have thus two varieties of vectors which we distinguish
by the upper or lower position of the suffix. The first
illustration of a contravariant vector, dxµ, forms rather an
awkward exception to the rule that a lower suffix indicates
covariance and an upper suffix contravariance. There is no
other exception likely to mislead the reader, so that it is not
difficult to keep in mind this peculiarity of dxµ; but we shall
sometimes find it convenient to indicate its contravariance
explicitly by writing

dxµ ≡ (dx)µ. (19.3)

A vector may either be a single set of four quantities
associated with a special point in space-time, or it may be
a set of four functions varying continuously with position.
Thus we can have an “isolated vector” or a “vector-field.”

For an illustration of a covariant vector we considered the
gradient of an invariant, ∂ϕ/∂xµ; but a covariant vector is not
necessarily the gradient of an invariant.
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The reader will probably be already familiar with the term

vector, but the distinction of covariant and contravariant
vectors will be new to him. This is because in the elementary
analysis only rectangular coordinates are contemplated, and
for transformations from one rectangular system to another
the laws (19.1) and (19.2) are equivalent to one another. From
the geometrical point of view, the contravariant vector is
the vector with which everyone is familiar; this is because
a displacement, or directed distance between two points, is
regarded as representing (dx1, dx2, dx3)* which, as we have seen,
is contravariant. The covariant vector is a new conception
which does not so easily lend itself to graphical illustration.

20. The mathematical notion of a vector.

The formal definitions in the preceding section do not
help much to an understanding of what the notion of a
vector really is. We shall try to explain this more fully, taking
first the mathematical notion of a vector (with which we
are most directly concerned) and leaving the more difficult
physical notion to follow.

We have a set of four numbers (A1, A2, A3, A4) which we
associate with some point (x1, x2, x3, x4) and with a certain
system of coordinates. We make a change of the coordinate-
system, and we ask, What will these numbers become in the
new coordinates? The question is meaningless; they do not
automatically “become” anything. Unless we interfere with
them they stay as they were. But the mathematician may say
“When I am using the coordinates x1, x2, x3, x4, I want to talk
about the numbers A1, A2, A3, A4; and when I am using x′

1,
x′
2, x′

3, x′
4, I find that at the corresponding stage of my work I

shall want to talk about four different numbers A′
1, A′

2, A′
3, A′

4.

*The customary resolution of a displacement into components in
oblique directions assumes this.
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So for brevity I propose to call both sets of numbers by the
same symbol A.” We reply “That will be all right, provided
that you tell us just what numbers will be denoted by A for
each of the coordinate-systems you intend to use. Unless you
do this we shall not know what you are talking about.”

Accordingly the mathematician begins by giving us a list
of the numbers that A will signify in the different coordinate-
systems. We here denote these numbers by letters. A will
mean*

X, Y , Z for certain rectangular coordinates x, y, z,
R, Θ, Φ for certain polar coordinates r, θ, ϕ,
Λ, M , N for certain ellipsoidal coordinates λ, µ, ν.

“But,” says the mathematician, “I shall never finish at this
rate. There are an infinite number of coordinate-systems
which I want to use. I see that I must alter my plan. I
will give you a general rule to find the new values of A when
you pass from one coordinate-system to another; so that it is
only necessary for me to give you one set of values and you
can find all the others for yourselves.”

In mentioning a rule the mathematician gives up his
arbitrary power of making A mean anything according to
his fancy at the moment. He binds himself down to some
kind of regularity. Indeed we might have suspected that
our orderly-minded friend would have some principle in his
assignment of different meanings to A. But even so, can we
make any guess at the rule he is likely to adopt unless we have
some idea of the problem he is working at in which A occurs?
I think we can; it is not necessary to know anything about
the nature of his problem, whether it relates to the world
of physics or to something purely conceptual; it is sufficient
that we know a little about the nature of a mathematician.

*For convenience I take a three-dimensional illustration.
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What kind of rule could he adopt? Let us examine

the quantities which can enter into it. There are first the
two sets of numbers to be connected, say, X, Y , Z and R,
Θ, Φ. Nothing has been said as to these being analytical
functions of any kind; so far as we know they are isolated
numbers. Therefore there can be no question of introducing
their derivatives. They are regarded as located at some
point of space (x, y, z) and (r, θ, ϕ), otherwise the question of
coordinates could scarcely arise. They are changed because
the coordinate-system has changed at this point, and that
change is defined by quantities like ∂r

∂x
, ∂2θ

∂x ∂y
, and so on.

The integral coordinates themselves, x, y, z, r, θ, ϕ, cannot be
involved; because they express relations to a distant origin,
whereas we are concerned only with changes at the spot
where (X,Y, Z) is located. Thus the rule must involve only
the numbers X, Y , Z, R, Θ, Φ combined with the mutual
derivatives of x, y, z, r, θ, ϕ.

One such rule would be

R =
∂r

∂x
X +

∂r

∂y
Y +

∂r

∂z
Z

Θ =
∂θ

∂x
X +

∂θ

∂y
Y +

∂θ

∂z
Z

Φ =
∂ϕ

∂x
X +

∂ϕ

∂y
Y +

∂ϕ

∂z
Z


(20.1)

Applying the same rule to the transformation from (r, θ, ϕ) to
(λ, µ, ν) we have

Λ =
∂λ

∂r
R+

∂λ

∂θ
Θ+

∂λ

∂ϕ
Φ, (20.2)

whence, substituting for R, Θ, Φ from (20.1) and collecting
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terms,

Λ =

(
∂λ

∂r

∂r

∂x
+
∂λ

∂θ

∂θ

∂x
+
∂λ

∂ϕ

∂ϕ

∂x

)
X +

(
∂λ

∂r

∂r

∂y
+
∂λ

∂θ

∂θ

∂y
+
∂λ

∂ϕ

∂ϕ

∂y

)
Y

+

(
∂λ

∂r

∂r

∂z
+
∂λ

∂θ

∂θ

∂z
+
∂λ

∂ϕ

∂ϕ

∂z

)
Z

=
∂λ

∂x
X +

∂λ

∂y
Y +

∂λ

∂z
Z, (20.3)

which is the same formula as we should have obtained by
applying the rule to the direct transformation from (x, y, z) to
(λ, µ, ν). The rule is thus self-consistent. But this is a happy
accident, pertaining to this particular rule, and depending on
the formula

∂λ

∂x
=
∂λ

∂r

∂r

∂x
+
∂λ

∂θ

∂θ

∂x
+
∂λ

∂ϕ

∂ϕ

∂x
,

and amid the apparently infinite choice of formulae it will
not be easy to find others which have this self-consistency.

The above rule is that already given for the contravariant
vector (19.1). The rule for the covariant vector is also self-
consistent. There do not appear to be any other self-
consistent rules for the transformation of a set of three
numbers (or four numbers for four coordinates)*.

We see then that unless the mathematician disregards the
need for self-consistency in his rule, he must inevitably make
his quantity A either a contravariant or a covariant vector.
The choice between these is entirely at his discretion. He
might obtain a wider choice by disregarding the property of

*Except that we may in addition multiply by any power of the
Jacobian of the transformation. This is self-consistent because

∂(x, y, z)

∂(r, θ, ϕ)
· ∂(r, θ, ϕ)
∂(λ, µ, ν)

=
∂(x, y, z)

∂(λ, µ, ν)
.

Sets of numbers transformed with this additional multiplication are
degenerate cases of tensors of higher rank considered later. See §§ 48,
49.
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self-consistency—by selecting a particular coordinate-system,
x, y, z, and insisting that values in other coordinate-systems
must always be obtained by applying the rule immediately
to X, Y , Z, and not permitting intermediate transformations.
In practice he does not do this, perhaps because he can
never make up his mind that any particular coordinates are
deserving of this special distinction.

We see now that a mathematical vector is a common
name for an infinite number of sets of quantities, each
set being associated with one of an infinite number of
systems of coordinates. The arbitrariness in the association is
removed by postulating that some method is followed, and
that no one system of coordinates is singled out for special
distinction. In technical language the transformations must
form a Group. The quantity (R,Θ,Φ) is in no sense the same
quantity as (X,Y, Z); they have a common name and a certain
analytical connection, but the idea of anything like identity is
entirely excluded from the mathematical notion of a vector.

21. The physical notion of a vector.

The components of a force (X,Y, Z), (X ′, Y ′, Z ′), etc. in
different systems of Cartesian coordinates, rectangular or
oblique, form a contravariant vector. This is evident because
in elementary mechanics a force is resolved into components
according to the parallelogram law just as a displacement dxµ
is resolved, and we have seen that dxµ is a contravariant vector.
So far as the mathematical notion of the vector is concerned,
the quantities (X,Y, Z) and (X ′, Y ′, Z ′) are not to be regarded as
in any way identical; but in physics we conceive that both
quantities express some kind of condition or relation of the
world, and this condition is the same whether expressed by
(X,Y, Z) or by (X ′, Y ′, Z ′). The physical vector is this vaguely
conceived entity, which is independent of the coordinate-
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system, and is at the back of our measurements of force.

A world-condition cannot appear directly in a mathemat-
ical equation; only the measure of the world-condition can
appear. Any number or set of numbers which can serve
to specify uniquely a condition of the world may be called
a measure of it. In using the phrase “condition of the
world” I intend to be as non-committal as possible; whatever
in the external world determines the values of the physical
quantities which we observe, will be included in the phrase.

The simplest case is when the condition of the world
under consideration can be indicated by a single measure-
number. Take two such conditions underlying respectively
the wave-length λ and period T of a light-wave. We have the
equation

λ = 3 · 1010 T. (21.1)

This equation holds only for one particular plan of assigning
measure-numbers (the C.G.S. system). But it may be written
in the more general form

λ = cT, (21.2)

where c is a velocity having the value 3 · 1010 in the C.G.S.
system. This comprises any number of particular equations
of the form (21.1). For each measure-plan, or system of
units, c has a different numerical value. The method of
determining the necessary change of c when a new measure-
plan is adopted, is well known; we assign to it the dimensions
length ÷ time, and by a simple rule we know how it must
be changed when the units of λ and T are changed. For any
general equation the total dimensions of every term ought to
be the same.

The tensor calculus extends this principle of dimensions
to changes of measure-code much more general than mere
changes of units. There are conditions of the world which
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cannot be specified by a single measure-number; some re-
quire 4, some 16, some 64, etc., measure-numbers. Their
variety is such that they cannot be arranged in a single
serial order. Consider then an equation between the mea-
sure-numbers of two conditions of the world which require
4 measure-numbers. The equation, if it is of the necessary
general type, must hold for every possible measure-code; this
will be the case if, when we transform the measure-code,
both sides of the equation are transformed in the same way,
i.e. if we have to perform the same series of mathematical
operations on both sides.

We can here make use of the mathematical vector of § 20.
Let our equation in some measure-code be

A1, A2, A3, A4 = B1, B2, B3, B4. (21.3)

Now let us change the code so that the left-hand side be-
comes any four numbers A′

1, A′
2, A′

3, A′
4. We identify this

with the transformation of a covariant vector by associating
with the change of measure-code the corresponding trans-
formation of coordinates from xµ to x′

µ as in (19.2). But since
(21.3) is to hold in all measure-codes, the transformation of
the right-hand side must involve the same set of operations;
and the change from B1, B2, B3, B4 to B′

1, B′
2, B′

3, B′
4 will also

be the transformation of a covariant vector associated with
the same transformation of coordinates from xµ to x′

µ.
We thus arrive at the result that in an equation which

is independent of the measure-plan both sides must be
covariant or both contravariant vectors. We shall extend this
later to conditions expressed by 16, 64, …, measure-numbers;
the general rule is that both sides of the equation must
have the same elements of covariance and contravariance.
Covariance and contravariance are a kind of generalised
dimension, showing how the measure of one condition of
the world is changed when the measure of another condition
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is changed. The ordinary theory of change of units is merely
an elementary case of this.

Coordinates are the identification-numbers of the points
of space-time. There is no fundamental distinction between
measure-numbers and identification-numbers, so that we
may regard the change of coordinates as part of the general
change applied to all measure-numbers. The change of
coordinates no longer leads the way, as it did in § 20; it is
placed on the same level with the other changes of measure.

When we applied a change of measure-code to (21.3) we
associated with it a change of coordinates; but it is to be
noted that the change of coordinates was then ambiguous,
since the two sides of the equation might have been taken as
both contravariant instead of both covariant; and further the
change did not refer explicitly to coordinates in the world—it
was a mere entry in the mathematician’s note-book in order
that he might have the satisfaction of calling Aµ and Bµ vectors
consistently with his definition. Now if the measure-plan of
a condition Aµ is changed the measures of other conditions
and relations associated with it will be changed. Among
these is a certain relation of two events which we may call
the aspect* of one from the other; and this relation requires
four measure-numbers to specify it. Somewhat arbitrarily
we decide to make the aspect a contravariant vector, and the
measure-numbers assigned to it are denoted by (dx)µ. That
settles the ambiguity once for all. For obscure psychological
reasons the mind has singled out this transcendental relation
of aspect for graphical representation, so that it is conceived
by us as a displacement or difference of location in a frame

*The relation of aspect (or in its graphical conception displacement)
with four measure-numbers seems to be derived from the relation of
interval with one measure-number, by taking account not only of the
mutual interval between the two events but also of their intervals from
all surrounding events.
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of space-time. Its measure-numbers (dx)µ are represented
graphically as coordinate-differences dxµ, and so for each
measure-code of aspect we get a corresponding coordinate-
frame of location. This “real” coordinate-frame can now
replace the abstract frame in the mathematician’s note-book,
because as we have seen in (19.1) the actual transformation of
coordinates resulting in a change of dxµ is the same as the
transformation associated with the change of dxµ according to
the law of a contravariant vector.

I do not think it is too extravagant to claim that the
method of the tensor calculus, which presents all physical
equations in a form independent of the choice of measure-
code, is the only possible means of studying the conditions of
the world which are at the basis of physical phenomena. The
physicist is accustomed to insist (sometimes quite unnecessar-
ily) that all equations should be stated in a form independent
of the units employed. Whether this is desirable depends on
the purpose of the formulae. But whatever additional insight
into underlying causes is gained by stating equations in a
form independent of units, must be gained to a far greater
degree by stating them in a form altogether independent of
the measure-code. An equation of this general form is called
a tensor equation.

When the physicist is attacking the everyday problems
of his subject, he may use any form of the equations—any
specialised measure-plan—which will shorten the labour of
calculation; for in these problems he is concerned with the
outward significance rather than the inward significance of
his formulae. But once in a while he turns to consider their
inward significance—to consider that relation of things in
the world-structure which is the origin of his formulae. The
only intelligible idea we can form of such a structural relation
is that it exists between the world-conditions themselves and
not between the measure-numbers of a particular code. A law
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of nature resolves itself into a constant relation, or even an
identity, of the two world-conditions to which the different
classes of observed quantities forming the two sides of the
equation are traceable. Such a constant relation independent
of measure-code is only to be expressed by a tensor equation.

It may be remarked that if we take a force (X,Y, Z) and
transform it to polar coordinates, whether as a covariant
or a contravariant vector, in neither case do we obtain the
quantities called polar components in elementary mechanics.
The latter are not in our view the true polar components;
they are merely rectangular components in three new direc-
tions, viz. radial and transverse. In general the elementary
definitions of physical quantities do not contemplate other
than rectangular components, and they may need to be sup-
plemented before we can decide whether the physical vector
is covariant or contravariant. Thus if we define force as “mass
× acceleration,” the force turns out to be contravariant; but
if we define it by “work = force × displacement,” the force
is covariant. With the latter definition, however, we have to
abandon the method of resolution into oblique components
adopted in elementary mechanics.

In what follows it is generally sufficient to confine atten-
tion to the mathematical notion of a vector. Some idea of
the physical notion will probably give greater insight, but is
not necessary for the formal proofs.

22. The summation convention.

We shall adopt the convention that whenever a literal
suffix appears twice in a term that term is to be summed for
values of the suffix 1, 2, 3, 4. For example, (2.1) will be written

ds2 = gµν dxµ dxν (gνµ = gµν). (22.1)
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Here, since µ and ν each appear twice, the summation

4∑
µ=1

4∑
ν=1

is indicated; and the result written out in full gives (2.1).
Again, in the equation

A′
µ =

∂xα
∂x′

µ

Aα,

the summation on the right is with respect to α only (µ ap-
pearing only once). The equation is equivalent to (19.2).

The convention is not merely an abbreviation but an
immense aid to the analysis, giving it an impetus which is
nearly always in a profitable direction. Summations occur in
our investigations without waiting for our tardy approval.

A useful rule may be noted—
Any literal suffix appearing twice in a term is a dummy

suffix, which may be changed freely to any other letter not
already appropriated in that term. Two or more dummy
suffixes can be interchanged*. For example

gαβ
∂2xα

∂x′
µ ∂x

′
ν

∂xβ
∂x′

λ

= gαβ
∂2xβ

∂x′
µ ∂x

′
ν

∂xα
∂x′

λ

(22.2)

by interchanging the dummy suffixes α and β, remembering
that gβα = gαβ.

For a further illustration we shall prove that
∂xµ
∂x′

α

∂x′
α

∂xν
=
dxµ
dxν

= 0, if µ ̸= ν

= 1, if µ = ν

 . (22.3)

The left-hand side written in full is
∂xµ
∂x′

1

∂x′
1

∂xν
+
∂xµ
∂x′

2

∂x′
2

∂xν
+
∂xµ
∂x′

3

∂x′
3

∂xν
+
∂xµ
∂x′

4

∂x′
4

∂xν
,

*At first we shall call attention to such changes when we employ
them; but the reader will be expected gradually to become familiar
with the device as a common process of manipulation.
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which by the usual theory gives the change dxµ consequent
on a change dxν. But xµ and xν are coordinates of the same
system, so that their variations are independent; hence dxµ is
zero unless xµ and xν are the same coordinate, in which case,
of course, dxµ = dxν. Thus the theorem is proved.

The multiplier ∂xµ
∂x′

α

∂x′
α

∂xν
acts as a substitution-operator. That

is to say if A(µ) is any expression involving the suffix µ

∂xµ
∂x′

α

∂x′
α

∂xν
A(µ) = A(ν). (22.4)

For on the left the summation with respect to µ gives four
terms corresponding to the values 1, 2, 3, 4 of µ. One of these
values will agree with ν. Denote the other three values by σ,
τ , ρ. Then by (22.3) the result is

1·A(ν) + 0 ·A(σ) + 0 ·A(τ) + 0 ·A(ρ)

= A(ν).

The multiplier accordingly has the effect of substituting ν

for µ in the multiplicand.

23. Tensors.

The two laws of transformation given in § 19 are now
written—

Contravariant vectors

A′µ =
∂x′

µ

∂xα
Aα. (23.11)

Covariant vectors

A′
µ =

∂xα
∂x′

µ

Aα. (23.12)

We can denote by Aµν a quantity with 16 components ob-
tained by giving µ and ν the values from 1 to 4 independently.
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Similarly Aµνσ has 64 components. By a generalisation of the
foregoing transformation laws we classify quantities of this
kind as follows—

Contravariant tensors

A′µν =
∂x′

µ

∂xα

∂x′
ν

∂xβ
Aαβ. (23.21)

Covariant tensors

A′
µν =

∂xα
∂x′

µ

∂xβ
∂x′

ν

Aαβ. (23.22)

Mixed tensors

A′ν
µ =

∂xα
∂x′

µ

∂x′
ν

∂xβ
Aβα. (23.23)

The above are called tensors of the second rank. We have
similar laws for tensors of higher ranks. E.g.

A′τ
µνσ =

∂xα
∂x′

µ

∂xβ
∂x′

ν

∂xγ
∂x′

σ

∂x′
τ

∂xδ
Aδαβγ . (23.3)

It may be worth while to remind the reader that (23.3) typifies
256 distinct equations each with a sum of 256 terms on the
right-hand side.

It is easily shown that these transformation laws fulfil the
condition of self-consistency explained in § 20, and it is for
this reason that quantities governed by them are selected for
special nomenclature.

If a tensor vanishes, i.e. if all its components vanish, in
one system of coordinates, it will continue to vanish when
any other system of coordinates is substituted. This is clear
from the linearity of the above transformation laws.

Evidently the sum of two tensors of the same covariant or
contravariant character is a tensor. Hence a law expressed by
the vanishing of the sum of a number of tensors, or by the



CH. II INNER MULTIPLICATION AND CONTRACTION 103
equality of two tensors of the same kind, will be independent
of the coordinate-system used.

The product of two tensors such as Aµν and Bτ
σ is a tensor

of the character indicated by Aτµνσ. This is proved by showing
that the transformation law of the product is the same
as (23.3).

The general term tensor includes vectors (tensors of the
first rank) and invariants or scalars* (tensors of zero rank).

A tensor of the second or higher rank need not be
expressible as a product of two tensors of lower rank.

A simple example of an expression of the second rank
is afforded by the stresses in a solid or viscous fluid. The
component of stress denoted by pxy is the traction in the y-
direction across an interface perpendicular to the x-direction.
Each component is thus associated with two directions.

24. Inner multiplication and contraction. The quo-
tient law.

If we multiply Aµ by Bν we obtain sixteen quantities A1B
1,

A1B
2, A2B

1, . . . constituting a mixed tensor. Suppose that
we wish to consider the four “diagonal” terms A1B

1, A2B
2,

A3B
3, A4B

4; we naturally try to abbreviate these by writing
them AµB

µ. But by the summation convention AµB
µ stands

for the sum of the four quantities. The convention is right.
We have no use for them individually since they do not form
a vector; but the sum is of great importance.

AµB
µ is called the inner product of the two vectors, in

contrast to the ordinary or outer product AµBν.
In rectangular coordinates the inner product coincides

with the scalar-product defined in the well-known elementary
theory of vectors; but the outer product is not the so-called

*Scalar is a synonym for invariant. I generally use the latter word
as the more self-explanatory.
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vector-product of the elementary theory.

By a similar process we can form from any mixed ten-
sor Aτµνσ a “contracted*”tensor Aσµνσ, which is two ranks lower
since σ has now become a dummy suffix. To prove that
Aσµνσ is a tensor, we set τ = σ in (23.3),

A′σ
µνσ =

∂xα
∂x′

µ

∂xβ
∂x′

ν

∂xγ
∂x′

σ

∂x′
σ

∂xδ
Aδαβγ .

The substitution operator ∂xγ
∂x′

σ

∂x′
σ

∂xδ
changes δ to γ in Aδαβγ

by (22.4). Hence
A′σ
µνσ =

∂xα
∂x′

µ

∂xβ
∂x′

ν

Aγαβγ .

Comparing with the transformation law (23.22) we see that
Aσµνσ is a covariant tensor of the second rank. Of course, the
dummy suffixes γ and σ are equivalent.

Similarly, setting ν = µ in (23.23),

A′µ
µ =

∂xα
∂x′

µ

∂x′
µ

∂xβ
Aβα = Aαα = Aµµ,

that is to say Aµµ is unaltered by a transformation of coordi-
nates. Hence it is an invariant.

By the same method we can show that AµB
µ, Aµνµν, AνµB

µ
ν

are invariants. In general when an upper and lower suffix
are the same the corresponding covariant and contravariant
qualities cancel out. If all suffixes cancel out in this way, the
expression must be invariant. The identified suffixes must be
of opposite characters; the expression Aτµσσ is not a tensor,
and no interest is attached to it.

We see that the suffixes keep a tally of what we have called
the generalised dimensions of the terms in our equations.
After cancelling out any suffixes which appear in both upper
and lower positions, the remaining suffixes must appear in

*German, verjüngt.
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the same position in each term of an equation. When that
is satisfied each term will undergo the same set of operations
when a transformation of coordinates is made, and the
equation will continue to hold in all systems of coordinates.
This may be compared with the well-known condition that
each term must have the same physical dimensions, so that it
undergoes multiplication by the same factor when a change
of units is made and the equation continues to hold in all
systems of units.

Just as we can infer the physical dimensions of some novel
entity entering into a physical equation, so we can infer
the contravariant and covariant dimensions of an expression
whose character was hitherto unknown. For example, if the
equation is

A(µν)Bνσ = Cµσ, (24.1)

where the nature of A(µν) is not known initially, we see that
A(µν) must be a tensor of the character Aνµ, so as to give

AνµBνσ = Cµσ,

which makes the covariant dimensions on both sides consis-
tent.

The equation (24.1) may be written symbolically

A(µν) = Cµσ/Bνσ,

and the conclusion is that not only the product but also the
(symbolic) quotient of two tensors is a tensor. Of course, the
operation here indicated is not that of ordinary division.

This quotient law is a useful aid in detecting the tensor-
character of expressions. It is not claimed that the general
argument here given amounts to a strict mathematical proof.
In most cases we can supply the proof required by one or
more applications of the following rigorous theorem—
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A quantity which on inner multiplication by any covariant

(alternatively, by any contravariant) vector always gives a
tensor, is itself a tensor.

For suppose that
A(µν)Bν

is always a covariant vector for any choice of the contravariant
vector Bν. Then by (23.12)

{A′(µν)B′ν} =
∂xα
∂x′

µ

{A(αβ)Bβ}. (24.2)

But by (23.11) applied to the reverse transformation from
accented to unaccented coordinates

Bβ =
∂xβ
∂x′

ν

B′ν .

Hence, substituting for Bβ in (24.2),

B′ν
(
A′(µν)− ∂xα

∂x′
µ

∂xβ
∂x′

ν

A(αβ)

)
= 0.

Since B′ν is arbitrary the quantity in the bracket must vanish.
This shows that A(µν) is a covariant tensor obeying the
transformation law (23.22).

We shall cite this theorem as the “rigorous quotient
theorem.”

With reference to the statement that an equation such
as (24.1) does not afford a rigorous proof of the tensor character
of A(µν), it is desirable to give an example of failure. Let F (µν)
be any expression antisymmetrical in µ and ν, and let Gµν be
a symmetrical tensor, so that

F (µν) = −F (µν) Gµν = Gνµ.

Then

F (µν)Gµν = −F (νµ)Gνµ

= −F (µν)Gµν
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by interchanging the dummy suffixes. Hence

F (µν)Gµν = 0.

Thus the product of F (µν) and Gµν is invariant; but it is falla-
cious to argue from this that F (µν) must be a covariant tensor,
since we have seen that any antisymmetrical expression will
have this property.

An equation, A(µν)Gµν = invariant, only allows us to infer
that the symmetrical part of A(µν) is a tensor; the antisymmet-
rical part is arbitrary. Similarly if Gµν is an antisymmetrical
tensor, the inference is that the antisymmetrical part of A(µν)
is a tensor.

Thus when in § 29 we find that Aµν multiplied by the
symmetrical tensor dxµ/ds · dxν/ds is an invariant, the proper
deduction is that the symmetrical part of Aµν is a tensor.
To complete the proof of (29.3) it is necessary to show that
the antisymmetrical part, viz. 1

2
(∂Aµ/∂xν − ∂Aν/∂xµ), is also a

tensor. The reader will easily verify this by determining its
transformation law, using (23.12).

Similarly the proof that gµν is a tensor at the beginning
of § 25 is not rigorous. Any antisymmetrical expression could
be added to gµν without altering ds2, and the proof should
take account of the fact that gµν is defined as a symmetrical
expression. A rigorous proof is easily supplied by finding the
transformation law as suggested in § 15.

Although the chance of a breakdown of the general
deduction from covariant and contravariant dimensions is
somewhat greater than I originally realised, I do not regret
having employed the method extensively in this book. It
is desirable that the student’s course of reading should train
him instinctively to “spot” tensors in this way, and there
is never any serious difficulty in confirming his discoveries
by more rigorous tests. Although cases of failure are easily
constructed artificially, I have yet to hear of a natural instance
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of this happening.

25. The fundamental tensors.

It is convenient to write (22.1) as

ds2 = gµν(dx)
µ(dx)ν

in order to show explicitly the contravariant character of
dxµ = (dx)µ. Since ds2 is independent of the coordinate-system
it is an invariant or tensor of zero rank. The equation shows
that gµν(dx)µ multiplied by an arbitrarily chosen contravariant
vector (dx)ν always gives a tensor of zero rank; hence gµν(dx)

µ

is a vector. Again, we see that gµν multiplied by an arbitrary
contravariant vector (dx)µ always gives a vector; hence gµν is
a tensor. This double application of the rigorous quotient
theorem shows that gµν is a tensor; and it is evidently
covariant as the notation has anticipated. In the proof above
the symmetry property (gµν = gνµ) was essential.

Let g stand for the determinant∣∣∣∣∣∣∣∣∣∣
g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g21 g42 g43 g44

∣∣∣∣∣∣∣∣∣∣
.

Let gµν be defined as the minor of gµν in this determinant,
divided by g*.

Consider the inner product gµσg
νσ. We see that µ and ν

select two rows in the determinant; we have to take each
element in turn from the µ row, multiply by the minor of the
corresponding element of the ν row, add together, and divide
the result by g. This is equivalent to substituting the µ row
for the ν row and dividing the resulting determinant by g.

*The notation anticipates the result proved later that gµν is a
contravariant tensor.



CH. II THE FUNDAMENTAL TENSORS 109
If µ is not the same as ν this gives a determinant with two
rows identical, and the result is 0. If µ is the same as ν we
reproduce the determinant g divided by itself, and the result
is 1. We write

gνµ = gµσg
νσ

= 0 if µ ̸= ν

= 1 if µ = ν

 . (25.1)

Thus gνµ has the same property of a substitution-operator
that we found for ∂xµ

∂x′
α

∂x′
α

∂xν
in (22.4). For example*,

gνµA
µ = Aν + 0 + 0 + 0. (25.2)

Note that gµν has not the same meaning as gνµ with µ = ν,
because a summation is implied. Evidently

gνν = 1 + 1 + 1 + 1 = 4. (25.3)

The equation (25.2) shows that gνµ multiplied by any con-
travariant vector always gives a vector. Hence gνµ is a tensor.
It is a very exceptional tensor since its components are the
same in all coordinate-systems.

Again since gµσg
νσ is a tensor we can infer that gνσ is a

tensor. This is proved rigorously by remarking that gµσA
µ is

a covariant vector, arbitrary on account of the free choice
of Aµ. Multiplying this vector by gνσ we have

gµσg
νσAµ = gνµA

µ = Aν ,

so that the product is always a vector. Hence the rigorous
quotient theorem applies.

The tensor character of gµν may also be demonstrated
by a method which shows more clearly the reason for its

*Note that gνµ will act as a substitution-operator on any expression
and is not restricted to operating on tensors.
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definition as the minor of gµν divided by g. Since gµνA

ν is a
covariant vector, we can denote it by Bµ. Thus

g11A
1 + g12A

2 + g13A
3 + g14A

4 = B1; etc.

Solving these four linear equations for A1, A2, A3, A4 by the
usual method of determinants, the result is

A1 = g11B1 + g12B2 + g13B3 + g14B4; etc.,

so that
Aµ = gµνBν .

Whence by the rigorous quotient theorem gµν is a tensor.
We have thus defined three fundamental tensors

gµν , gνµ, gµν

of covariant, mixed, and contravariant characters respectively.

26. Associated tensors.

We now define the operation of raising or lowering a
suffix. Raising the suffix of a vector is defined by the
equation

Aµ = gµνAν ,

and lowering by the equation

Aµ = gµνA
ν .

For a more general tensor such as Aγδαβµ, the operation of
raising µ is defined in the same way, viz.

Aγδµαβ = gµνAγδαβν , (26.1)

and for lowering
Aγδαβµ = gµνA

γδν
αβ . (26.2)
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These definitions are consistent, since if we raise a suffix

and then lower it we reproduce the original tensor. Thus if
in (26.1) we multiply by gµσ in order to lower the suffix on the
left, we have

gµσA
γδµ
αβ = gµσg

µνAγδαβν

= gνσA
γδ
αβν

= Aγδαβσ by (25.2),

which is the rule expressed by (26.2).
It will be noticed that the raising of a suffix ν by means

of gµν is accompanied by the substitution of µ for ν. The
whole operation is closely akin to the plain substitution of µ
for ν by means of gνµ. Thus

multiplication by gµν gives substitution with raising,
multiplication by gνµ gives plain substitution,
multiplication by gµν gives substitution with lowering.

In the case of non-symmetrical tensors it may be necessary
to distinguish the place from which the raised suffix has been
brought, e.g. to distinguish between Aµ

ν and Aνµ.
It is easily seen that this rule of association between

tensors with suffixes in different positions is fulfilled in the
case of gµν, gνµ, gµν; in fact the definition of gνµ in (25.1) is a
special case of (26.1).

For rectangular coordinates the raising or lowering of a
suffix leaves the components unaltered in three-dimensional
space*; and it merely reverses the signs of some of the
components for Galilean coordinates in four-dimensional
space-time. Since the elementary definitions of physical
quantities refer to rectangular axes and time, we can generally
use any one of the associated tensors to represent a physical

*If ds2 = dx21 + dx22 + dx23, gµν = gµν = gνµ so that all three tensors
are merely substitution-operators.
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entity without infringing pre-relativity definitions. This leads
to a somewhat enlarged view of a tensor as having in itself
no particular covariant or contravariant character, but having
components of various degrees of covariance or contravariance
represented by the whole system of associated tensors. That is
to say, the raising or lowering of suffixes will not be regarded
as altering the individuality of the tensor; and reference to a
tensor Aµν may (if the context permits) be taken to include
the associated tensors Aνµ and Aµν.

It is useful to notice that dummy suffixes have a certain
freedom of movement between the tensor-factors of an
expression. Thus

AαβB
αβ = AαβBαβ, AµαB

να = Aµ
αBν

α. (26.3)

The suffix may be raised in one term provided it is lowered
in the other. The proof follows easily from (26.1) and (26.2).

In the elementary vector theory two vectors are said to be
perpendicular if their scalar-product vanishes; and the square
of the length of the vector is its scalar-product into itself.
Corresponding definitions are adopted in the tensor calculus.

The vectors Aµ and Bµ are said to be perpendicular if
AµB

µ = 0. (26.4)

If l is the length of Aµ (or Aµ)
l2 = AµA

µ. (26.5)

A vector is self-perpendicular if its length vanishes.
The interval is the length of the corresponding displace-

ment dxµ because
ds2 = gµν (dx)

µ · (dx)ν

= (dx)ν(dx)
ν

by (26.2). A displacement is thus self-perpendicular when it
is along a light-track, ds = 0.
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If a vector Aµ receives an infinitesimal increment dAµ

perpendicular to itself, its length is unaltered to the first
order; for by (26.5)

(l + dl)2 = (Aµ + dAµ)(A
µ + dAµ)

= AµA
µ +Aµ dAµ +Aµ dA

µ to the first order
= l2 + 2Aµ dA

µ by (26.3),

and Aµ dA
µ = 0 by the condition of perpendicularity (26.4).

In the elementary vector theory, the scalar-product of two
vectors is equal to the product of their lengths multiplied by
the cosine of the angle between them. Accordingly in the
general theory the angle θ between two vectors Aµ and Bµ is
defined by

cos θ = AµB
µ√

(AαAα)(BβBβ)
. (26.6)

Clearly the angle so defined is an invariant, and agrees with
the usual definition when the coordinates are rectangular.
In determining the angle between two intersecting lines it
makes no difference whether the world is curved or flat, since
only the initial directions are concerned and these in any case
lie in the tangent plane. The angle θ (if it is real) has thus
the usual geometrical meaning even in non-Euclidean space.
It must not, however, be inferred that ordinary angles are
invariant for the Lorentz transformation; naturally an angle
in three dimensions is invariant only for transformations
in three dimensions, and the angle which is invariant for
Lorentz transformations is a four-dimensional angle.

From a tensor of even rank we can construct an invariant
by bringing half the suffixes to the upper and half to the
lower position and contracting. Thus from Aµνστ we form Aστµν

and contract, obtaining A = Aµνµν. This invariant will be called
the spur*. Another invariant is the square of the length

*Originally the German word Spur.
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AµνστA

µνστ . There may also be intermediate invariants such as
AαµναA

µνβ
β .

27. Christoffel’s 3-index symbols.

We introduce two expressions (not tensors) of great im-
portance throughout our subsequent work, namely

[µν, σ] = 1
2

(
∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
, (27.1)

{µν, σ} = 1
2
gσλ

(
∂gµλ
∂xν

+
∂gνλ
∂xµ

− ∂gµν
∂xλ

)
. (27.2)

We have

{µν, σ} = gσλ [µν, λ], (27.3)

[µν, σ] = gσλ {µν, λ}. (27.4)

The result (27.3) is obvious from the definitions. To
prove (27.4), multiply (27.3) by gσα; then

gσα {µν, σ} = gσαg
σλ [µν, λ]

= gλα [µν, λ]

= [µν, α],

which is equivalent to (27.4).
Comparing with (26.1) and (26.2) we see that the passage

from the “square” to the “curly” symbol, and vice versa, is the
same process as raising and lowering a suffix. It might be
convenient to use a notation in which this was made evident,
e.g.

Γµν,σ = [µν, σ], Γσµν = {µν, σ},

but we shall adhere to the more usual notation.
From (27.1) it is found that

[µν, σ] + [σν, µ] =
∂gµσ
∂xν

. (27.5)
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There are 40 different 3-index symbols of each kind. It

may here be explained that the gµν are components of a
generalised potential, and the 3-index symbols components of
a generalised force in the gravitational theory (see § 55).

28. Equations of a geodesic.

We shall now determine the equations of a geodesic or
path between two points for which∫

ds is stationary.

This absolute track is of fundamental importance in dynamics,
but at the moment we are concerned with it only as an aid
in the development of the tensor calculus*.

Keeping the beginning and end of the path fixed, we give
every intermediate point an arbitrary infinitesimal displace-
ment δxσ so as to deform the path. Since

ds2 = gµν dxµ dxν ,

2 ds δ(ds) = dxµ dxν δgµν + gµν dxµ δ(dxν) + gµν dxν δ(dxµ)

= dxµ dxν
∂gµν
∂xσ

δxσ + gµν dxµ d(δxν) + gµν dxν d(δxµ). (28.1)

The stationary condition is∫
δ(ds) = 0, (28.2)

which becomes by (28.1)

1

2

∫ {
dxµ
ds

dxν
ds

∂gµν
∂xσ

δxσ + gµν
dxµ
ds

d

ds
(δxν) + gµν

dxν
ds

d

ds
(δxµ)

}
ds = 0,

or, changing dummy suffixes in the last two terms,
1

2

∫ {
dxµ
ds

dxν
ds

∂gµν
∂xσ

δxσ +

(
gµσ

dxµ
ds

+ gσν
dxν
ds

)
d

ds
(δxσ)

}
ds = 0.

*Our ultimate goal is equation (29.3). An alternative proof (which
does not introduce the calculus of variations) is given in § 31.
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Applying the usual method of partial integration, and reject-
ing the integrated part since δxσ vanishes at both limits,

1

2

∫ {
dxµ
ds

dxν
ds

∂gµν
∂xσ

− d

ds

(
gµσ

dxµ
ds

+ gσν
dxν
ds

)
δxσ ds = 0.

This must hold for all values of the arbitrary displace-
ments δxσ at all points, hence the coefficient in the integrand
must vanish at all points on the path. Thus

1

2

dxµ
ds

dxν
ds

∂gµν
∂xσ

− 1

2

dgµσ
ds

dxµ
ds

− 1

2

dgσν
ds

dxν
ds

− 1

2
gµσ

d2xµ
ds2

− 1

2
gσν

d2xν
ds2

= 0.

Now*
dgµσ
ds

=
∂gµσ
∂xν

dxν
ds

and dgσν
ds

=
∂gσν
∂xµ

dxµ
ds

.

Also in the last two terms we replace the dummy suffixes µ

and ν by ϵ. The equation then becomes

1

2

dxµ
ds

dxν
ds

(
∂gµν
∂xσ

− ∂gµσ
∂xν

− ∂gνσ
∂xµ

)
− gϵσ

d2xϵ
ds2

= 0. (28.3)

We can get rid of the factor gϵσ by multiplying through
by gσα so as to form the substitution operator gαϵ . Thus

1

2

dxµ
ds

dxν
ds

gσα
(
∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
+
d2xα
ds2

= 0, (28.4)

or, by (27.2)

d2xα
ds2

+ {µν, α} dxµ
ds

dxν
ds

= 0. (28.5)

For α = 1, 2, 3, 4 this gives the four equations determining
a geodesic.

*These simple formulae are noteworthy as illustrating the great
value of the summation convention. The law of total differentiation
for four coordinates becomes formally the same as for one coordinate.
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29. Covariant derivative of a vector.

The derivative of an invariant is a covariant vector (§ 19),
but the derivative of a vector is not a tensor. We proceed to
find certain tensors which are used in this calculus in place
of the ordinary derivatives of vectors.

Since dxµ is contravariant and ds invariant, a “velocity”
dxµ/ds is a contravariant vector. Hence if Aµ is any covariant
vector the inner product

Aµ
dxµ
ds

is invariant.

The rate of change of this expression per unit interval along
any assigned curve must also be independent of the coordi-
nate-system, i.e.

d

ds

(
Aµ

dxµ
ds

)
is invariant. (29.1)

This assumes that we keep to the same absolute curve
however the coordinate-system is varied. The result (29.1)

is therefore only of practical use if it is applied to a curve
which is defined independently of the coordinate-system.
We shall accordingly apply it to a geodesic. Performing the
differentiation,

∂Aµ
∂xν

dxν
ds

dxµ
ds

+Aµ
d2xµ
ds2

is invariant along a geodesic. (29.2)

From (28.5) we have that along a geodesic

Aµ
d2xµ
ds2

= Aα
d2xα
ds2

= −Aα {µν, α}
dxµ
ds

dxν
ds

.

Hence (29.2) gives
dxµ
ds

dxν
ds

(
∂Aµ
∂xν

−Aα{µν, α}
)

is invariant.

The result is now general since the curvature (which dis-
tinguishes the geodesic) has been eliminated by using the
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equations (28.5) and only the gradient of the curve (dxµ/ds and
dxν/ds) has been left in the expression.

Since dxµ/ds and dxν/ds are contravariant vectors, their co-
factor is a covariant tensor of the second rank. We therefore
write

Aµν =
∂Aµ
∂xν

− {µν, α}Aα, (29.3)

and the tensor Aµν is called the covariant derivative of Aµ.
By raising a suffix we obtain two associated tensors Aµν

and Aµ
ν which must be distinguished since the two suffixes

are not symmetrical. The first of these is the most important,
and is to be understood when the tensor is written simply
as Aµν without distinction of original position.

Since
Aσ = gσϵA

ϵ,

we have by (29.3)

Aσν =
∂

∂xν
(gσϵA

ϵ)− {σν, α} (gαϵAϵ)

= gσϵ
∂Aϵ

∂xν
+Aϵ

∂gσϵ
∂xν

− [σν, ϵ]Aϵ by (27.4)

= gσϵ
∂Aϵ

∂xν
+ [ϵν, σ]Aϵ by (27.5).

Hence multiplying through by gµσ, and remembering that
gµσgσϵ is a substitution-operator, we have

Aµν =
∂Aµ

∂xν
+ {ϵν, µ}Aϵ. (29.4)

This is called the covariant derivative of Aµ. The considerable
differences between the formulae (29.3) and (29.4) should be
carefully noted.

The tensors Aµ
ν and Aµν, obtained from (29.3) and (29.4)

by raising the second suffix, are called the contravariant
derivatives of Aµ and Aµ. We shall not have much occasion
to refer to contravariant derivatives.
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30. Covariant derivative of a tensor.

The covariant derivatives of tensors of the second rank are
formed as follows—

Aµνσ =
∂Aµν

∂xσ
+ {ασ, µ}Aαν + {ασ, ν}Aµα, (30.1)

Aνµσ =
∂Aνµ
∂xσ

− {µσ, α}Aνα + {ασ, ν}Aαµ, (30.2)

Aµνσ =
∂Aµν
∂xσ

− {µσ, α}Aαν − {νσ, α}Aµα. (30.3)

And the general rule for covariant differentiation with respect
to xσ is illustrated by the example

Aρλµνσ =
∂

∂xσ
Aρλµν − {λσ, α}Aραµν − {µσ, α}Aρλαν

− {νσ, α}Aρλµα + {ασ, ρ}Aαλµν . (30.4)

The above formulae are primarily definitions; but we have
to prove that the quantities on the right are actually tensors.
This is done by an obvious generalisation of the method of
the preceding section. Thus if in place of (29.1) we use

d

ds

(
Aµν

dxµ
ds

dxν
ds

)
is invariant along a geodesic,

we obtain
∂Aµν
∂xσ

dxσ
ds

dxµ
ds

dxν
ds

+Aµν
dxν
ds

d2xµ
ds2

+Aµν
dxµ
ds

d2xν
ds2

.

Then substituting for the second derivatives from (28.5) the
expression reduces to

Aµνσ
dxµ
ds

dxν
ds

dxσ
ds

is invariant,

showing that Aµνσ is a tensor.
The formulae (30.1) and (30.2) are obtained by raising the

suffixes ν and µ, the details of the work being the same as in
deducing (29.4) from (29.3).



CH. II COVARIANT DERIVATIVE OF A TENSOR 120
Consider the expression

BµσCν +BµCνσ,

the σ denoting covariant differentiation. By (29.3) this is equal
to(

∂Bµ
∂xσ

− {µσ, α}Bα
)
Cν +Bµ

(
∂Cν
∂xσ

− {νσ, α}Cα
)

=
∂

∂xσ
(BµCν)− {µσ, α} (BαCν)− {νσ, α} (BµCα).

But comparing with (30.3) we see that this is the covariant
derivative of the tensor of the second rank (BµCν). Hence

(BµCν)σ = BµσCν +BµCνσ. (30.5)

Thus in covariant differentiation of a product the distributive
rule used in ordinary differentiation holds good.

Applying (30.3) to the fundamental tensor, we have

gµνσ =
∂gµν
∂xσ

− {µσ, ν} gαν − {νσ, α} gµα

=
∂gµν
∂xσ

− [µσ, ν]− [νσ, µ]

= 0 by (27.5).

Hence the covariant derivatives of the fundamental tensors
vanish identically, and the fundamental tensors can be treated
as constants in covariant differentiation. It is thus immaterial
whether a suffix is raised before or after the differentiation,
as our definitions have already postulated.

If I is an invariant, IAµ is a covariant vector; hence its
covariant derivative is

(IAµ)ν =
∂

∂xν
(IAµ)− {µν, α} IAα

= Aµ
∂I

∂xν
+ IAµν .
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But by the rule for differentiating a product (30.5)

(IAµ)ν = IνAµ + IAµν ,

so that
Iν =

∂I

∂xν
.

Hence the covariant derivative of an invariant is the same as
its ordinary derivative.

It is, of course, impossible to reserve the notation Aµν

exclusively for the covariant derivative of Aµ, and the con-
cluding suffix does not denote differentiation unless expressly
stated. In case of doubt we may indicate the covariant and
contravariant derivatives by (Aµ)ν and (Aµ)

ν.
The utility of the covariant derivative arises largely from

the fact that, when the gµν are constants, the 3-index symbols
vanish and the covariant derivative reduces to the ordinary
derivative. Now in general our physical equations have been
stated for the case of Galilean coordinates in which the gµν

are constants; and we may in Galilean equations replace
the ordinary derivative by the covariant derivative without
altering anything. This is a necessary step in reducing such
equations to the general tensor form which holds true for all
coordinate-systems.

As an illustration suppose we wish to find the general
equation of propagation of a potential with the velocity
of light. In Galilean coordinates the equation is of the
well-known form

□ϕ =
∂2ϕ

∂t2
− ∂2ϕ

∂x2
− ∂2ϕ

∂y2
− ∂2ϕ

∂z2
= 0. (30.6)

The Galilean values of gµν are g44 = 1, g11 = g22 = g33 = −1, and
the other components vanish. Hence (30.6) can be written

gµν
∂2ϕ

∂xµ ∂xν
= 0. (30.65)
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The potential ϕ being an invariant, its ordinary derivative is
a covariant vector ϕµ = ∂ϕ/∂xµ; and since the coordinates are
Galilean we may insert the covariant derivative ϕµν instead
of ∂ϕµ/∂xν. Hence the equation becomes

gµνϕµν = 0. (30.7)

Up to this point Galilean coordinates are essential; but now,
by examining the covariant dimensions of (30.7), we notice
that the left-hand side is an invariant, and therefore its value
is unchanged by any transformation of coordinates. Hence
(30.7) holds for all coordinate-systems, if it holds for any.
Using (29.3) we can write it more fully

gµν
(

∂2ϕ

∂xµ ∂xν
− {µν, α} ∂ϕ

∂xα

)
= 0. (30.8)

This formula may be used for transforming Laplace’s equation
into curvilinear coordinates, etc.

It must be remembered that a transformation of coordi-
nates does not alter the kind of space. Thus if we know by
experiment that a potential ϕ is propagated according to the
law (30.6) in Galilean coordinates, it follows rigorously that
it is propagated according to the law (30.8) in any system of
coordinates in flat space-time; but it does not follow rigor-
ously that it will be propagated according to (30.8) when an
irreducible gravitational field is present which alters the kind
of space-time. It is, however, a plausible suggestion that
(30.8) may be the general law of propagation of ϕ in any kind
of space-time; that is the suggestion which the principle of
equivalence makes. Like all generalisations which are only
tested experimentally in a particular case, it must be received
with caution.

The operator □ will frequently be referred to. In general
coordinates it is to be taken as defined by

□Aµν··· = gαβ(Aµν···)αβ. (30.9)
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Or we may write it in the form

□ =
(
(· · · )α

)α
,

i.e. we perform a covariant and contravariant differentiation
and contract them.

SUMMARY OF RULES FOR COVARIANT DIFFERENTIATION.

1. To obtain the covariant derivative of any tensor A......

with respect to xσ, we take first the ordinary derivative
∂

∂xσ
A...... ;

and for each covariant suffix A....µ., we add a term

−{µσ, α}A....α.;

and for each contravariant suffix A.µ.... , we add a term

+{ασ, µ}A.α.... .

2. The covariant derivative of a product is formed by
covariant differentiation of each factor in turn, by the same
rule as in ordinary differentiation.

3. The fundamental tensor gµν or gµν behaves as though it
were a constant in covariant differentiation.

4. The covariant derivative of an invariant is its ordinary
derivative.

5. In taking second, third or higher derivatives, the order
of differentiation is not interchangeable*.

31. Alternative discussion of the covariant derivative.

By (23.22)

g′µν =
∂xα
∂x′

µ

∂xβ
∂x′

ν

gαβ.

*This is inserted here for completeness; it is discussed later.
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Hence differentiating

∂g′µν
∂x′

λ

= gαβ

{
∂2xα

∂x′
λ ∂x

′
µ

∂xβ
∂x′

ν

+
∂2xα

∂x′
λ ∂x

′
ν

∂xβ
∂x′

µ

}
+
∂xα
∂x′

µ

∂xβ
∂x′

ν

∂xγ
∂x′

λ

∂gαβ
∂xγ

. (31.11)

Here we have used
∂gαβ
∂x′

λ

=
∂gαβ
∂xγ

∂xγ
∂x′

λ

,

and further we have interchanged the dummy suffixes α and β

in the second term in the bracket. Similarly

∂g′νλ
∂x′

µ

= gαβ

{
∂2xα

∂x′
µ ∂x

′
ν

∂xβ
∂x′

λ

+
∂2xα

∂x′
µ ∂x

′
λ

∂xβ
∂x′

ν

}
+
∂xα
∂x′

µ

∂xβ
∂x′

ν

∂xγ
∂x′

λ

∂gβγ
∂xα

, (31.12)

∂g′µλ
∂x′

ν

= gαβ

{
∂2xα

∂x′
ν ∂x

′
µ

∂xβ
∂x′

λ

+
∂2xα

∂x′
ν ∂x

′
λ

∂xβ
∂x′

µ

}
+
∂xα
∂x′

µ

∂xβ
∂x′

ν

∂xγ
∂x′

λ

∂gαγ
∂xβ

. (31.13)

Add (31.12) and (31.13) and subtract (31.11), we obtain by (27.1)

[µν, λ]′ = gαβ
∂xα

∂x′
µ ∂x

′
ν

∂xβ
∂x′

λ

+
∂xα
∂x′

µ

∂xβ
∂x′

ν

∂xγ
∂x′

λ

[αβ, γ]. (31.2)

Multiply through by g′λρ
∂xϵ
∂x′

ρ

, we have by (27.3)

{µν, ρ}′ ∂xϵ
∂x′

ρ

= gαβ
∂2xα

∂x′
µ ∂x

′
ν

· g′λρ ∂xβ
∂x′

λ

∂xϵ
∂x′

ρ

+ g′λρ
∂xγ
∂x′

λ

∂xϵ
∂x′

ρ

· ∂xα
∂x′

µ

∂xβ
∂x′

ν

[αβ, γ]

= gαβg
βϵ ∂2xα
∂x′

µ ∂x
′
ν

+
∂xα
∂x′

µ

∂xβ
∂x′

ν

gγϵ [αβ, γ] by (23.21)

=
∂2xϵ

∂x′
µ ∂x

′
ν

+
∂xα
∂x′

µ

∂xβ
∂x′

ν

{αβ, ϵ}, (31.3)

a formula which determines the second derivative ∂2xϵ/∂x
′
µ′ ∂x

′
ν

in terms of the first derivatives.
By (23.12)

A′
µ =

∂xϵ
∂x′

µ

Aϵ. (31.4)
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Hence differentiating

∂A′
µ

∂x′
ν

=
∂2xϵ

∂x′
µ ∂x

′
ν

Aϵ +
∂xϵ
∂x′

µ

∂xδ
∂x′

ν

∂Aϵ
∂xδ

=

(
{µν, ρ}′ ∂xϵ

∂x′
ρ

− ∂xα
∂x′

µ

∂xβ
∂x′

ν

{αβ, ϵ}
)
Aϵ +

∂xα
∂x′

µ

∂xβ
∂x′

ν

∂Aα
∂xβ

(31.5)

by (31.3) and changing the dummy suffixes in the last term.
Also by (23.12)

Aϵ
∂xϵ
∂x′

ρ

= A′
ρ.

Hence (31.5) becomes
∂A′

µ

∂x′
ν

− {µν, ρ}′A′
ρ =

∂xα
∂x′

µ

∂xβ
∂x′

ν

(
∂Aα
∂xβ

− {αβ, ϵ}Aϵ
)
, (31.6)

showing that
∂Aµ
∂xν

− {µν, ρ}Aρ

obeys the law of transformation of a covariant tensor. We
thus reach the result (29.3) by an alternative method.

A tensor of the second or higher rank may be taken
instead of Aµ in (31.4), and its covariant derivative will be
found by the same method.

32. Surface-elements and Stokes’s theorem.

Consider the outer product Σµν of two different displace-
ments dxµ and δxν. The tensor Σµν will be unsymmetrical in µ

and ν. We can decompose any such tensor into the sum of
a symmetrical part 1

2
(Σµν + Σνµ) and an antisymmetrical part

1
2
(Σµν − Σνµ).

Double* the antisymmetrical part of the product dxµ δxν is
called the surface-element contained by the two displacements,

*The doubling of the natural expression is avenged by the appear-
ance of the factor 1

2 in most formulae containing dSµν .
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and is denoted by dSµν. We have accordingly

dSµν = dxµ δxν − dxν δxµ (32.1)

=

∣∣∣∣∣dxµ dxν

δxµ δxν

∣∣∣∣∣ .
In rectangular coordinates this determinant represents the
area of the projection on the µν plane of the parallelogram
contained by the two displacements; thus the components
of the tensor are the projections of the parallelogram on
the six coordinate planes. In the tensor dSµν these are
repeated twice, once with positive and once with negative
sign (corresponding perhaps to the two sides of the surface).
The four components dS11, dS22, etc. vanish, as must happen
in every antisymmetrical tensor. The appropriateness of the
name “surface-element” is evident in rectangular coordinates;
the geometrical meaning becomes more obscure in other
systems.

The surface-element is always a tensor of the second rank
whatever the number of dimensions of space; but in three
dimensions there is an alternative representation of a surface
area by a simple vector at right angles to the surface and
of length proportional to the area; indeed it is customary
in three dimensions to represent any antisymmetrical tensor
by an adjoint vector. Happily in four dimensions it is not
possible to introduce this source of confusion.

The invariant
1
2
Aµν dS

µν

is called the flux of the tensor Aµν through the surface-
element. The flux involves only the antisymmetrical part
of Aµν, since the inner product of a symmetrical and an
antisymmetrical tensor evidently vanishes.

Some of the chief antisymmetrical tensors arise from the
operation of curling. If Kµν is the covariant derivative of Kµ,
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we find from (29.3) that

Kµν −Kνµ =
∂Kµ

∂xν
− ∂Kν

∂xµ
(32.2)

since the 3-index symbols cancel out. Since the left-hand
side is a tensor, the right-hand side is also a tensor. The
right-hand side will be recognised as the “curl” of elementary
vector theory, except that we have apparently reversed the
sign. Strictly speaking, however, we should note that the
curl in the elementary three-dimensional theory is a vector,
whereas our curl is a tensor; and comparison of the sign
attributed is impossible.

The result that the covariant curl is the same as the
ordinary curl does not apply to contravariant vectors or to
tensors of higher rank:

Kµ
ν −Kν

µ ̸= ∂Kµ

∂xν
− ∂Kν

∂xµ
.

In tensor notation the famous theorem of Stokes becomes∫
Kµ dxµ = −1

2

∫∫ (
∂Kµ

∂xν
− ∂Kν

∂xµ

)
dSµν , (32.3)

the double integral being taken over any surface bounded by
the path of the single integral. The factor 1

2
is needed because

each surface-element occurs twice, e.g. as dS12 and −dS21. The
theorem can be proved as follows—

Since both sides of the equation are invariants it is suffi-
cient to prove the equation for any one system of coordinates.
Choose coordinates so that the surface is on one of the fun-
damental partitions x3 = const., x4 = const., and so that the
contour consists of four parts given successively by x1 = α,
x2 = β, x1 = γ, x2 = δ; the rest of the mesh-system may be
filled up arbitrarily. For an elementary mesh the containing
vectors are (dx1, 0, 0, 0) and (0, dx2, 0, 0), so that by (32.1)

dS12 = dx1 dx2 = −dS21.
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Hence the right-hand side of (32.3) becomes

−
γ∫
α

δ∫
β

(
∂K1

∂x2

− ∂K2

∂x1

)
dx1 dx2

= −
γ∫
α

{
[K1]

δ − [K1]
β
}
dx1 +

δ∫
β

{
[K2]

γ − [K2]
α
}
dx2,

which consists of four terms giving ∫
Kµ dxµ for the four parts

of the contour.
This proof affords a good illustration of the methods of the

tensor calculus. The relation to be established is between two
quantities which (by examination of their covariant dimen-
sions) are seen to be invariants, viz. Kµ(dx)

µ and (Kµν−Kνµ) dS
µν,

the latter having been simplified by (32.2). Accordingly it is
a relation which does not depend on any particular choice
of coordinates, although in (32.3) it is expressed as it would
appear when referred to a coordinate-system. In proving the
relation of the two invariants once for all, we naturally choose
for the occasion coordinates which simplify the analysis; and
the work is greatly shortened by drawing our curved meshes
so that four partition-lines make up the contour.

33. Significance of covariant differentiation.

Suppose that we wish to discuss from the physical point of
view how a field of force varies from point to point. If polar
coordinates are being used, a change of the r-component
does not necessarily indicate a want of uniformity in the field
of force; it is at least partly attributable to the inclination
between the r-directions at different points. Similarly when
rotating axes are used, the rate of change of momentum h is
given not by dh1/dt, etc., but by

dh1/dt− ω3h2 + ω2h3, etc. (33.1)
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The momentum may be constant even when the time-
derivatives of its components are not zero.

We must recognise then that the change of a physical
entity is usually regarded as something distinct from the
change of the mathematical components into which we
resolve it. In the elementary theory a definition of the
former change is obtained by identifying it with the change
of the components in unaccelerated rectangular coordinates;
but this is of no avail in the general case because space-time
may be of a kind for which no such coordinates exist. Can
we still preserve this notion of a physical rate of change in
the general case?

Our attention is directed to the rate of change of a
physical entity because of its importance in the laws of
physics, e.g. force is the time-rate of change of momentum,
or the space-rate of change of potential; therefore the rate
of change should be expressed by a tensor of some kind
in order that it may enter into the general physical laws.
Further in order to agree with the customary definition in
elementary cases, it must reduce to the rate of change of the
rectangular components when the coordinates are Galilean.
Both conditions are fulfilled if we define the physical rate of
change of the tensor by its covariant derivative.

The covariant derivative Aµν consists of the term ∂Aµ/dxν,
giving the apparent gradient, from which is subtracted the
“spurious change” {µν, α}Aα attributable to the curvilinearity
of the coordinate-system. When Cartesian coordinates (rect-
angular or oblique) are used, the 3-index symbols vanish and
there is, as we should expect, no spurious change. For the
present we shall call Aµν the rate of absolute change of the
vector Aµ.

Consider an elementary mesh in the plane of xνxσ, the
corners being at
A(xν , xσ), B(xν + dxν , xσ), C(xν + dxν , xσ + dxσ), D(xν , xσ + dxσ).
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Let us calculate the whole absolute change of the vector-
field Aµ as we pass round the circuit ABCDA.

(1) From A to B, the absolute change is Aµν dxν, calculated
for xσ*.

(2) From B to C, the absolute change is Aµσ dxσ, calculated
for xν + dxν.

(3) From C to D, the absolute change is −Aµν dxν, calculated
for xσ + dxσ.

(4) From D to A, the absolute change is −Aµσ dxσ, calculated
for xν.
Combining (2) and (4) the net result is the difference of the
changes Aµσ dxσ, at xν + dxν and at xν respectively. We might
be tempted to set this difference down as

∂

∂xν
(Aµν dxσ) dxν .

But as already explained that would give only the differ-
ence of the mathematical components and not the “absolute
difference.” We must take the covariant derivative instead,
obtaining (since dxσ is the same for (2) and (4))

Aµσν dxσ dxν .

Similarly (3) and (1) give

−Aµνσ dxν dxσ,

so that the total absolute change round the circuit is

(Aµσν −Aµνσ) dxν dxσ. (33.2)

We should naturally expect that on returning to our
starting point the absolute change would vanish. How could

*We suspend the summation convention since dxν and dxσ are
edges of a particular mesh. The convention would give correct results;
but it goes too fast, and we cannot keep pace with it.
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there have been any absolute change on balance, seeing
that the vector is now the same Aµ that we started with?
Nevertheless in general Aµνσ ̸= Aµσν, that is to say the order
of covariant differentiation is not permutable, and (33.2) does
not vanish.

That this result is not unreasonable may be seen by
considering a two-dimensional space, the surface of the
ocean. If a ship’s head is kept straight on the line of its wake,
the course is a great circle. Now suppose that the ship sails
round a circuit so that the final position and course are the
same as at the start. If account is kept of all the successive
changes of course, and the angles are added up, these will not
give a change zero (or 2π) on balance. For a triangular course
the difference is the well-known “spherical excess.” Similarly
the changes of velocity do not cancel out on balance. Here
we have an illustration that the absolute changes of a vector
do not cancel out on bringing it back to its initial position.

If the present result sounds self-contradictory, the fault
lies with the name “absolute change” which we have ten-
tatively applied to the thing under discussion. The name
is illuminating in some respects, because it shows the con-
tinuity of covariant differentiation with the conceptions of
elementary physics. For instance, no one would hesitate
to call (33.1) the absolute rate of change of momentum in
contrast to the apparent rate of change dh1/dt. But having
shown the continuity, we find it better to avoid the term in
the more general case of non-Euclidean space.

Following Levi-Civita and Weyl we use the term parallel
displacement for what we have hitherto called displacement
without “absolute change.” The condition for parallel dis-
placement is that the covariant derivative vanishes.

We have hitherto considered the absolute change necessary
in order that the vector may return to its original value, and so
be a single-valued function of position. If we do not permit
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any change en route, i.e. if we move the vector by parallel
displacement, the same quantity will appear (with reversed
sign) as a discrepancy δAµ between the final and initial vectors.
Since these are at the same point the difference of the initial
and final vectors can be measured immediately. We have
then by (33.2)

δAµ = (Aµνσ −Aµσν) dxν dxσ,

which may also be written
δAµ = 1

2

∫∫
(Aµνσ −Aµσν) dS

νσ, (33.3)

where the summation convention is now restored. We have
only proved this for an infinitesimal circuit occupying a
coordinate-mesh, for which dSµν has only two non-vanishing
components dxν dxσ and −dxν dxσ. But the equation is seen to
be a tensor-equation, and therefore holds independently of
the coordinate-system; thus it applies to circuits of any shape,
since we can always choose coordinates for which the circuit
becomes a coordinate-mesh. But (33.3) is still restricted to
infinitesimal circuits and there is no way of extending it to
finite circuits—unlike Stokes’s theorem. The reason for this
restriction is as follows—

An isolated vector Aµ may be taken at the starting point and
carried by parallel displacement round the circuit, leading to
a determinate value of δAµ. In (33.3) this is expressed in
terms of derivatives of a vector-field Aµ extending throughout
the region of integration. For a large circuit this would
involve values of Aµ remote from the initial vector, which
are obviously irrelevant to the calculation of δAµ. It is rather
remarkable that there should exist such a formula even for
an infinitesimal circuit; the fact is that although Aµνσ −Aµσν at
a point formally refers to a vector-field, its value turns out to
depend solely on the isolated vector Aµ (see equation (34.3)).

The contravariant vector dxµ/ds gives a direction in the
four-dimensional world which is interpreted as a velocity
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from the ordinary point of view which separates space and
time. We shall usually call it a “velocity”; its connection with
the usual three-dimensional vector (u, v, w) is given by

dxµ
ds

= β(u, v, w, 1),

where β is the FitzGerald factor dt/ds. The length (26.5) of a
velocity is always unity.

If we transfer dxµ/ds continually along itself by parallel
displacement we obtain a geodesic. For by (29.4) the condition
for parallel displacement is

∂

∂xν

(
∂xµ
ds

)
+ {αν, µ} ∂xα

ds
= 0.

Hence multiplying by dxν/ds

∂2xµ
ds2

+ {αν, µ} ∂xα
ds

dxν
ds

= 0, (33.4)

which is the condition for a geodesic (28.5). Thus in the
language used at the beginning of this section, a geodesic
is a line in four dimensions whose direction undergoes no
absolute change.

34. The Riemann-Christoffel tensor.

The second covariant derivative of Aµ is found by inserting
in (30.3) the value of Aµν from (29.3). This gives

Aµνσ =
∂

∂xσ

(
∂Aµ
∂xν

− {µν, α}Aα
)

− {µσ, α}
(
∂Aα
∂xν

− {αν, ϵ}Aϵ
)

− {νσ, α}
(
∂Aµ
∂xα

− {µα, ϵ}Aϵ
)
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=
∂2Aµ
∂xσ ∂xν

− {µν, α} ∂Aα
∂xσ

− {µσ, α} ∂Aα
∂xν

− {νσ, α} ∂Aµ
∂xα

+ {νσ, α} {µα, ϵ}Aϵ

+ {µσ, α} {αν, ϵ}Aϵ −Aα
∂

∂xσ
{µν, α}. (34.1)

The first five terms are unaltered when ν and σ are inter-
changed. The last two terms may be written, by changing
the dummy suffix α to ϵ in the last term,

Aϵ

(
{µσ, α} {αν, ϵ} − ∂

∂xσ
{µν, ϵ}

)
.

Hence

Aµνσ −Aµσν = Aϵ

(
{µσ, α}{αν, ϵ} − ∂

∂xσ
{µν, ϵ}

− {µν, α}{ασ, ϵ} − ∂

∂xν
{µσ, ϵ}

)
. (34.2)

The rigorous quotient theorem shows that the co-factor of Aϵ
must be a tensor. Accordingly we write

Aµνσ −Aµσν = AϵB
ϵ
µνσ, (34.3)

where

Bϵ
µνσ = {µσ, α}{αν, ϵ} − {µν, α}{ασ, ϵ} − ∂

∂xν
{µσ, ϵ} − ∂

∂xσ
{µν, ϵ}. (34.4)

This is called the Riemann-Christoffel tensor. It is only when
this tensor vanishes that the order of covariant differentiation
is permutable.

The suffix ϵ may be lowered. Thus

Bµνσρ = gρϵB
ϵ
µνσ

= {µσ, α}[αν, ρ]− {µν, α}[ασ, ρ]− ∂

∂xν
[µσ, ρ] +

∂

∂xσ
[µν, ρ]

− {µσ, α} ∂gρα
∂xν

+ {µν, α} ∂gρα
∂xσ

, (34.45)
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where ϵ has been replaced by α in the last two terms,

= −{µσ, α}[ρν, α] + {µν, α}[ρσ, α]

+ 1
2

(
∂2gρσ
∂xµ ∂xν

+
∂2gµν
∂xρ ∂xσ

− ∂2gµσ
∂xρ ∂xν

− ∂2gρν
∂xµ ∂xσ

)
, (34.5)

by (27.5) and (27.1).
It will be seen from (34.5) that Bµνσρ, besides being anti-

symmetrical in ν and σ, is also antisymmetrical in µ and ρ.
Also it is symmetrical for the double interchange µ and ν, ρ
and σ. It has the further cyclic property

Bµνσρ +Bµσρν +Bµρνσ = 0, (34.6)

as is easily verified from (34.5).
The general tensor of the fourth rank has 256 different

components. Here the double antisymmetry reduces the
number (apart from differences of sign) to 6 × 6. 30 of these
are paired because µ, ρ can be interchanged with ν, σ; but
the remaining 6 components, in which µ, ρ is the same
pair of numbers as ν, σ, are without partners. This leaves
21 different components, between which (34.6) gives only one
further relation. We conclude that the Riemann-Christoffel
tensor has 20 independent components*.

The Riemann-Christoffel tensor is derived solely from
the gµν and therefore belongs to the class of fundamental ten-
sors. Usually we can form from any tensor a series of tensors

*Writing the suffixes in the order µρσν the following scheme gives
21 different components:

1212 1223 1313 1324 1423 2323 2424
1213 1224 1314 1334 1424 2324 2434
1214 1234 1323 1414 1434 2334 3434

with the relation 1234− 1324 + 1423 = 0.
If we omit those containing the suffix 4, we are left with 6 compo-

nents in three-dimensional space. In two dimensions there is only the
one component 1212.
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of continually increasing rank by covariant differentiation.
But this process is frustrated in the case of the fundamental
tensors because gµνσ vanishes identically. We have got round
the gap and reached a fundamental tensor of the fourth rank.
The series can now be continued indefinitely by covariant
differentiation.

When the Riemann-Christoffel tensor vanishes, the dif-
ferential equations

Aµν =
∂Aµ
∂xν

− {µν, α}Aα = 0 (34.7)

are integrable. For the integration will be possible if (34.7)

makes dAµ or
∂Aµ
∂xν

dxν

a complete differential, i.e. if

{µν, α}Aα dxν

is a complete differential. By the usual theory the condition
for this is

∂

∂xσ
({µν, α}Aα)−

∂

∂xν
({µσ, α}Aα) = 0,

or

Aα

(
∂

∂xσ
{µν, α} − ∂

∂xν
{µσ, α}

)
+ {µν, α} ∂Aα

∂xσ
− {µσ, α} ∂Aα

∂xν
= 0.

Substituting for ∂Aα/∂xσ, ∂Aα/dxν from (34.7)

Aα

(
∂

∂xσ
{µν, α} − ∂

∂xν
{µσ, α}

)
+ ({µν, α} {ασ, ϵ} − {µσ, α} {αν, ϵ})Aϵ = 0.

Changing the suffix α to ϵ in the first term, the condition
becomes

AϵB
ϵ
µσν = 0.
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Accordingly when Bϵ

µσν vanishes, the differential dAµ deter-
mined by (34.7) will be a complete differential, and

∫
dAµ

between any two points will be independent of the path
of integration. We can then carry the vector Aµ. by
parallel displacement to any point obtaining a unique result
independent of the route of transfer. If a vector is displaced
in this way all over the field, we obtain a uniform vector-field.

This construction of a uniform vector-field is only possible
when the Riemann-Christoffel tensor vanishes throughout.
In other cases the equations have no complete integral, and
can only be integrated along a particular route. E.g., we can
prescribe a uniform direction at all points of a plane, but ther�
is nothing analogous to a uniform direction over the surface
of a sphere.

Formulae analogous to (34.3) can be obtained for the
second derivatives of a tensor A...µ.. instead of for a vector Aµ.
The result is easily found to be

A...µ..νσ −A...µ..σν =
∑

Bϵ
µσνA...ϵ.., (34.8)

the summation being taken over all the suffixes µ of the
original tensor.

The corresponding formulae for contravariant tensors fol-
low at once, since the gµν behave as constants in covariant
differentiation, and suffixes may be raised on both sides
of (34.8).
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35. Miscellaneous formulae.

The following are needed for subsequent use—
Since

gµνg
µα = 0 or 1,

gµα dgµν + gµν dg
µα = 0.

Hence

gµα gνβ dgµν = −gµν gνβ dgµα = −gβµ dgµα

= −dgαβ. (35.11)

Similarly
dgαβ = −gµαgνβ dgµν . (35.12)

Multiplying by Aαβ, we have by the rule for lowering suffixes

Aαβ dgαβ = −(gµαgνβA
αβ) dgµν

= −Aµν dgµν = −Aαβ dgαβ. (35.2)

For any tensor Bαβ other than the fundamental tensor the
corresponding formula would be

Aαβ dBαβ = Aαβ dB
αβ

by (26.3). The exception for Bαβ = gαβ arises because a
change dgαβ has an additional indirect effect through altering
the operation of raising and lowering suffixes.

Again dg is formed by taking the differential of each gµν

and multiplying by its co-factor g · gµν in the determinant.
Thus

dg

g
= gµν dgµν = −gµν dgµν . (35.3)

The contracted 3-index symbol

{µσ, σ} = 1
2
gσλ

{
∂gµλ
∂xσ

+
∂gσλ
∂xµ

− ∂gµσ
∂xλ

}
= 1

2
gσλ

∂gσλ
∂xµ

.
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The other two terms cancel by interchange of the dummy
suffixes σ and λ. Hence by (35.3)

{µσ, σ} =
1

2g

∂g

∂xµ

=
∂

∂xµ
log

√
−g. (35.4)

We use √
−g because g is always negative for real coordinates.

A possible pitfall in differentiating a summed expression
should be noticed. The result of differentiating aµνxµxν with
respect to xν is not aµνxµ but (aµν + aνµ)xµ. The method of
performing such differentiations may be illustrated by the
following example. Let

hντ = aµνaστxµxσ,

where aµν represents constant coefficients. Then
∂hντ
∂xα

= aµνaστ

(
∂xµ
∂xα

xσ +
∂xσ
∂xα

xµ

)
= aµνaστ (g

µ
αxσ + gσαxµ) by (22.3).

Repeating the process,
∂2hντ
∂xα ∂xβ

= aµνaστ (g
µ
αg

σ
β + gσαg

µ
β)

= aανaβτ + aβνaατ .

Hence changing dummy suffixes
∂2

∂xµ ∂xσ
(aµνaστxµxσ) = aµνaστ + aσνaµτ . (35.5)

Similarly if aµνσ is symmetrical in its suffixes
∂3

∂xµ ∂xν ∂xσ
(aµνσxµxνxσ) = 6aµνσ. (35.6)

The pitfall arises from repeating a suffix three times in one
term. In these formulae the summation applies to the
repetition within the bracket, and not to the differentiation.
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Summary.

Tensors are quantities obeying certain transformation laws.
Their importance lies in the fact that if a tensor equation
is found to hold for one system of coordinates, it continues
to hold when any transformation of coordinates is made.
New tensors are recognised either by investigating their
transformation laws directly or by the property that the sum,
difference, product or quotient of tensors is a tensor. This is
a generalisation of the method of dimensions in physics.

The principal operations of the tensor calculus are ad-
dition, multiplication (outer and inner), summation (§ 22),
contraction (§ 24), substitution (§ 25), raising and lowering
suffixes (§ 26), covariant differentiation (§§ 29, 30). There is
no operation of division; but an inconvenient factor gµν or gµν
can be removed by multiplying through by gµσ or gµσ so as to
form the substitution-operator. The operation of summation
is practically outside our control and always presents itself as
a fait accompli. The most characteristic process of manipula-
tion in this calculus is the free alteration of dummy suffixes
(those appearing twice in a term); it is probably this process
which presents most difficulty to the beginner.

Of special interest are the fundamental tensors or world-
tensors, of which we have discovered two, viz. gµν and Bµνσρ.
The latter has been expressed in terms of the former and its
first and second derivatives. It is through these that the gap
between pure geometry and physics is bridged; in particular
gµν relates the observed quantity ds to the mathematical
coordinate specification dxµ.

Since in our work we generally deal with tensors, the
reader may be led to overlook the rarity of this property. The
juggling tricks which we seem to perform in our manipula-
tions are only possible because the material used is of quite
exceptional character.
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The further development of the tensor calculus will be

resumed in § 48; but a stage has now been reached at which
we may begin to apply it to the theory of gravitation.



CHAPTER III
THE LAW OF GRAVITATION

36. The condition for flat space-time. Natural
coordinates.

AREGION of the world is called flat or homaloidal if it is
possible to construct in it a Galilean frame of reference.

It was shown in § 4 that when the gµν are constants,
ds2 can be reduced to the sum of four squares, and Galilean
coordinates can be constructed. Thus an equivalent definition
of flat space-time is that it is such that coordinates can be
found for which the gµν are constants.

When the gµν are constants the 3-index symbols all vanish;
but since the 3-index symbols do not form a tensor, they will
not in general continue to vanish when other coordinates are
substituted in the same flat region. Again, when the gµν are
constants, the Riemann-Christoffel tensor, being composed
of products and derivatives of the 3-index symbols, will
vanish; and since it is a tensor, it will continue to vanish
when any other coordinate-system is substituted in the same
region.

Hence the vanishing of the Riemann-Christoffel tensor is a
necessary condition for flat space-time.

This condition is also sufficient—if the Riemann-Christof-
fel tensor vanishes space-time must be flat. This can be
proved as follows—

We have found (§ 34) that if

Bϵ
µνσ = 0, (36.1)
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it is possible to construct a uniform vector-field by parallel
displacement of a vector all over the region. Let Aµ(α) be four
uniform vector-fields given by α = 1, 2, 3, 4, so that

(Aµ(α))σ = 0

or by (29.4)
∂Aµ(α)
∂xσ

= −{ϵσ, µ}Aϵ(α). (36.2)

Note that α is not a tensor-suffix, but merely distinguishes
the four independent vectors.

We shall use these four uniform vector-fields to define a
new coordinate-system distinguished by accents. Our unit
mesh will be the hyperparallelopiped contained by the four
vectors at any point, and the complete mesh-system will be
formed by successive parallel displacements of this unit mesh
until the whole region is filled. One edge of the unit mesh,
given in the old coordinates by

dxµ = Aµ(1),

has to become in the new coordinates

dx′
α = (1, 0, 0, 0).

Similarly the second edge, dxµ = Aµ(2), must become dx′
α =

(0, 1, 0, 0); etc. This requires the law of transformation

dxµ = Aµ(α) dx
′
α. (36.3)

Of course, the construction of the accented coordinate-
system depends on the possibility of constructing uniform
vector-fields, and this depends on (36.1) being satisfied.

Since ds2 is an invariant

g′αβ dx
′
α dx

′
β = gµν dxµ dxν

= gµνA
µ
(α)A

ν
(β) dx

′
α dx

′
β by (36.3).
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Hence

g′αβ = gµνA
µ
(α)A

ν
(β).

Accordingly, by differentiation,

∂g′αβ
∂xσ

= gµνA
µ
(α)

∂Aν(β)
∂xσ

+ gµνA
ν
(β)

∂Aµ(α)
∂xσ

+Aµ(α)A
ν
(β)

∂gµν
∂xσ

= −gµνAµ(α)A
ϵ
(β){ϵσ, ν} − gµνA

ν
(β)A

ϵ
(α){ϵσ, µ}+Aµ(α)A

ν
(β)

∂gµν
∂xσ

by (36.2). By changing dummy suffixes, this becomes
∂g′αβ
∂xσ

= Aµ(α)A
ν
(β)

[
−gµϵ{νσ, ϵ} − gϵν{µσ, ϵ}+

∂gµν
∂xσ

]
= Aµ(α)A

ν
(β)

[
−[νσ, µ]− [µσ, ν] +

∂gµν
∂xσ

]
= 0 by (27.5).

Hence the g′αβ are constant throughout the region. We have
thus constructed a coordinate-system fulfilling the condition
that the g’s are constant, and it follows that the space-time is
flat.

It will be seen that a uniform mesh-system, i.e. one in
which the unit meshes are connected with one another by
parallel displacement, is necessarily a Cartesian system (rect-
angular or oblique). Uniformity in this sense is impossible in
space-time for which the Riemann-Christoffel tensor does
not vanish, e.g. there can be no uniform mesh-system on a
sphere.

When space-time is not flat we can introduce coordinates
which will be approximately Galilean in a small region round
a selected point, the gµν being not constant but stationary
there; this amounts to identifying the curved space-time
with the osculating flat space-time for a small distance round
the point. Expressing the procedure analytically, we choose
coordinates such that the 40 derivatives ∂gµν/∂xσ vanish at the
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selected point. It is fairly obvious from general considerations
that this will always be possible; but the following is a formal
proof. Having transferred the origin to the selected point,
make the following transformation of coordinates

xϵ = gµϵ x
′
µ − 1

2
{αβ, ϵ}0 gµα gνβ x′

µx
′
ν , (36.4)

where the value of the 3-index symbol at the origin is to be
taken. Then at the origin

∂xϵ
∂x′

µ

= gµϵ , (36.45)

∂2xϵ
∂x′

µ ∂x
′
ν

= −{αβ, ϵ} gµα gνβ

= −{αβ, ϵ} ∂xα
∂x′

µ

∂xβ
∂x′

ν

by (36.45).

Hence by (31.3)

{µν, ρ}′ ∂xϵ
∂x′

ρ

= 0.

But
{µν, ρ}′ ∂xϵ

∂x′
ρ

= {µν, ρ}′ gρϵ = {µν, ϵ}′.

Hence in the new coordinates the 3-index symbols vanish
at the origin; and it follows by (27.4) and (27.5) that the
first derivatives of the g′µν vanish. This is the preliminary
transformation presupposed in § 4.

We pass on to a somewhat more difficult transforma-
tion which is important as contributing an insight into the
significance of Bϵ

µνσ.
It is not possible to make the second derivatives of the gµν

vanish at the selected point (as well as the first derivatives)
unless the Riemann-Christoffel tensor vanishes there; but
a great number of other special conditions can be imposed
on the 100 second derivatives by choosing the coordinates
suitably. Make an additional transformation of the form

xϵ = gϵµx
′
µ +

1
6
aϵµνσ x

′
µx

′
νx

′
σ, (36.5)
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where aϵµνσ represents arbitrary coefficients symmetrical in
µ, ν, σ. This new transformation will not affect the first
derivatives of the gµν at the origin, which have already been
made to vanish by the previous transformation, but it alters
the second derivatives. By differentiating (31.3), viz.

{µν, ρ}′ ∂xϵ
∂x′

ρ

− ∂xα
∂x′

µ

∂xβ
∂x′

ν

{αβ, ϵ} =
∂2xϵ

∂x′
µ ∂x

′
ν

,

we obtain at the origin
∂

∂x′
σ

{µν, ρ}′ ∂xϵ
∂x′

ρ

− ∂xα
∂x′

µ

∂xβ
∂x′

ν

∂xγ
∂x′

σ

∂

∂xγ
{αβ, ϵ} =

∂3xϵ
∂x′

µ ∂x
′
ν ∂x

′
σ

,

since the 3-index symbols themselves vanish. Hence by (36.5)*
∂

∂x′
σ

{µν, ρ}′ · gϵρ − gαµg
β
ν g

γ
σ

∂

∂xγ
{αβ, ϵ} = aϵµνσ,

which reduces to
∂

∂x′
σ

{µν, ϵ}′ − ∂

∂xσ
{µν, ϵ} = aϵµνσ. (36.55)

The transformation (36.5) accordingly increases ∂{µν, ϵ}/∂xσ
by aϵµνσ.

Owing to the symmetry of aϵµνσ, all three quantities
∂

∂xσ
{µν, ϵ}, ∂

∂xν
{µσ, ϵ}, ∂

∂xµ
{νσ, ϵ}

are necessarily increased by the same amount. Now the
unaltered difference

∂

∂xν
{µσ, ϵ} − ∂

∂xσ
{µν, ϵ} = Bϵ

µνσ, (36.6)

since the remaining terms of (34.4) vanish in the coordinates
here used. We cannot alter any of the components of the
Riemann-Christoffel tensor; but, subject to this limitation,

*For the disappearance of the factor 1
6 , see (35.6).
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the alterations of the derivatives of the 3-index symbols are
arbitrary.

The most symmetrical way of imposing further conditions
is to make a transformation such that

∂

∂xσ
{µν, ϵ}+ ∂

∂xν
{µσ, ϵ}+ ∂

∂xµ
{νσ, ϵ} = 0. (36.7)

There are 80 different equations of this type, each of which
fixes one of the 80 arbitrary coefficients aϵµνσ. In addition there
are 20 independent equations of type (36.6) corresponding to
the 20 independent components of the Riemann-Christoffel
tensor. Thus we have just sufficient equations to determine
uniquely the 100 second derivatives of the gµν. Coordinates
such that ∂gµν/∂xσ is zero and ∂2gµν/∂xσ ∂xτ satisfies (36.7) may
be called canonical coordinates.

By solving the 100 equations we obtain all the ∂2gµν/∂xσ ∂xτ

for canonical coordinates expressed as linear functions of
the Bϵ

µνσ.
The two successive transformations which lead to canoni-

cal coordinates are combined in the formula

xϵ = gϵµx
′
µ − 1

2
{µν, ϵ}0 x′

µx
′
ν

− 1

18

[
∂

∂xµ
{νσ, ϵ}+ ∂

∂xν
{µσ, ϵ}+ ∂

∂xσ
{µν, ϵ}

]
0

x′
µx

′
νx

′
σ. (36.8)

At the origin ∂xϵ/∂x
′
µ = gϵµ, so that the transformation does

not alter any tensor at the origin. For example, the law of
transformation of Cµνσ gives

C ′
µνσ = Cαβγ

∂xα
∂x′

µ

∂xβ
∂x′

ν

∂xγ
∂x′

σ

= Cαβγ g
α
µg

β
ν g

γ
σ

= Cµνσ.

The transformation in fact alters the curvature and hypercur-
vature of the axes passing through the origin, but does not
alter the angles of intersection.
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Consider any tensor which contains only the gµν and their

first and second derivatives. In canonical coordinates the
first derivatives vanish and the second derivatives are linear
functions of the Bϵ

µνσ; hence the whole tensor is a function of
the gµν and the Bϵ

µνσ. But neither the tensor itself nor the gµν

and Bϵ
µνσ have been altered in the reduction to canonical

coordinates, hence the same functional relation holds true
in the original unrestricted coordinates. We have thus the
important result—

The only fundamental tensors which do not contain derivatives
of gµν beyond the second order are functions of gµν and Bϵ

µνσ.
This shows that our treatment of the tensors describing

the character of space-time has been exhaustive as far as the
second order. If for suitably chosen coordinates two surfaces
have the same gµν and Bϵ

µνσ at some point, they will be
applicable to one another as far as cubes of the coordinates;
the two tensors suffice to specify the whole metric round the
point to this extent.

Having made the first derivatives vanish, we can by the
linear transformation explained in § 4 give the gµν Galilean
values at the selected point. The coordinates so obtained are
called natural coordinates at the point and quantities referred
to these coordinates are said to be expressed in natural
measure. Natural coordinates are thus equivalent to Galilean
coordinates when only the gµν and their first derivatives are
considered; the difference appears when we study phenomena
involving the second derivatives.

By making a Lorentz transformation (which leaves the
coordinates still a natural system) we can reduce to rest the
material located at the point, or an observer supposed to be
stationed with his measuring appliances at the point. The
natural measure is then further particularised as the proper-
measure of the material, or observer. It may be noticed
that the material will be at rest both as regards velocity and
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acceleration (unless it is acted on by electromagnetic forces)
because there is no field of acceleration relative to natural
coordinates.

To sum up this discussion of special systems of coordinates.—
When the Riemann-Christoffel tensor vanishes, we can
adopt Galilean coordinates throughout the region. When
it does not vanish we can adopt coordinates which agree
with Galilean coordinates at a selected point in the values
of the gµν and their first derivatives but not in the second
derivatives; these are called natural coordinates at the point.
Either Galilean or natural coordinates can be subjected to
Lorentz transformations, so that we can select a system with
respect to which a particular observer is at rest; this system
will be the proper-coordinates for that observer. Although
we cannot in general make natural coordinates agree with
Galilean coordinates in the second derivatives of the gµν, we
can impose 80 partially arbitrary conditions on the 100 second
derivatives; and when these conditions are selected as in (36.7)

the resulting coordinates have been called canonical.
There is another way of specialising coordinates which may

be mentioned here for completeness. It is always possible
to choose coordinates such that the determinant g = −1

everywhere (as in Galilean coordinates). This is explained in
§ 49.

We may also consider another class of specialised coordinates—
those which are permissible in special problems. There are
certain (non-Euclidean) coordinates found to be most con-
venient in dealing with the gravitational field of the sun,
Einstein’s or de Sitter’s curved world, and so on. It must be
remembered, however, that these refer to idealised problems,
and coordinate-systems with simple properties can only be
approximately realised in nature. If possible a static system of
coordinates is selected, the condition for this being that all
the gµν are independent of one of the coordinates x4 (which
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must be of timelike character*). In that case the interval
corresponding to any displacement dxµ is independent of the
“time” x4. Such a system can, of course, only be found if the
relative configuration of the attracting masses is maintained
unaltered. If in addition it is possible to make g14, g24, g34 = 0

the time will be reversible, and in particular the forward
velocity of light along any track will be equal to the backward
velocity; this renders the application of the name “time” to x4

more just, since one of the alternative conventions of § 11 is
satisfied. We shall if possible employ systems which are static
and reversible in dealing with large regions of the world;
problems in which this simplification is not permissible must
generally be left aside as insoluble–e.g. the problem of two
attracting bodies. For small regions of the world the greatest
simplification is obtained by using natural coordinates.

37. Einstein’s law of gravitation.

The contracted Riemann-Christoffel tensor is formed by
setting ϵ = σ in Bϵ

µνσ. It is denoted by Gµν. Hence by (34.4)

Gµν = {µσ, α}{αν, σ} − {µν, α}{ασ, σ}+ ∂

∂xν
{µσ, σ} − ∂

∂xσ
{µν, σ}. (37.1)

The symbols containing a duplicated suffix are simplified
by (35.4), viz.

{µσ, σ} =
∂

∂xµ
log

√
−g.

Hence, with some alterations of dummy suffixes,

Gµν = − ∂

∂xα
{µν, α}+ {µα, β}{νβ, α}

+
∂2

∂xµ ∂xν
log

√
−g − {µν, α} ∂

∂xα
log

√
−g. (37.2)

*dx4 will be timelike if g44 is always positive.
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Contraction by setting ϵ = µ does not provide an alternative

tensor, because
Bµ
µνσ = gµρBµνσρ = 0,

owing to the antisymmetry of Bµνσρ in µ and ρ.
The law

Gµν = 0, (37.3)

in empty space, is chosen by Einstein for his law of gravita-
tion.

We see from (37.2) that Gµν is a symmetrical tensor;
consequently the law provides 10 partial differential equations
to determine the gµν. It will be found later (§ 52) that there
are 4 identical relations between them, so that the number
of equations is effectively reduced to 6. The equations
are of the second order and involve the second differential
coefficients of gµν linearly. We proved in § 36 that tensors not
containing derivatives beyond the second must necessarily be
compounded from gµν and Bϵ

µνσ; so that, unless we are
prepared to go beyond the second order, the choice of a
law of gravitation is very limited, and we can scarcely avoid
relying on the tensor Gµν*.

Without introducing higher derivatives, which would
seem out of place in this problem, we can suggest as an
alternative to (37.3) the law

Gµν = λgµν , (37.4)

where λ is a universal constant. There are theoretical grounds
for believing that this is actually the correct form; but it
is certain that λ must be an extremely small constant, so
that in practical applications we still take (37.3) as sufficiently
approximate. The introduction of the small constant λ leads

*The law Bµνσρ = 0 (giving flat space-time throughout all empty
regions) would obviously be too stringent, since it does not admit of
the existence of irreducible fields of force.
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to the spherical world of Einstein or de Sitter to which we
shall return in Chapter V.

The spur

G = gµνGµν (37.5)

is called the Gaussian curvature, or simply the curvature,
of space-time. It must be remembered, however, that the
deviation from flatness is described in greater detail by
the tensors Gµν and Bµνσρ (sometimes called components of
curvature) and the vanishing of G is by no means a sufficient
condition for fiat space-time.

Einstein’s law of gravitation expresses the fact that the
geometry of an empty region of the world is not of the
most general Riemannian type, but is limited. General
Riemannian geometry corresponds to the quadratic form (2.1)

with the g’s entirely unrestricted functions of the coordinates;
Einstein asserts that the natural geometry of an empty region
is not of so unlimited a kind, and the possible values of
the g’s are restricted to those which satisfy the differential
equations (37.3). It will be remembered that a field of force
arises from the discrepancy between the natural geometry
of a coordinate-system and the abstract Galilean geometry
attributed to it; thus any law governing a field of force must
be a law governing the natural geometry. That is why the
law of gravitation must appear as a restriction on the possible
natural geometry of the world. The inverse-square law, which
is a plausible law of weakening of a supposed absolute force,
becomes quite unintelligible (and indeed impossible) when
expressed as a restriction on the intrinsic geometry of space-
time; we have to substitute some law obeyed by the tensors
which describe the world-conditions determining the natural
geometry.
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38. The gravitational field of an isolated particle.

We have now to determine a particular solution of the
equations (37.3). The solution which we shall obtain will
ultimately be shown to correspond to the field of an isolated
particle continually at rest at the origin; and in seeking a
solution we shall be guided by our general idea of the type of
solution to be expected for such a particle. This preliminary
argument need not be rigorous; the final test is whether the
formulae suggested by it satisfy the equations to be solved.

In flat space-time the interval, referred to spherical polar
coordinates and time, is

ds2 = −dr2 − r2 dθ2 − r2 sin2 θ dϕ2 + dt2. (38.11)

If we consider what modifications of this can be made
without destroying the spherical symmetry in space, the
symmetry as regards past and future time, or the static
condition, the most general possible form appears to be

ds2 = −U(r) dr2 − V (r) (r2 dθ2 + r2 sin2 θ dϕ2) +W (r) dt2, (38.12)

where U , V , W are arbitrary functions of r. Let

r21 = r2V (r).

Then (38.12) becomes of the form

ds2 = −U1(r1) dr
2
1 − r21 dθ

2 − r21 sin2 θ dϕ2 +W1(r1) dt
2, (38.13)

where U1 and W1 are arbitrary functions of r1. There is
no reason to regard r in (38.12) as more immediately the
counterpart of r in (38.11) than r1 is. If the functions U ,
V , W differ only slightly from unity, both r and r1 will
have approximately the properties of the radius-vector in
Euclidean geometry; but no length in non-Euclidean space
can have exactly the properties of a Euclidean radius-vector,
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and it is arbitrary whether we choose r or r1 as its closest
representative. We shall here choose r1, and accordingly drop
the suffix, writing (38.13) in the form

ds2 = −eλ dr2 − r2 dθ2 − r2 sin2 θ dϕ2 + eν dt2, (38.2)

where λ and ν are functions of r only.
Moreover since the gravitational field (or disturbance of

flat space-time) due to a particle diminishes indefinitely as
we go to an infinite distance, we must have λ and ν tend to
zero as r tends to infinity. Formula (38.2) will then reduce
to (38.11) at an infinite distance from the particle.

Our coordinates are

x1 = r, x2 = θ, x3 = ϕ, x4 = t,

and the fundamental tensor is by (38.2)

g11 = −eλ, g22 = −r2, g33 = −r2 sin2 θ, g44 = eν , (38.31)

and
gµν = 0 if µ ̸= ν.

The determinant g reduces to its leading diagonal g11g22g33g44.
Hence

−g = eλ+νr4 sin2 θ, (38.32)

and g11 = 1/g11, etc., so that

g11 = −e−λ, g22 = −1/r2, g33 = −1/r2 sin2 θ, g44 = e−ν . (38.33)

Since all the gµν vanish except when the two suffixes are
the same, the summation disappears in the formula for the
3-index symbols (27.2), and

{µν, σ} = 1
2
gσσ

(
∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
not summed.
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If µ, ν, σ denote different suffixes we get the following

possible cases (the summation convention being suspended):

{µµ, µ} = 1
2
gµµ

∂gµµ
∂xµ

= 1
2

∂

∂xµ
(log gµµ),

{µµ, ν} = − 1
2
gνν

∂gµµ
∂xν

,

{µν, ν} = 1
2
gνν

∂gνν
∂xµ

= 1
2

∂

∂xµ
(log gνν),

{µν, σ} = 0.


(38.4)

It is now easy to go systematically through the 40 3-
index symbols calculating the values of those which do not
vanish. We obtain the following results, the accent denoting
differentiation with respect to r:

{11, 1} = 1
2
λ′,

{12, 2} = 1/r,

{13, 3} = 1/r,

{14, 4} = 1
2
ν ′,

{22, 1} = −re−λ,

{23, 3} = cot θ,

{33, 1} = −r sin2 θ e−λ,

{33, 2} = − sin θ cos θ,

{44, 1} = 1
2
eν−λν ′.



(38.5)

The remaining 31 symbols vanish. Note that {21, 2} is the
same as {12, 2}, etc.

These values must be substituted in (37.2). As there may be
some pitfalls in carrying this out, we shall first write out the
equations (37.2) in full, omitting the terms (223 in number)
which now obviously vanish.

G11 = − ∂

∂r
{11, 1}+ {11, 1}{11, 1}+ {12, 2}{12, 2}

+ {13, 3}{13, 3}+ {14, 4}{14, 4}

+
∂2

∂r2
log

√
−g − {11, 1} ∂

∂r
log

√
−g,
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G22 = − ∂

∂r
{22, 1}+ 2{22, 1}{21, 2}+ {23, 3}{23, 3}

+
∂2

∂θ2
log

√
−g − {22, 1} ∂

∂r
log

√
−g,

G33 = − ∂

∂r
{33, 1} − ∂

∂θ
{33, 2}

+ 2{33, 1}{31, 3}+ 2{33, 2}{32, 3}

− {33, 1} ∂

∂r
log

√
−g − {33, 2} ∂

∂θ
log

√
−g,

G44 = − ∂

∂r
{44, 1}+ 2{44, 1}{41, 4} − {44, 1} ∂

∂r
log

√
−g,

G12 = {13, 3}{23, 3} − {12, 2} ∂

∂θ
log

√
−g.

The remaining components contain no surviving terms.
Substitute from (38.5) and (38.32) in these, and collect the

terms. The equations to be satisfied become

G11 =
1
2
ν ′′ − 1

4
λ′ν ′ + 1

4
ν ′2 − λ′/r = 0, (38.61)

G22 = e−λ
(
1 + 1

2
r(ν ′ − λ′)

)
− 1 = 0, (38.62)

G33 = sin2 θ · e−λ
(
1 + 1

2
r(ν ′ − λ′)

)
− sin2 θ = 0, (38.63)

G44 = eν−λ(− 1
2
ν ′′ + 1

4
λ′ν ′ − 1

4
ν ′2 − ν ′/r) = 0, (38.64)

G12 = 0. (38.65)

We may leave aside (38.63) which is a mere repetition of (38.62);
then there are left three equations to be satisfied by λ and ν.
From (38.61) and (38.64) we have λ′ = −ν ′. Since λ and ν are to
vanish together at r = ∞, this requires that

λ = −ν.

Then (38.62) becomes

eν(1 + rν ′) = 1.

Set eν = γ, then
γ + rγ′ = 1.

Hence, integrating,
γ = 1− 2m

r
, (38.7)
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where 2m is a constant of integration.

It will be found that all three equations are satisfied by
this solution. Accordingly, substituting e−λ = eν = γ in (38.2),

ds2 = −γ−1 dr2 − r2 dθ2 − r2 sin2 θ dϕ2 + γ dt2, (38.8)

where γ = 1 − 2m/r, is a particular solution of Einstein’s
gravitational equations Gµν = 0. The solution in this form was
first obtained by Schwarzschild.

39. Planetary orbits.

According to (15.7) the track of a particle moving freely in
the space-time given by (38.8) is determined by the equations
of a geodesic (28.5), viz.

d2xα
ds2

+ {µν, α} dxµ
ds

dxν
ds

= 0. (39.1)

Taking first α = 2, the surviving terms are
d2x2

ds2
+ {12, 2} dx1

ds

dx2

ds
+ {21, 2} dx2

ds

dx1

ds
+ {33, 2} dx3

ds

dx3

ds
= 0,

or using (38.5)

d2θ

ds2
+

2

r

dr

ds

dθ

ds
− cos θ sin θ

(
dϕ

ds

)2

= 0. (39.2)

Choose coordinates so that the particle moves initially in
the plane θ = 1

2
π. Then dθ/ds = 0 and cos θ = 0 initially, so

that d2θ/ds2 = 0. The particle therefore continues to move in
this plane, and we may simplify the remaining equations by
putting θ = 1

2
π throughout. The equations for α = 1, 3, 4 are

found in like manner, viz.

d2r

ds2
+ 1

2
λ′

(
dr

ds

)2

− re−λ
(
dϕ

ds

)2

+ 1
2
eν−λν ′

(
dt

ds

)2

= 0, (39.31)

d2ϕ

ds2
+

2

r

dr

ds

dϕ

ds
= 0, (39.32)
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d2t

ds2
+ ν ′

dr

ds

dt

ds
= 0. (39.33)

The last two equations may be integrated immediately, giving

r2
dϕ

ds
= h, (39.41)

dt

ds
= ce−ν = c/γ, (39.42)

where h and c are constants of integration.
Instead of troubling to integrate (39.31) we can use in place

of it (38.8) which plays here the part of an integral of energy.
It gives

γ−1

(
dr

ds

)2

+ r2
(
dϕ

ds

)2

− γ

(
dt

ds

)2

= −1. (39.43)

Eliminating dt and ds by means of (39.41) and (39.42)

1

γ

(
h

r2
dr

dϕ

)2

+
h2

r2
− c2

γ
= −1, (39.44)

whence, multiplying through by γ or (1− 2m/r),(
h

r2
dr

dϕ

)2

+
h2

r2
= c2 − 1 +

2m

r
+

2m

r
· h

2

r2
,

or writing 1/r = u,(
du

dϕ

)2

+ u2 =
c2 − 1

h2
+

2m

h2
u+ 2mu3. (39.5)

Differentiating with respect to ϕ, and removing the fac-
tor du

dϕ
,

d2u

dϕ2
+ u =

m

h2
+ 3mu2, (39.61)

with
r2
dϕ

ds
= h. (39.62)

Compare these with the equations of a Newtonian orbit
d2u

dϕ2
+ u =

m

h2
(39.71)
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with

r2
dϕ

dt
= h. (39.72)

In (39.61) the ratio of 3mu2 to m/h2 is 3h2u2, or by (39.62)

3

(
r
dϕ

ds

)2

.

For ordinary speeds this is an extremely small quantity—
practically three times the square of the transverse velocity
in terms of the velocity of light. For example, this ratio for
the earth is 0.00000003. In practical cases the extra term
in (39.61) will represent an almost inappreciable correction to
the Newtonian orbit (39.71).

Again in (39.62) and (39.72) the difference between ds and dt

is equally insignificant, even if we were sure of what is meant
by dt in the Newtonian theory. The proper-time for the body
is ds, and it might perhaps be urged that dt in equation (39.72)

is intended to refer to this; but on the other hand s cannot
be used as a coordinate since ds is not a complete differential,
and Newton’s “time” is always assumed to be a coordinate.

Thus it appears that a particle moving in the field here
discussed will behave as though it were under the influence
of the Newtonian force exerted by a particle of gravitational
mass m at the origin, the motion agreeing with the Newto-
nian theory to the order of accuracy for which that theory
has been confirmed by observation.

By showing that our solution satisfies Gµν = 0, we have
proved that it describes a possible state of the world which
might be met with in nature under suitable conditions. By
deducing the orbit of a particle, we have discovered how that
state of the world would be recognised observationally if it
did exist. In this way we conclude that the space-time field
represented by (38.8) is the one which accompanies (or “is due
to”) a particle of mass m at the origin.
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The gravitational mass m is the measure adopted in the

Newtonian theory of the power of the particle in causing a
field of acceleration around it, the units being here chosen so
that the velocity of light and the constant of gravitation are
both unity. It should be noticed that we have as yet given no
reason to expect that m in the present chapter has anything
to do with the m introduced in § 12 to measure the inertial
properties of the particle.

For a circular orbit the Newtonian theory gives
m = ω2r3 = v2r,

the constant of gravitation being unity. Applying this to
the earth, v = 30 km. per sec. = 10−4 in terms of the velocity
of light, and r = 1.5 · 108 km. Hence the mass m of the sun
is approximately 1.5 kilometres. The mass of the earth is
1/300,000th of this, or about 5 millimetres*.

More accurately, the mass of the sun, 1.99 · 1033 grams,
becomes in gravitational units 1.47 kilometres; and other
masses are converted in a like proportion.

40. The advance of perihelion.

The equation (39.5) for the orbit of a planet can be
integrated in terms of elliptic functions; but we obtain the

*Objection is sometimes taken to the use of a centimetre as a unit
of gravitational (i.e. gravitation-exerting) mass; but the same objection
would apply to the use of a gram, since the gram is properly a
measure of a different property of the particle, viz. its inertia. Our
constant of integration m is clearly a length and the reader may, if he
wishes to make this clear, call it the gravitational radius instead of the
gravitational mass. But when it is realised that the gravitational radius
in centimetres, the inertia in grams, and the energy in ergs, are merely
measure-numbers in different codes of the same intrinsic quality of the
particle, it seems unduly pedantic to insist on the older discrimination
of these units which grew up on the assumption that they measured
qualities which were radically different.
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astronomical results more directly by a method of successive
approximation. We proceed from equation (39.61)

d2u

dϕ2
+ u =

m

h2
+ 3mu2. (40.1)

Neglecting the small term 3mu2, the solution is

u =
m

h2

(
1 + e cos(ϕ−ϖ)

)
, (40.2)

as in Newtonian dynamics. The constants of integration,
e and ϖ, are the eccentricity and longitude of perihelion.

Substitute this first approximation in the small term 3mu2,
then (40.1) becomes
d2u

dϕ2
+ u =

m

h2
+3

m3

h4
+6

m3

h4
e cos(ϕ−ϖ) +

3

2

m3

h4
e2
(
1+ 2 cos(ϕ−ϖ)

)
. (40.3)

Of the additional terms the only one which can produce an
effect within the range of observation is the term in cos(ϕ−ϖ);
this is of the right period to produce a continually increasing
effect by resonance. Remembering that the particular integral
of

d2u

dϕ2
+ u = A cosϕ

is
u = 1

2
Aϕ sinϕ,

this term gives a part of u

u1 = 3
m3

h4
eϕ sin(ϕ−ϖ), (40.4)

which must be added to the complementary integral (40.2).
Thus the second approximation is

u =
m

h2

(
1 + e cos(ϕ−ϖ) + 3

m2

h2
eϕ sin(ϕ−ϖ)

)
=
m

h2

(
1 + e cos(ϕ−ϖ − δϖ)

)
,
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where

δϖ = 3
m2

h2
ϕ, (40.5)

and (δϖ)2 is neglected.
Whilst the planet moves through 1 revolution, the perihe-

lion ϖ advances a fraction of a revolution equal to
δϖ

ϕ
=

3m2

h2
=

3m

a(1− e2)
, (40.6)

using the well-known equation of areas h2 = ml = ma(1− e2).
Another form is obtained by using Kepler’s third law,

m =

(
2π

T

)2

a3,

giving
δϖ

ϕ
=

12π2a2

c2T 2(1− e2)
, (40.7)

where T is the period, and the velocity of light c has been
reinstated.

This advance of the perihelion is appreciable in the case
of the planet Mercury, and the predicted value is confirmed
by observation.

For a circular orbit we put dr/ds, d2r/ds2 = 0, so that
(39.31) becomes

−re−λ
(
dϕ

ds

)2

+ 1
2
eν−λν ′

(
dt

ds

)2

= 0.

Whence (
dϕ

dt

)2

= 1
2
eνν ′/r = 1

2
γ′/r

= m/r3,

so that Kepler’s third law is accurately fulfilled. This result
has no observational significance, being merely a property of
the particular definition of r here adopted. Slightly different
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coordinate-systems exist which might with equal right claim
to correspond to polar coordinates in flat space-time; and for
these Kepler’s third law would no longer be exact.

We have to be on our guard against results of this latter
kind which would only be of interest if the radius-vector
were a directly measured quantity instead of a conventional
coordinate. The advance of perihelion is a phenomenon of a
different category. Clearly the number of years required for
an eccentric orbit to make a complete revolution returning to
its original position is capable of observational test, unaffected
by any convention used in defining the exact length of the
radius-vector.

For the four inner planets the following table gives the
corrections to the centennial motion of perihelion predicted
by Einstein’s theory:

δϖ e δϖ

Mercury +42′′.9 +8′′.82

Venus + 8.6 + 0.05

Earth + 3.8 + 0.07

Mars + 1.35 + 0.13

The product e δϖ is a better measure of the observable effect
to be looked for, and the correction is only appreciable in
the case of Mercury. After applying these corrections to e δϖ,
the following discrepancies between theory and observation
remain in the secular changes of the elements of the inner
planets, i and Ω being the inclination and the longitude of
the node:

e δϖ δe sin i δΩ δi
Mercury −0′′.58± 0′′.29 −0′′.88± 0′′.33 +0′′.46± 0′′.34 +0′′.38± 0′′.54
Venus − 0.11± 0.17 + 0.21± 0.21 + 0.53± 0.12 + 0.38± 0.22
Earth 0.00± 0.09 + 0.02± 0.07 · · · · · · − 0.22 + 0.18
Mars + 0.51± 0.23 + 0.29± 0.18 − 0.11± 0.15 − 0.01± 0.13

The probable errors here given include errors of observation,
and also errors in the theory due to uncertainty of the masses
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of the planets. The positive sign indicates excess of observed
motion over theoretical motion*.

Einstein’s correction to the perihelion of Mercury has
removed the principal discordance in the table, which on the
Newtonian theory was nearly 30 times the probable error. Of
the 15 residuals 8 exceed the probable error, and 3 exceed
twice the probable error—as nearly as possible the proper
proportion. But whereas we should expect the greatest
residual to be about 3 times the probable error, the residual of
the node of Venus is rather excessive at 4 1

2
times the probable

error, and may perhaps be a genuine discordance. Einstein’s
theory throws no light on the cause of this discordance.

41. The deflection of light.

For motion with the speed of light ds = 0, so that by (39.62)

h = ∞, and the orbit (39.61) reduces to

d2u

dϕ2
+ u = 3mu2. (41.1)

The track of a light-pulse is also given by a geodesic with
ds = 0 according to (15.8). Accordingly the orbit (41.1) gives
the path of a ray of light.

We integrate by successive approximation. Neglecting
3mu2 the solution of the approximate equation

d2u

dϕ2
+ u = 0

is the straight line
u =

cosϕ
R

. (41.2)

*Newcomb, Astronomical Constants. His results have been slightly
corrected by using a modern value of the constant of precession in the
above table; see de Sitter, Monthly Notices, vol. 76, p. 728.
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Substituting this in the small term 3mu2, we have

d2u

dϕ2
+ u =

3m

R2
cos2 ϕ.

A particular integral of this equation is

u1 =
m

R2
(cos2 ϕ+ 2 sin2 ϕ),

so that the complete second approximation is

u =
cosϕ
R

+
m

R2
(cos2 ϕ+ 2 sin2 ϕ). (41.3)

Multiply through by rR,

R = r cosϕ+
m

R
(r cos2 ϕ+ 2r sin2 ϕ),

or in rectangular coordinates, x = r cosϕ, y = r sinϕ,

x = R− m

R

x2 + 2y2√
x2 + y2

. (41.4)

The second term measures the very slight deviation from the
straight line x = R. The asymptotes are found by taking y very
large compared with x. The equation then becomes

x = R− m

R
(±2y),

and the small angle between the asymptotes is (in circular
measure)

4m

R
.

For a ray grazing the sun’s limb, m = 1.47 km., R = 697000 km.,
so that the deflection should be 1′′.75. The observed values
obtained by the British eclipse expeditions in 1919 were

Sobral expedition 1′′.98± 0′′.12

Principe expedition 1′′.61± 0′′.30
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It has been explained in Space, Time and Gravitation

that this deflection is double that which might have been
predicted on the Newtonian theory. In this connection the
following paradox has been remarked. Since the curvature
of the light-track is doubled, the acceleration of the light
at each point is double the Newtonian acceleration; whereas
for a slowly moving object the acceleration is practically
the same as the Newtonian acceleration. To a man in a
lift descending with acceleration m/r2 the tracks of ordinary
particles will appear to be straight lines; but it looks as
though it would require an acceleration 2m/r2 to straighten
out the light-tracks. Does not this contradict the principle
of equivalence?

The fallacy lies in a confusion between two meanings of
the word “curvature.” The coordinate curvature obtained from
the equation of the track (41.4) is not the geodesic curvature.
The latter is the curvature with which the local observer—the
man in the lift—is concerned. Consider the curved light-
track traversing the hummock corresponding to the sun’s
field; its curvature can be reckoned by projecting it either on
the base of the hummock or on the tangent plane at any
point. The curvatures of the two projections will generally
be different. The projection into Euclidean coordinates (x, y)

used in (41.4) is the projection on the base of the hummock; in
applying the principle of equivalence the projection is on the
tangent plane, since we consider a region of the curved world
so small that it cannot be discriminated from its tangent
plane.

42. Displacement of the Fraunhofer lines.

Consider a number of similar atoms vibrating at different
points in the region. Let the atoms be momentarily at rest in
our coordinate-system (r, θ, ϕ, t). The test of similarity of the
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atoms is that corresponding intervals should be equal, and
accordingly the interval of vibration of all the atoms will be
the same.

Since the atoms are at rest we set dr, dθ, dϕ = 0 in (38.8), so
that

ds2 = γ dt2. (42.1)

Accordingly the times of vibration, of the differently placed
atoms will be inversely proportional to √

γ.
Our system of coordinates is a static system, that is to

say the gµν do not change with the time. (An arbitrary
coordinate-system has not generally this property; and further
when we have to take account of two or more attracting
bodies, it is in most cases impossible to find a strictly static
system of coordinates.) Taking an observer at rest in the
system (r, θ, ϕ, t) a wave emitted by one of the atoms will reach
him at a certain time δt after it leaves the atom; and owing
to the static condition this time-lag remains constant for
subsequent waves. Consequently the waves are received at
the same time-periods as they are emitted. We are therefore
able to compare the time-periods dt of the different atoms, by
comparing the periods of the waves received from them, and
can verify experimentally their dependence on the value of √

γ

at the place where they were emitted. Naturally the most
hopeful test is the comparison of the waves received from a
solar and a terrestrial atom whose periods should be in the
ratio 1.00000212 : 1. For wave-length 4000 Å, this amounts to
a relative displacement of 0.0082 Å of the respective spectral
lines. This displacement is believed to have been verified
observationally, but the test is difficult and perhaps uncertain.
The theory has been strikingly confirmed in the spectrum of
the Companion of Sirius where the predicted displacement
was 30 times larger.

The quantity dt is merely an auxiliary quantity introduced



CH. III DISPLACEMENT OF THE FRAUNHOFER LINES 168
through the equation (38.8) which defines it. The fact that
it is carried to us unchanged by light-waves is not of any
physical interest, since dt was defined in such a way that
this must happen. The absolute quantity ds, the interval of
the vibration, is not carried to us unchanged, but becomes
gradually modified as the waves take their course through the
non-Euclidean space-time. It is in transmission through the
solar system that the absolute difference is introduced into
the waves, which the experiment hopes to detect.

The argument refers to similar atoms and the question
remains whether, for example, a hydrogen atom on the sun
is truly similar to a hydrogen atom on the earth. Strictly
speaking it cannot be exactly similar because it is in a
different kind of space-time, in which it would be impossible
to make a finite structure exactly similar to one existing in
the space-time near the earth. But if the interval of vibration
of the hydrogen atom is modified by the kind of space-time
in which it lies, the difference must be dependent on some
invariant of the space-time. The simplest invariant which
differs at the sun and the earth is the square of the length of
the Riemann-Christoffel tensor, viz.

Bϵ
µνσB

µνσ
ϵ .

The value of this can be calculated from (38.8) by the method
used in that section for calculating the Gµν. The result is

48
m2

r6
.

By consideration of dimensions it seems clear that the pro-
portionate change of ds would be of the order

σ4m2

r6
,

where σ is the radius of the atom; there does not seem to be
any other length concerned. For a comparison of solar and



CH. III ISOTROPIC COORDINATES 169
terrestrial atoms this would be about 10−100. In any case it
seems impossible to construct from the invariants of space-
time a term which would compensate the predicted shift of
the spectral lines, which is proportional to m/r.

43. Isotropic coordinates.

We can transform the expression for the interval (38.8) by
making the substitution

r =

(
1 +

m

2r1

)2

r1, (43.1)

so that
dr =

(
1− m2

4r21

)
dr1,

γ =

(
1− m

2r1

)2 /(
1 +

m

2r1

)2

.

Then (38.8) becomes

ds2 = −(1 +m/2r1)
4(dr1 + r21 dθ

2 + r21 sin2 θ dϕ2) +
(1−m/2r1)

2

(1 +m/2r1)2
dt2. (43.2)

The coordinates (r1, θ, ϕ) are called isotropic polar coordi-
nates. The corresponding isotropic rectangular coordinates
are obtained by putting

x = r1 sin θ cosϕ, y = r1 sin θ sinϕ, z = r1 cos θ,

giving

ds2 = −(1 +m/2r1)
4(dx2 + dy2 + dz2) +

(1−m/2r1)
2

(1 +m/2r1)2
dt2, (43.3)

with
r1 =

√
x2 + y2 + z2.

This system has some advantages. For example, to obtain
the motion of a light-pulse we set ds = 0 in (43.3). This gives(

dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

=
(1−m/2r1)

2

(1 +m/2r1)6
.
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At a distance r1 from the origin the velocity of light is
accordingly

(1−m/2r1)

(1 +m/2r1)3
(43.4)

in all directions. For the original coordinates of (38.8) the
velocity of light is not the same for the radial and transverse
directions.

Again in the isotropic system the coordinate length
(√x2 + y2 + z2) of a small rod which is rigid (ds = constant)
does not alter when the orientation of the rod is altered.
This system of coordinates is naturally arrived at when we
partition space by rigid scales or by light-triangulations in a
small region, e.g. in terrestrial measurements. Since the ul-
timate measurements involved in any observation are carried
out in a terrestrial laboratory we ought, strictly speaking,
always to employ the isotropic system which conforms to
assumptions made in those measurements*. But on the earth
the quantity m/r is negligibly small, so that the two systems
coalesce with one another and with Euclidean coordinates.
Non-Euclidean geometry is only required in the theoretical
part of the investigation—the laws of planetary motion and
propagation of light through regions where m/r is not neg-
ligible; as soon as the light-waves have been safely steered
into the terrestrial observatory, the need for non-Euclidean
geometry is at an end, and the difference between the
isotropic and non-isotropic systems practically disappears.

In either system the forward velocity of light along any
line is equal to the backward velocity. Consequently the
coordinate t conforms to the convention (§ 11) that simul-
taneity may be determined by means of light-signals. If we
have a clock at A and send a light-signal at time tA which
reaches B and is immediately reflected so as to return to A

*But the terrestrial laboratory is falling freely towards the sun, and
is therefore accelerated relatively to the coordinates (x, y, z, t).
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at time t′A, the time of arrival at B will be 1

2
(tA + t′A) just as

in the special relativity theory. But the alternative conven-
tion, that simultaneity can be determined by slow transport
of chronometers, breaks down when there is a gravitational
field. This is evident from § 42, since the time-rate of a clock
will depend on its position in the field. In any case slow
transport of a clock is unrealisable because of the acceleration
which all objects must submit to.

The isotropic system could have been found directly by
seeking particular solutions of Einstein’s equations having the
form (38.12), or

ds2 = −eλ dr2 − eµ(r2 dθ2 + r2 sin2 θ dϕ2) + eν dt2,

where λ, µ, ν are functions of r. By the method of § 38, we
find

G11 = µ′′ + 1
2
ν ′′ +

2

r
µ′ − 1

r
λ′ + 1

2
µ′2 − 1

2
λ′µ′ − 1

4
λ′ν ′ + 1

4
ν ′2

G22 = eµ−λ
[
1 + 2rµ′ + 1

2
r(ν ′ − λ′) + 1

2
r2µ′′

+ 1
2
r2µ′(µ′ + 1

2
ν ′ − 1

2
λ′)

]
− 1

G33 = G22 sin2 θ

G44 = −eν−λ
[

1
2
ν ′′ +

1

r
ν ′ + 1

2
ν ′µ′ − 1

4
λ′ν ′ + 1

4
ν ′2

]


(43.5)

The others are zero.
Owing to an identical relation between G11, G22 and G44,

the vanishing of this tensor gives only two equations to
determine the three unknowns λ, µ, ν. There exists therefore
an infinite series of particular solutions, differing according
to the third equation between λ, µ, ν which is at our disposal.
The two solutions hitherto considered are obtained by taking
µ = 0, and λ = µ, respectively. The same series of solutions is
obtained in a simpler way by substituting arbitrary functions
of r instead of r in (38.8).

The possibility of substituting any function of r for r

without destroying the spherical symmetry is obvious from
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the fact that a coordinate is merely an identification-number;
but analytically this possibility is bound up with the existence
of an identical relation between G11, G22 and G44, which makes
the equations too few to determine a unique solution.

This introduces us to a theorem of great consequence
in our later work. If Einstein’s ten equations Gµν = 0 were
all independent, the ten gµν would be uniquely determined
by them (the boundary conditions being specified). The
expression for ds2 would be unique and no transformation of
coordinates would be possible. Since we know that we can
transform coordinates as we please, there must exist identical
relations between the ten Gµν; and these will be found in
§ 52.

44. Problem of two bodies—Motion of the moon.

The field described by the gµν may be (artificially) divided
into a field of pure inertia represented by the Galilean values,
and a field of force represented by the deviations of the gµν

from the Galilean values. It is not possible to superpose
the fields of force due to two attracting particles; because
the sum of the two solutions will not satisfy Gµν = 0, these
equations being non-linear in the gµν.

No solution of Einstein’s equations has yet been found for
a field with two singularities or particles. The simplest case to
be examined would be that of two equal particles revolving in
circular orbits round their centre of mass. Apparently there
should exist a statical solution with two equal singularities;
but the conditions at infinity would differ from those adopted
for a single particle since the axes corresponding to the static
solution constitute what is called a rotating system. The
solution has not been found, and it is even possible that
no such statical solution exists. I do not think it has yet
been proved that two bodies can revolve without radiation of
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energy by gravitational waves. In discussions of this radiation
problem there is a tendency to beg the question; it is not
sufficient to constrain the particles to revolve uniformly,
then calculate the resulting gravitational waves, and verify
that the radiation of gravitational energy across an infinite
sphere is zero. That shows that a statical solution is not
obviously inconsistent with itself, but does not demonstrate
its possibility.

The problem of two bodies on Einstein’s theory remains an
outstanding challenge to mathematicians—like the problem
of three bodies on Newton’s theory.

For practical purposes methods of approximation will
suffice. We shall consider the problem of the field due to
the combined attractions of the earth and sun, and apply it
to find the modifications of the moon’s orbit required by the
new law of gravitation. The problem has been treated in
considerable detail by de Sitter*. We shall not here attempt
a complete survey of the problem; but we shall seek out the
largest effects to be looked for in refined observations. There
are three sources of fresh perturbations:

(1) The sun’s attraction is not accurately given by Newton’s
law, and the solar perturbations of the moon’s orbit will
require corrections.

(2) Cross-terms between the sun’s and the earth’s fields of
force will arise, since these are not additive.

(3) The earth’s field is altered and would inter alia give rise
to a motion of the lunar perigee analogous to the motion of
Mercury’s perihelion. It is easily calculated that this is far
too small to be detected.

If ΩS, ΩE are the Newtonian potentials of the sun and
earth, the leading terms of (1), (2), (3) will be relatively of

*Monthly Notices, vol. 77, p. 155.
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order of magnitude

Ω2
S, ΩSΩE, ΩE.

For the moon ΩS = 750ΩE. We may therefore confine attention
to terms of type (1). If these prove to be too small to be
detected, the others will presumably be not worth pursuing.

We were able to work out the planetary orbits from
Einstein’s law independently of the Newtonian theory; but
in the problem of the moon’s motion we must concentrate
attention on the difference between Einstein’s and Newton’s
formulae if we are to avoid repeating the whole labour of
the classical lunar theory. In order to make this comparison
we transform (39.31) and (39.32) so that t is used as the
independent variable.

d2

ds2
=

(
dt

ds

)2
d2

dt2
+
dt

ds

d

dt

(
dt

ds

)
d

dt

=

(
dt

ds

)2 (
d2

dt2
+ λ′ dr

dt

d

dt

)
by (39.42).

Hence the equations (39.31) and (39.32) become
d2r

dt2
+ 3

2
λ′

(
dr

dt

)2

− re−λ
(
dϕ

dt

)2

+ 1
2
e2νν ′ = 0,

d2ϕ

dt2
+ λ′ dr

dt

dϕ

dt
+

2

r

dr

dt

dϕ

dt
= 0.

Whence
d2r

dt2
− r

(
dϕ

dt

)2

+
m

r2
= R

r

(
d2ϕ

dt2
+

2

r

dr

dt

dϕ

dt

)
= Φ

 (44.1)

where
R = − 3

2
λ′u2 − 2m

r2
v2 +

2m2

r3

Φ = −λ′uv

 (44.21)

and
u = dr/dt, v = r dϕ/dt.
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Equations (44.1) show that R and Φ are the radial and

transverse perturbing forces which Einstein’s theory adds
to the classical dynamics. To a sufficient approximation
λ′ = −2m/r2, so that

R =
m

r2
(3u2 − 2v2) +

2m2

r3

Φ =
m

r2
· 2uv

 (44.22)

In three-dimensional problems the perturbing forces be-
come

R =
m

r2
(3u2 − 2v2 − 2w2) +

2m2

r3

Φ =
m

r2
· 2uv

Z =
m

r2
· 2uw

 (44.23)

It must be pointed out that these perturbing forces are
Einstein’s corrections to the law of central force m/r2, where
r is the coordinate used in our previous work. Whether these
forces represent the actual differences between Einstein’s and
Newton’s laws depends on what Newton’s r is supposed to
signify. De Sitter, making a slightly different choice of r,
obtains different expressions for R, Φ*. One cannot say that
one set of perturbing forces rather than the other represents
the difference from the older theory, because the older theory
was not sufficiently explicit. The classical lunar theory has
been worked out on the basis of the law m/r2; the ambiguous
quantity r occurs in the results, and according as we have
assigned to it one meaning or another, so we shall have to
apply different corrections to those results. But the final
comparison with observation does not depend on the choice
of the intermediary quantity r.

Take fixed rectangular axes referred to the ecliptic with
the sun as origin, and let

*Monthly Notices, vol. 76, p. 723, equations (53).
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(a, 0, 0) be the coordinates of the earth at the instant

considered,
(x, y, z) the coordinates of the moon relative to the earth.

Taking the earth’s orbit to be circular and treating the
mass of the moon as infinitesimal, the earth’s velocity will be
(0, v, 0), where v2 = m/a.

To find the difference of the forces R, Φ, Z on the moon
and on the earth, we differentiate (44.23) and set

δr = x, δ(u, v, w) = (dx/dt, dy/dt, dz/dt),

and, after the differentiation,

r = a, (u, v, w) = (0, v, 0).

The result will give the perturbing forces on the moon’s
motion relative to the earth, viz.

δR = X =
4mx

a3
v2 − 6m2x

a4
− 4m

a2
v
dy

dt

= −2m2x

a4
− 4m

a2
v
dy

dt

δΦ = Y =
2m

a2
v
dx

dt

Z = 0


(44.3)

We shall omit the term −2m2x/a4 in X. It can be verified
that it gives no important observable effects. It produces only
an apparent distortion of the orbit attributable to our use
of non-isotropic coordinates (§ 43). Transforming to new
axes (ξ, η) rotated through an angle θ with respect to (x, y) the
remaining forces become

Ξ =
m

a2
v

(
−2 cos θ sin θ dξ

dt
− (4 cos2 θ + 2 sin2 θ)

dη

dt

)
H =

m

a2
v

(
2 cos θ sin θ dη

dt
+ (4 sin2 θ + 2 cos2 θ) dξ

dt

)
 (44.4)

We keep the axes (ξ, η) permanently fixed; the angle θ

which gives the direction of the sun (the old axis of x) will
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change uniformly, and in the long run take all values with
equal frequency independently of the moon’s position in its
orbit. We can only hope to observe the secular effects of
the small forces Ξ, H, accumulated through a long period of
time. Accordingly, averaging the trigonometrical functions,
the secular terms are

Ξ = −3
m

a2
v
dη

dt
= −2ω

dη

dt

H = 3
m

a2
v
dξ

dt
= 2ω

dξ

dt

 (44.5)

where
ω = 3

2
mv/a2. (44.6)

If (Fξ, Fη) is the Newtonian force, the equations of motion
including these secular perturbing forces will be

d2ξ

dt2
+ 2ω

dη

dt
= Fξ,

d2η

dt2
− 2ω

dξ

dt
= Fη. (44.7)

It is easily seen that ω is a very small quantity, so that ω2 is
negligible. The equations (44.7) are then recognised as the
Newtonian equations referred to axes rotating with angular
velocity −ω. Thus if we take the Newtonian orbit and give it
an angular velocity +ω, the result will be the solution of (44.7).
The leading correction to the lunar theory obtained from
Einstein’s equations is a precessional effect, indicating that
the classical results refer to a frame of reference advancing
with angular velocity ω compared with the general inertial
frame of the solar system.

From this cause the moon’s node and perigee will advance
with velocity ω. If Ω is the earth’s angular velocity

ω

Ω
=

3

2

m

a
= 3

2
· 10−8.

Hence the advance of perigee and node in a century is

3π · 10−6radians = 1′′.94.
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We may notice the very simple theoretical relation that

Einstein’s corrections cause an advance of the moon’s perigee
which is one half the advance of the earth’s perihelion.

Neither the lunar theory nor the observations are as yet
carried quite far enough to take account of this small effect;
but it is only a little below the limit of detection. The result
agrees with de Sitter’s value except in the second decimal
place which is only approximate.

There are well-known irregular fluctuations in the moon’s
longitude which attain rather large values; but it is generally
considered that these are not of a type which can be explained
by any amendment of gravitational theory and their origin
must be looked for in other directions. At any rate Einstein’s
theory throws no light on them.

The advance of 1′′.94 per century has not exclusive reference
to the moon; in fact the elements of the moon’s orbit do
not appear in (44.6). It represents a property of the space
surrounding the earth—a precession of the inertial frame in
this region relative to the general inertial frame of the sidereal
system. If the earth’s rotation could be accurately measured
by Foucault’s pendulum or by gyrostatic experiments, the
result would differ from the rotation relative to the fixed
stars by this amount. This result seems to have been first
pointed out by J. A. Schouten. One of the difficulties most
often urged against the relativity theory is that the earth’s
rotation relative to the mean of the fixed stars appears to be
an absolute quantity determinable by dynamical experiments
on the earth*; it is therefore of interest to find that these two
rotations are not exactly the same, and the earth’s rotation
relative to the stellar system (supposed to agree with the
general inertial frame of the universe) cannot be determined
except by astronomical observations.

*Space, Time and Gravitation, p. 152.
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The argument of the relativist is that the observed effect

on Foucault’s pendulum can be accounted for indifferently
by a field of force or by rotation. The anti-relativist replies
that the field of force is clearly a mathematical fiction, and
the only possible physical cause must be absolute rotation. It
is pointed out to him that nothing essential is gained by
choosing the so-called non-rotating axes, because in any case
the main part of the field of force remains, viz. terrestrial
gravitation. He retorts that with his non-rotating axes
he has succeeded in making the field of force vanish at
infinity, so that the residuum is accounted for as a local
disturbance by the earth; whereas, if axes fixed in the earth
are admitted, the corresponding field of force becomes larger
and larger as we recede from the earth, so that the relativist
demands enormous forces in distant parts for which no
physical cause can be assigned. Suppose, however, that the
earth’s rotation were much slower than it is now, and that
Foucault’s experiment had indicated a rotation of only −1′′.94

per century. Our two disputants on the cloud-bound planet
would no doubt carry on a long argument as to whether
this was essentially an absolute rotation of the earth in
space, the irony of the situation being that the earth all the
while was non-rotating in the anti-relativist’s sense, and the
proposed transformation to allow for the Foucault rotation
would actually have the effect of introducing the enormous
field of force in distant parts of space which was so much
objected to. When the origin of the 1′′.94 has been traced
as in the foregoing investigation, the anti-relativist who has
been arguing that the observed effect is definitely caused by
rotation, must change his position and maintain that it is
definitely due to a gravitational perturbation exerted by the
sun on Foucault’s pendulum; the relativist holds to his view
that the two causes are not distinguishable.



CH. III SOLUTION FOR A PARTICLE IN A CURVED WORLD 180
45. Solution for a particle in a curved world.

In later work Einstein has adopted the more general
equations (37.4)

Gµν = αgµν . (45.1)

In this case we must modify (38.61), etc. by inserting αgµν on
the right. We then obtain

1
2
ν ′′ − 1

4
λ′ν ′ + 1

4
ν ′2 − λ′/r = −αeλ, (45.21)

e−λ
(
1 + 1

2
r(ν ′ − λ′)

)
− 1 = −αr2, (45.22)

eν−λ(− 1
2
ν ′′ + 1

4
λ′ν ′ − 1

4
ν ′2 − ν ′/r) = αeν . (45.23)

From (45.21) and (45.23), λ′ = −ν ′, so that we may take λ = −ν.
An additive constant would merely amount to an alteration
of the unit of time. Equation (45.22) then becomes

eν(1 + rν ′) = 1− αr2.

Let eν = γ; then
γ + rγ′ = 1− αr2

which on integration gives

γ = 1− 2m

r
− 1

3
αr2. (45.3)

The only change is the substitution of this new value of γ

in (38.8).
By recalculating the few steps from (39.44) to (39.61) we

obtain the equation of the orbit
d2u

dϕ2
+ u =

m

h2
+ 3mu2 − 1

3

α

h2
u−3. (45.4)

The effect of the new term in α is to give an additional
motion of perihelion

δϖ

ϕ
=

1

2

αh6

m4
=

1

2

αa3

m
(1− e2)3. (45.5)
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At a place where γ vanishes there is an impassable barrier,

since any change dr corresponds to an infinite distance i ds sur-
veyed by measuring-rods. The two roots of the quadratic (45.3)

are approximately

r = 2m and r =
√

3/α.

The first root would represent the boundary of the particle—
if a genuine particle could exist—and give it the appearance
of impenetrability. The second barrier is at a very great
distance and may be described as the horizon of the world.

It is clear that the latter barrier (or illusion of a barrier)
cannot be at a less distance than the most remote celestial
objects observed, say 1025 cm. This makes α less than
10−50 (cm.)−2. Inserting this value in (45.5) we find that the
additional motion of perihelion will be well below the limit
of observational detection for all planets in the solar system*.

If in (45.3) we set m = 0, we abolish the particle at the
origin and obtain the solution for an entirely empty world

ds2 = −(1− 1
3
αr2)−1 dr2 − r2dθ2 − r2 sin2 θ dϕ2 + (1− 1

3
αr2) dt2. (45.6)

This will be further discussed in Chapter V.

46. Transition to continuous matter.

In the Newtonian theory of attractions the potential Ω in
empty space satisfies the equation

∇2Ω = 0,

*This could scarcely have been asserted a few years ago, when it was
not known that the stars extended much beyond 1000 parsecs distance.
A horizon distant 700 parsecs corresponds to a centennial motion of
about 1′′ in the earth’s perihelion, and greater motion for the more
distant planets in direct proportion to their periods.
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of which the elementary solution is Ω = m/r; then by a well-
known procedure we are able to deduce that in continuous
matter

∇2Ω = −4πρ. (46.1)

We can apply the same principle to Einstein’s poten-
tials gµν, which in empty space satisfy the equations Gµν = 0.
The elementary solution has been found, and it remains
to deduce the modification of the equations in continuous
matter. The logical aspects of the transition from discrete
particles to continuous density need not be discussed here,
since they are the same for both theories.

When the square of m/r is neglected, the isotropic solu-
tion (43.3) for a particle continually at rest becomes*

ds2 = −
(
1 +

2m

r

)
(dx2 + dy2 + dz2) +

(
1− 2m

r

)
dt2. (46.15)

The particle need not be at the origin provided that r is the
distance from the particle to the point considered.

Summing the fields of force of a number of particles, we
obtain

ds2 = −(1 + 2Ω)(dx2 + dy2 + dz2) + (1− 2Ω)dt2, (46.2)

where

Ω =
∑ m

r
= Newtonian potential at the point considered.

The inaccuracy in neglecting the interference of the fields of
the particles is of the same order as that due to the neglect
of m2/r2, if the number of particles is not unduly large.

*This approximation though sufficient for the present purpose is
not good enough for a discussion of the perihelion of Mercury. The
term in m2/r2 in the coefficient of dt2 would have to be retained.
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Now calculate the Gµν for the expression (46.2). We have

Gµν = gσρBµνσρ

= 1
2
gσρ

(
∂2gµν
∂xρ ∂xσ

+
∂2gρσ
∂xµ ∂xν

− ∂2gµσ
∂xρ ∂xν

− ∂2gρν
∂xµ ∂xσ

)
(46.3)

by (34.5). The non-linear terms are left out because they would
involve Ω2 which is of the order (m/r)2 already neglected.

The only terms which survive are those in which the
g’s have like suffixes. Consider the last three terms in the
bracket; for G11 they become

1

2

(
g11

∂2g11
∂x2

1

+ g22
∂2g22
∂x2

1

+ g33
∂2g33
∂x2

1

+ g44
∂2g44
∂x2

1

− g11
∂2g11
∂x2

1

− g11
∂2g11
∂x2

1

)
.

Substituting for the g’s from (46.2) we find that the result
vanishes (neglecting Ω2). For G44 the result vanishes for a
different reason, viz. because Ω does not contain x4 (= t).
Hence

Gµν =
1
2
gσρ

∂2gµν
∂xσ ∂xρ

= 1
2
□gµν as in (30.65). (46.4)

Since time is not involved

□ = −∇2,

G11, G22, G33, G44 = − 1
2
∇2(g11, g22, g33, g44)

= ∇2Ω by (46.2).

Hence, making at this point the transition to continuous
matter,

G11, G22, G33, G44 = −4πρ by (46.1). (46.5)

Also

G = gµνGµν = −G11 −G22 −G33 +G44

= 8πρ

to the same approximation.
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Consider the tensor defined by

−8πTµν = Gµν − 1
2
gµνG. (46.6)

We readily find

Tµν = 0, except T44 = ρ,

and raising the suffixes

T µν = 0, except T 44 = ρ, (46.7)

since the gµν are Galilean to the order of approximation
required.

Consider the expression

ρ0
dxµ
ds

dxν
ds

,

where dxµ/ds refers to the motion of the matter, and ρ0 is the
proper-density (an invariant). The matter is at rest in the
coordinates hitherto used, and consequently

dx1

ds
,
dx2

ds
,
dx3

ds
= 0,

dx4

ds
= 1,

so that all components of the expression vanish, except the
component µ, ν = 4 which is equal to ρ0. Accordingly in these
coordinates

T µν = ρ0
dxµ
ds

dxν
ds

, (46.8)

since the density ρ in (46.7) is clearly the proper-density.
Now (46.8) is a tensor equation*, and since it has been

verified for one set of coordinates it is true for all coordinate-
systems. Equations (46.6) and (46.8) together give the exten-
sion of Einstein’s law of gravitation for a region containing
continuous matter of proper-density ρ0 and velocity dxµ/ds.

*When an equation is stated to be a tensor equation, the reader is
expected to verify that the covariant dimensions of both sides are the
same.
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The question remains whether the neglect of m2 causes

any inaccuracy in these equations. In passing to continuous
matter we diminish m for each particle indefinitely, but
increase the number of particles in a given volume. To
avoid increasing the number of particles we may diminish
the volume, so that the formulae (46.5) will be true for
the limiting case of a point inside a very small portion
of continuous matter. Will the addition of surrounding
matter in large quantities make any difference? This can
contribute nothing directly to the tensor Gµν, since so far as
this surrounding matter is concerned the point is in empty
space; but Einstein’s equations are non-linear and we must
consider the possible cross-terms.

Draw a small sphere surrounding the point P which is
being considered. Let gµν = δµν + hµν + h′

µν, where δµν represents
the Galilean values, and hµν and h′

µν represent the fields of
force contributed independently by the matter internal to and
external to the sphere. By § 36 we can choose coordinates
such that at P h′

µν and its first derivatives vanish; and by the
symmetry of the sphere the first derivatives of hµν vanish,
whilst hµν itself tends to zero for an infinitely small sphere.
Hence the cross-terms which are of the form

h′
στ

∂hµν
∂xλ ∂xρ

,
∂h′

στ

∂xλ

∂hµν
∂xρ

, and hστ
∂h′

µν

∂xλ ∂xρ

will all vanish at P . Accordingly with these limitations there
are no cross-terms, and the sum of the two solutions hµν and
h′
µν is also a solution of the accurate equations. Hence the

values (46.5) remain true. It will be seen that the limitation
is that the coordinates must be “natural coordinates” at the
point P . We have already paid heed to this in taking ρ to be
the proper-density.

We have assumed that the matter at P is not accelerated
with respect to these natural axes at P . (The original particles
had to be continually at rest, otherwise the solution (46.15)
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does not apply.) If it were accelerated there would have
to be a stress causing the acceleration. We shall find later
that a stress contributes additional terms to the Gµν. The
formulae (46.5) apply only strictly when there is no stress and
the continuous medium is specified by one variable only, viz.
the density.

The reader may feel that there is still some doubt as to
the rigour of this justification of the neglect of m2*. Lest he
attach too great importance to the matter, we may state at
once that the subsequent developments will not be based on
this investigation. In the next chapter we shall arrive at the
same formulae by a different line of argument, and proceed
in the reverse direction from the laws of continuous matter
to the particular case of an isolated particle.

The equation (46.2) is a useful expression for the gravita-
tional field due to a static distribution of mass. It is only
a first approximation correct to the order m/r, but no second
approximation exists except in the case of a solitary particle.
This is because when more than one particle is present accel-
erations necessarily occur, so that there cannot be an exact
solution of Einstein’s equations corresponding to a number
of particles continually at rest. It follows that any constraint
which could keep them at rest must necessarily be of such
a nature as to contribute a gravitational field on its own

*To illustrate the difficulty, what exactly does ρ0 mean, assuming
that it is not defined by (46.6) and (46.7)? If the particles do not
interfere with each other’s fields, ρ0 is

∑
m per unit volume; but if we

take account of the interference, m is undefined—it is the constant of
integration of an equation which does not apply. Mathematically, we
cannot say what m would have been if the other particles had been
removed; the question is nonsensical. Physically we could no doubt
say what would have been the masses of the atoms if widely separated
from one another, and compare them with the gravitational power of
the atoms under actual conditions; but that involves laws of atomic
structure which are quite outside the scope of the argument.
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account.

It will be useful to give the values of Gµν − 1
2
gµνG corre-

sponding to the symmetrical formula for the interval (38.2).
By varying λ and ν this can represent any distribution of
continuous matter with spherical symmetry. We have

G = −e−λ
(
ν ′′ − 1

2
λ′ν ′ + 1

2
ν ′2 + 2(ν ′ − λ′)/r + 2(1− eλ)/r2

)
G11 − 1

2
g11G = −ν ′/r − (1− eλ)/r2

G22 − 1
2
g22G = −r2e−λ

(
1
2
ν ′′ − 1

4
ν ′λ′ + 1

4
ν ′2 + 1

2
(ν ′ − λ′)/r

)
G33 − 1

2
g33G = −r2 sin2 θ e−λ

(
1
2
ν ′′ − 1

4
ν ′λ′ + 1

4
ν ′2 + 1

2
(ν ′ − λ′)/r

)
G44 − 1

2
g44G = eν−λ

(
−λ′/r + (1− eλ)/r2

)


(46.9)

47. Experiment and deductive theory.

So far as I am aware, the following is a complete list of the
postulates which have been introduced into our mathematical
theory up to the present stage:

1. The fundamental hypothesis of § 1.
2. The interval depends on a quadratic function of four

coordinate-differences (§ 2).
3. The path of a freely moving particle is in all circum-

stances a geodesic (§ 15).
4. The track of a light-wave is a geodesic with ds = 0

(§ 15).
5. The law of gravitation for empty space is Gµν = 0, or

more probably Gµν = λgµν, where λ is a very small constant
(§ 37).

No. 4 includes the identification of the velocity of light
with the fundamental velocity, which was originally intro-
duced as a separate postulate in § 6.

In the mathematical theory we have two objects before
us—to examine how we may test the truth of these postulates,
and to discover how the laws which they express originate
in the structure of the world. We cannot neglect either of
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these aims; and perhaps an ideal logical discussion would be
divided into two parts, the one showing the gradual ascent
from experimental evidence to the finally adopted specifica-
tion of the structure of the world, the other starting with
this specification and deducing all observational phenomena.
The latter part is specially attractive to the mathematician for
the proof may be made rigorous; whereas at each stage in
the ascent some new inference or generalisation is introduced
which, however plausible, can scarcely be considered incon-
trovertible. We can show that a certain structure will explain
all the phenomena; we cannot show that nothing else will.

We may put to the experiments three questions in
crescendo. Do they verify? Do they suggest? Do they (within
certain limitations) compel the laws we adopt? It is when
the last question is put that the difficulty arises for there are
always limitations which will embarrass the mathematician
who wishes to keep strictly to rigorous inference. What, for
example, does experiment enable us to assert with regard to
the gravitational field of a particle (the other four postulates
being granted)? Firstly, we are probably justified in assuming
that the interval can be expressed in the form (38.2), and
experiment shows that λ and ν tend to zero at great distances.
Provided that eλ and eν are simple functions it will be possible
to expand the coefficients in the form

ds2 = −
(
1 +

a1
r

+
a2
r2

+ · · ·
)−1

dr2 − r2 dθ2 − r2 sin2 θ dϕ2

+

(
1 +

b1
r
+
b2
r2

+
b3
r3

+ · · ·
)−1

dt2.

Now reference to §§ 39, 40, 41 enables us to decide the
following points:

(1) The Newtonian law of gravitation shows that b1 =

−2m.
(2) The observed deflection of light then shows that
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a1 = −2m.

(3) The motion of perihelion of Mercury then shows
that b2 = 0.
The last two coefficients are not determined experimentally
with any high accuracy; and we have no experimental knowl-
edge of the higher coefficients. If the higher coefficients are
zero we can proceed to deduce that this field satisfies Gµν = 0.

If small concessions are made, the case for the law Gµν = 0

can be strengthened. Thus if only one linear constant m is
involved in the specification of the field, b2 must contain m3,
and the corresponding term is of order (m/r)3, an extremely
small quantity. Whatever the higher coefficients may be,
Gµν will then vanish to a very high order of approximation.

Turning to the other object of our inquiry, we have yet to
explain how these five laws originate in the structure of the
world. In the next chapter we shall be concerned mainly with
Nos. 3 and 5, which are not independent of one another.
They will be replaced by a broader principle which contains
them both and is of a more axiomatic character. No. 4
will be traced to its origin in the electromagnetic theory of
Chapter VI. Finally a synthesis of these together with Nos. 1
and 2 will be attempted in the closing chapter.

The following forward references will enable the reader
to trace exactly what becomes of these postulates in the
subsequent advance towards more primitive conceptions:

Nos. 1 and 2 are not further considered until § 97.
No. 3 is obtained directly from the law of gravitation in

§ 56.
No. 4 is obtained from the electromagnetic equations in

§ 74. These are traced to their origin in § 96.
No. 5 is obtained from the principle of identification in

§ 54, and more completely from the principle of measure-
ment in § 66. The possibility of alternative laws is discussed
in § 62.
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In the last century the ideal explanation of the phenomena

of nature consisted in the construction of a mechanical model,
which would act in the way observed. Whatever may be the
practical helpfulness of a model, it is no longer recognised
as contributing in any way to an ultimate explanation. A
little later, the standpoint was reached that on carrying the
analysis as far as possible we must ultimately come to a
set of differential equations of which further explanation
is impossible. We can then trace the modus operandi, but
as regards ultimate causes we have to confess that “things
happen so, because the world was made in that way.” But
in the kinetic theory of gases and in thermodynamics we
have laws which can be explained much more satisfactorily.
The principal laws of gases hold, not because a gas is made
“that way,” but because it is made “just anyhow.” This is
perhaps not to be taken quite literally; but if we could see
that there was the same inevitability in Maxwell’s laws and
in the law of gravitation that there is in the laws of gases,
we should have reached an explanation far more complete
than an ultimate arbitrary differential equation. This suggests
striving for an ideal—to show, not that the laws of nature
come from a special construction of the ultimate basis of
everything, but that the same laws of nature would prevail
for the widest possible variety of structure of that basis.
The complete ideal is probably unattainable and certainly
unattained; nevertheless we shall be influenced by it in our
discussion, and it appears that considerable progress in this
direction is possible.



CHAPTER IV
RELATIVITY MECHANICS

48. The antisymmetrical tensor of the fourth rank.

ATENSOR Aµν is said to be antisymmetrical if Aνµ = −Aµν. It
follows that A11 = −A11, so that A11, A22, A33, A44 must all

be zero.
Consider a tensor of the fourth rank Eαβγδ which is

antisymmetrical for all pairs of suffixes. Any component
with two suffixes alike must be zero, since by the rule of
antisymmetry Eαβ11 = −Eαβ11. In the surviving components,
α, β, γ, δ, being all different, must stand for the numbers
1, 2, 3, 4 in arbitrary order. We can pass from any of
these components to E1234 by a series of interchanges of the
suffixes in pairs, and each interchange merely reverses the
sign. Writing E for E1234, all the 256 components have one or
other of the values

+E, 0, −E.

We shall write
Eαβγδ = E · ϵαβγδ, (48.1)

where
ϵαβγδ = 0, when the suffixes are not all different,

= +1,when they can be brought to the order 1, 2, 3, 4

by an even number of interchanges,
= −1, when an odd number of interchanges is needed.

It will appear later that E is not an invariant; consequently
ϵαβγδ is not a tensor.
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The coefficient ϵαβγδ is particularly useful for dealing with

determinants. If |kµν | denotes the determinant formed with
the elements kµν (which need not form a tensor), we have

4!× |kµν | = ϵαβγδϵϵζηθ kαϵkβζkγηkδθ, (48.2)

because the terms of the determinant are obtained by select-
ing four elements, one from each row (α, β, γ, δ, all different)
and also from each column (ϵ, ζ, η, θ, all different) and
affixing the + or − sign to the product according as the order
of the columns is brought into the order of the rows by an
even or odd number of interchanges. The factor 4! appears
because every possible permutation of the same four elements
is included separately in the summation on the right.

It is possible by corresponding formulae to define and ma-
nipulate determinants in three dimensions (with 64 elements
arranged in a cube) or in four dimensions.

Note that
ϵαβγδϵϵζηθ = 4!. (48.31)

The determinants with which we are most concerned
are the fundamental determinant g and the Jacobian of a
transformation

J =
∂(x′

1, x
′
2, x

′
3, x

′
4)

∂(x1, x2, x3, x4)
.

By (48.2)

4! g = ϵαβγδ ϵϵζηθ gαϵ gβζ gγη gδθ, (48.32)

4! J = ϵαβγδ ϵϵζηθ
∂x′

ϵ

∂xα

∂x′
ζ

∂xβ

∂x′
η

∂xγ

∂x′
θ

∂xδ
. (48.33)

To illustrate the manipulations we shall prove that*
g = J2g′.

*A shorter proof is given at the end of this section.
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By (48.32) and (48.33)

(4!)3J2g′ = ϵαβγδ ϵϵζηθ g
′
αϵ g

′
βζ g

′
γη g

′
δθ · ϵικλµ ϵνξoϖ

∂x′
ν

∂xι

∂x′
ξ

∂xκ

∂x′
o

∂xλ

∂x′
ϖ

∂xµ

· ϵρστυ ϵϕχψω
∂x′

ϕ

∂xρ

∂x′
χ

∂xσ

∂x′
ψ

∂xτ

∂x′
ω

∂xυ
. (48.41)

There are about 280 billion terms on the right, and we proceed
to rearrange those which do not vanish.

For non-vanishing terms the letters ν, ξ, o, ϖ denote the
same suffixes as α, β, γ, δ, but (usually) in a different order.
Permute the four factors in which they occur so that they
come into the same order; the suffixes of the denominators
will then come into a new order, say, i, k, l, m. Thus

∂x′
ν

∂xι

∂x′
ξ

∂xκ

∂x′
o

∂xλ

∂x′
ϖ

∂xµ
=
∂x′

α

∂xi

∂x′
β

∂xk

∂x′
γ

∂xl

∂x′
δ

∂xm
. (48.42)

Since the number of interchanges of the denominators is
the same as the number of interchanges of the numerators

ϵνξoϖ
ϵαβγδ

= ±1 =
ϵικλµ
ϵiklm

, (48.43)

so that the result of the transposition is

ϵαβγδ ϵικλµ
∂x′

ν

∂xι

∂x′
ξ

∂xκ

∂x′
o

∂xλ

∂x′
ϖ

∂xµ
= ϵνξoϖ ϵiklm

∂x′
α

∂xi

∂x′
β

∂xk

∂x′
γ

∂xl

∂x′
δ

∂xm
. (48.5)

Making a similar transposition of the last four terms,
(48.41) becomes

(4!)3J2g′ = g′αϵ g
′
βζ g

′
γη g

′
δθ ·

∂x′
α

∂xi

∂x′
β

∂xk

∂x′
γ

∂xl

∂x′
δ

∂xm
· ∂x

′
ϵ

∂xr

∂x′
ζ

∂xs

∂x′
η

∂xt

∂x′
θ

∂xu

· ϵiklm ϵνξoϖ ϵνξoϖ ϵrstu ϵϕχψω ϵϕχψω.

But by (23.22)

g′αϵ
∂x′

α

∂xi

∂x′
ϵ

∂xr
= gir.
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Hence

(4!)3J2g′ = (4!)2ϵiklm ϵrstu gir gks glt gmu

= (4!)3g,

which proves the theorem.
Returning to Eαβγδ, its tensor-transformation law is

E′µνστ = Eαβγδ
∂x′

µ

∂xα

∂x′
ν

∂xβ

∂x′
σ

∂xγ

∂x′
τ

∂xδ
.

Whence multiplying by ϵµνστ and using (48.1)

E′ · ϵµνστ ϵµνστ = E · ϵαβγδ ϵµνστ
∂x′

µ

∂xα

∂x′
ν

∂xβ

∂x′
σ

∂xγ

∂x′
τ

∂xδ
,

so that by (48.31) and (48.33)

E′ = JE. (48.6)

Thus E is not an invariant for transformations of coordinates.
Again

Eαβγδ Eϵζηθ gαϵ gβζ gγη gδθ

is seen by inspection to be an invariant. But this is equal to
E2ϵαβγδ ϵµνστ gαϵ gβζ gγη gδθ

= 4!E2g.

Hence
E2g is an invariant. (48.65)

Accordingly
E2g = E′2g′ = (EJ)2g′, by (48.6)

giving another proof that
g = J2g′. (48.7)

Corollary. If a is the determinant formed from the
components aµν of any covariant tensor, E2a is an invariant
and

a = J2a′. (48.8)
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49. Element of volume. Tensor-density.

In § 32 we found that the surface-element corresponding
to the parallelogram contained by two displacements, δ1xµ,
δ2xµ, is the antisymmetrical tensor

dSµν =

∣∣∣∣∣δ1xµ δ1xν

δ2xµ δ2xν

∣∣∣∣∣ .
Similarly we define the volume-element (four-dimensional)
corresponding to the hyperparallelopiped contained by four
displacements, δ1xµ, δ2xµ, δ3xµ, δ4xµ, as the tensor

dV µνστ =

∣∣∣∣∣∣∣∣∣∣
δ1xµ δ1xν δ1xσ δ1xτ

δ2xµ δ2xν δ2xσ δ2xτ

δ3xµ δ3xν δ3xσ δ3xτ

δ4xµ δ4xν δ4xσ δ4xτ

∣∣∣∣∣∣∣∣∣∣
. (49.1)

It will be seen that the determinant is an antisymmetrical
tensor of the fourth rank, and its 256 components accordingly
have one or other of the three values

+dV, 0, −dV,

where dV = ±dV 1234. It follows from (48.65) that (dV )2g is an
invariant, so that

√
−g · dV is an invariant. (49.2)

Since the sign of dV 1234 is associated with some particular
cycle of enumeration of the edges of the parallelopiped,
which is not usually of any importance, the single positive
quantity dV is usually taken to represent the volume-element
fully. Summing a number of infinitesimal volume-elements,
we have ∫∫∫∫ √

−g · dV is an invariant, (49.3)

the integral being taken over any region defined indepen-
dently of the coordinates.
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When the quadruple integral is regarded as the limit of

a sum, the infinitesimal parallelopipeds may be taken of
any shape and orientation; but for analytical integration we
choose them to be coincident with meshes of the coordinate-
system that is being used, viz.

δ1xµ = (dx1, 0, 0, 0); δ2xµ = (0, dx2, 0, 0); etc.

Then (49.1) reduces to a single diagonal

dV = dx1 dx2 dx3 dx4.

We write dτ for the volume-element when chosen in this
way, so that

dτ = dx1 dx2 dx3 dx4.

It is not usually necessary to discriminate between dτ

and the more general expression dV ; and we shall usually
regard √

−g · dτ as an invariant. Strictly speaking we mean
that √

−g · dτ behaves as an invariant in volume-integration;
whereas √

−g · dV is intrinsically invariant.
For Galilean coordinates x, y, z, t, we have √

−g = 1, so that
√
−g dτ = dx dy dz dt. (49.41)

Further if we take an observer at rest in this Galilean
system, dx dy dz is his element of proper-volume (three-di-
mensional) dW , and dt is his proper-time ds. Hence

√
−g dτ = dW ds. (49.42)

By (49.41) we see that √
−g dτ is the volume in natural

measure of the four-dimensional element. This natural or
invariant volume is a physical conception—the result of
physical measures made with unconstrained scales; it may
be contrasted with the geometrical volume dV or dτ , which
expresses the number of unit meshes contained in the region.
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Let T be a scalar, i.e. an invariant function of position;

then, since T
√
−g dV is an invariant,∫

T
√
−g dτ is an invariant

for any absolutely defined four-dimensional region. Each unit
mesh (whose edges dx1, dx2, dx3, dx4 are unity) contributes the
amount T√−g to this invariant. Accordingly we call T√−g the
scalar-density* or invariant-density.

A nearly similar result is obtained for tensors. The integral∫
T µν

√
−g dτ

over an absolutely defined region is not a tensor; because,
although it is the sum of a number of tensors, these tensors
are not located at the same point and cannot be combined
(§ 33). But in the limit as the region is made infinitely small
its transformation law approaches more and more nearly
that of a single tensor. Thus T µν

√
−g is a tensor-density,

representing the amount per unit mesh of a tensor in the
infinitesimal region round the point.

It is usual to represent the tensor-density corresponding
to any tensor by the corresponding German letter; thus

Tµν ≡ T µν
√
−g; T ≡ T

√
−g. (49.5)

By (48.1)

Eαβγδ ≡ Eαβγδ
√
−g = E

√
−g · ϵαβγδ, (49.51)

and since E
√
−g is an invariant it follows that ϵαβγδ is a

tensor-density.

*I have usually avoided the superfluous word “scalar,” which is less
expressive than its synonym “invariant.” But it is convenient here in
order to avoid confusion between the density of an invariant and a
density which is invariant. The latter, ρ0, has hitherto been called the
invariant density (without the hyphen).
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Physical quantities are of two main kinds, e.g.

Field of acceleration = intensity of some condition at a point,
Momentum = quantity of something in a volume.

The latter kind are naturally expressed as “so much per unit
mesh.” Hence intensity is naturally described by a tensor,
and quantity by a tensor-density. We shall find √

−g contin-
ually appearing in our formulae; that is an indication that
the physical quantities concerned are strictly tensor-densities
rather than tensors. In the general theory tensor-densities
are at least as important as tensors.

We can only speak of the amount of momentum in a
large volume when a definite system of coordinates has been
fixed. The total momentum is the sum of the momenta in
different elements of volume; and for each element there will
be different coefficients of transformation, when a change of
coordinates is made. The only case in which we can state
the amount of something in a large region without fixing a
special system of coordinates is when we are dealing with
an invariant; e.g. the amount of “Action” in a large region
is independent of the coordinates. In short, tensor-analysis
(except in the degenerate case of invariants) deals with things
located at a point and not spread over a large region; that is
why we usually have to use densities instead of quantities.

Alternatively we can express a physical quantity of the
second kind as “so much per unit natural volume (√−g dτ)”;
it is then represented by a tensor. From the physical point
of view it is perhaps as rational to express it in this way,
as to express it by a tensor-density “so much per unit
mesh (dτ).” But analytically this is a somewhat hybrid
procedure, because we seem to be employing simultaneously
two systems of coordinates, the one openly for measuring the
physical quantity, the other (a natural system) implicitly for
measuring the volume containing it. It cannot be considered
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wrong in a physical sense to represent quantities of the second
kind by tensors; but the analysis exposes our sub-conscious
reference to √

−g dτ , by the repeated appearance of √
−g in the

formulae.
In any kind of space-time it is possible to choose co-

ordinates such that √
−g = 1 everywhere; for if three of the

systems of partitions have been drawn arbitrarily, the fourth
can be drawn so as to intercept meshes all of equal natural
volume. In such coordinates tensors and tensor-densities
become equivalent, and the algebra may be simplified; but
although this simplification does not involve any loss of gen-
erality, it is liable to obscure the deeper significance of the
theory, and it is not usually desirable to adopt it.

The quantity obtained by dividing a tensor by √
−g may be

called a tensor-volume. We shall indicate tensor-volumes by
calligraphic type, so that

Tµν = T µν
√
−g T µν = T µν/

√
−g (49.6)

Evidently TµνT µν is an invariant, German character cancelling
calligraphic.

By (49.2) dV an invariant-volume and should be denoted
by dV.

The coefficient ϵαβγδ is at the same time a contravariant
tensor-density and a covariant tensor-volume. We may thus
write

ϵαβγδ = Eαβγδ = Eαβγδ (49.7)

The product EαβγδEαβγδ should evidently be invariant; this is
satisfied because by (48.31) it has the constant value 4!.

By means of this coefficient we can associate a covariant
tensor-volume with any antisymmetrical contravariant tensor.
This process is especially important in connection with space-
elements of 1, 2, 3 or 4 dimensions, which are antisymmetrical
contravariant tensors. For example, the four-dimensional
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element of volume is measured by either the tensor dV αβγδ or
the invariant volume dV connected by the relation

(4!)dV = EαβγδdV αβγδ

Similarly the surface-element is represented by dSαβ or dS ′
αβ,

where
dS ′

αβ = EαβγδdSγδ (49.8)

The necessity for inserting the accent should be noticed; the
result of this operation does not give dSαβ which according to
previous definitions is derived from dSαβ by lowering the two
suffixes and dividing by √

−g.
The representation of surface-elements by an adjoint vector

in elementary three-dimensional theory arises in this way. If
dS ′

α = EαβγdSβγ , (49.9)

the vector-volume dS ′
α can be used as a measure of the

surface-element. The elementary theory (restricted to rectan-
gular coordinates) does not discriminate between vectors and
vector-volumes.

From a covariant antisymmetrical tensor Fαβ we can derive
two different tensor-densities Fαβ and F′αβ, thus

Fαβ = gαγgβδFγδ
√
−g F′αβ = EαβγδFγδ; (49.10)

the latter is obtained merely by rearranging the components
of Fαβ.

As an illustration we can prove that
|gµν | = |gµν | (49.11)

For this equation is equivalent to
EαβγδEϵζηθgαϵgβζgγηgδθ = EαβγδEϵζηθgαϵgβζgγηgδθ

Both sides are seen to have the same dimensions, viz. those
of the square of an invariant-density, and so transform by
the same law. In natural coordinates the two determinants
are identical; hence their values are equal in all coordinate-
systems.
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50. The problem of the rotating disc.

We may consider at this point a problem of some historic
interest—

A disc made of homogeneous incompressible material is
caused to rotate with angular velocity ω; to find the alteration
in length of the radius.

The old paradox associated with this problem—that the
circumference moving longitudinally might be expected to
contract, whilst the radius moving transversely is unaltered—
no longer troubles us*. But the general theory of relativity
gives a quantitative answer to the problem, which was first
obtained by Lorentz by a method different from that given
here†.

We must first have a clear understanding of what is meant
by the word “incompressible”. Let us isolate an element of
the rotating disc, and refer it to axes with respect to which it
has no velocity or acceleration (proper-measure); then except
for the fact that it is under stress due to the cohesive forces
of surrounding matter, it is relatively in the same state as
an element of the non-rotating disc referred to fixed axes.
Now the meaning of incompressible is that no stress-system
can make any difference in the closeness of packing of the
molecules; hence the particle-density a (referred to proper-
measure) is the same as for an element of the non-rotating
disc. But the particle-density σ′ referred to axes fixed in space
may be different.

We might write down at once by (14.1)

σ′ = σ(1− ω2r2)−
1
2 ,

since ωr is the velocity of the element. This would in fact
give the right result. But in § 14 acceleration was not taken

*Space, Time and Gravitation, p. 75.
†Nature, vol. 106, p. 795.
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into account and we ought to proceed more rigorously. We
use the accented coordinates of § 15 for our rotating system,
and easily calculate from (15.4) that√

−g′ = 1,

and since x′
1, x′

2, x′
3 are constant for an element of the disc,

the proper-time

ds =
√

1− ω2(x′2
1 + x′2

2 ) dx
′
4.

If dW is the proper-volume of the element, by (49.42)

dW ds =
√

−g′ · dx′
1 dx

′
2 dx

′
3 dx

′
4.

Hence

dW =
(
1− ω2(x′2

1 + x′2
2 )

)− 1
2 dx′

1 dx
′
2 dx

′
3

= (1− ω2r2)−
1
2 r′ dr′ dθ′ dx′

3.

If the thickness of the disc is δx′
3 = b, and its boundary is

given by r′ = a′, the total number of particles in the disc will
be

N =

∫
σ dW = 2πσb

a′∫
0

(1− ω2r′2)−
1
2 r′ dr′.

Since this number is unaltered by the rotation, a′ must be a
function of ω such that

a′∫
0

(1− ω2r2)−
1
2 r′ dr′ = const.,

or
1

ω2

(
1−

√
1− ω2a′2

)
= const.

Expanding the square-root, this gives approximately
1
2
a′2(1 + 1

4
ω2a′2) = const.,



CH. IV THE DIVERGENCE OF A TENSOR 203
so that if a is the radius of the disc at rest

a′ = (1 + 1
8
ω2a′2) = a.

Hence to the same approximation
a′ = a(1− 1

8
ω2a2).

Note that a′ is the radius of the rotating disc according to
measurement with fixed scales, since the rotating and non-
rotating coordinates have been connected by the elementary
transformation (15.3).

We see that the contraction is one quarter of that predicted
by a crude application of the FitzGerald formula to the
circumference.

This proof has been criticised as defective in that no
explanation is given as to why the thickness b of the disc
is assumed to be unaltered by rotation. We may examine
this question by the same general method. The essential
point is that in an incompressible and (it should be added)
perfectly rigid disc there is no response of any kind to applied
stress, so that stresses may be ignored; any difference between
rotating and non-rotating elements must be a difference of
description, not of intrinsic structure. Thus the configuration
of molecules when referred to proper-coordinates will be
the same in rotating as in non-rotating elements of the
material. But the transformation to proper-coordinates does
not affect x3, so that the spacing of the molecules along this
coordinate is unaltered by the rotation. The thickness of the
disc—or length of the chain of molecules extending from the
lower to the upper surface—is accordingly unaltered.

51. The divergence of a tensor.

In the elementary theory of vectors the divergence
∂X

∂x
+
∂Y

∂y
+
∂Z

∂z
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is important; we can to some extent grasp its geometrical
significance. In our general notation, this expression becomes

∂Aµ

∂xµ
.

But evidently a more fundamental operation is to take the
covariant derivatives which will give an invariant

(Aµ)µ.

We therefore define the divergence of a tensor as its contracted
covariant derivative.

By (29.4)

(Aµ)µ =
∂Aµ

∂xµ
+ {ϵµ, µ}Aϵ

=
∂Aµ

∂xµ
+Aϵ · 1√

−g
∂

∂xϵ

√
−g by (35.4)

=
1√
−g

∂

∂xµ
(Aµ

√
−g), (51.11)

since ϵ may be replaced by µ. In terms of tensor-density this
may be written

Aµµ
√
−g = Aµµ =

∂

∂xµ
Aµ. (51.12)

The divergence of Aνµ is by (30.2)

(Aνµ)ν =
∂

∂xν
Aνµ + {αν, ν}Aαµ − {µν, α}Aνα

=
1√
−g

∂

∂xν
(Aνµ

√
−g)− {µν, α}Aνα, (51.2)

by the same reduction as before. The last term gives

−1

2

(
∂gµβ
∂xν

+
∂gνβ
∂xµ

− ∂gµν
∂xβ

)
Aβν .

When Aβν is a symmetrical tensor, two of the terms in the
bracket cancel by interchange of β and ν, and we are left with
−1

2

∂gβν
∂xµ

Aβν.
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Hence for symmetrical tensors

(Aνµ)ν =
1√
−g

∂

∂xν
(Aνµ

√
−g)− 1

2

∂gαβ
∂xµ

Aαβ, (51.31)

or, by (35.2),

(Aνµ)ν =
1√
−g

∂

∂xν
(Aνµ

√
−g) + 1

2

∂gαβ

∂xµ
Aαβ. (51.32)

For antisymmetrical tensors, it is easier to use the con-
travariant associate,

(Aµν)ν =
∂

∂xν
Aµν + {αν, ν}Aµα + {αν, µ}Aαν . (51.41)

The last term vanishes owing to the antisymmetry. Hence

(Aµν)ν =
1√
−g

∂

∂xν
(Aµν

√
−g). (51.42)

Introducing tensor-densities our results become

Aνµν =
∂

∂xν
Aνµ − 1

2
Aαβ

∂gαβ
∂xµ

(symmetrical tensors), (51.51)

Aµνν =
∂

∂xν
Aµν (antisymmetrical tensors). (51.52)

52. The four identities.

We shall now prove the fundamental theorem of mecha-
nics—

The divergence of Gν
µ − 1

2
gνµG is identically zero. (52)

In three dimensions the vanishing of the divergence is
the condition of continuity of flux, e.g. in hydrodynamics
∂u/∂x + ∂v/∂y + ∂w/∂z = 0. Adding a time-coordinate, this
becomes the condition of conservation or permanence, as will
be shown in detail later. It will be realised how important for
a theory of the material world is the discovery of a world-tensor
which is inherently permanent.
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I think it should be possible to prove (52) by geometrical

reasoning in continuation of the ideas of § 33. But I have not
been able to construct a geometrical proof and must content
myself with a clumsy analytical verification.

By the rules of covariant differentiation

(gνµG)ν = gνµ
∂G

∂xν
=

∂G

∂xµ
.

Thus the theorem reduces to

Gν
µν =

1

2

∂G

∂xµ
. (52.1)

For µ = 1, 2, 3, 4, these are the four identities referred to in
§ 37. By (51.32)

Gν
µν =

1√
−g

∂

∂xν
(Gν

µ

√
−g) + 1

2
Gαβ

∂gαβ

∂xµ
,

and since G = gαβGαβ

1

2

∂G

∂xµ
= 1

2
gαβ

∂Gαβ

∂xµ
+ 1

2
Gαβ

∂gαβ

∂xµ
.

Hence, subtracting, we have to prove that
1√
−g

∂

∂xν
(Gν

µ

√
−g) = 1

2
gαβ

∂Gαβ

∂xµ
. (52.2)

Since (52) is a tensor relation it is sufficient to show that
it holds for a special coordinate-system; only we must be
careful that our special choice of coordinate-system does not
limit the kind of space-time and so spoil the generality of
the proof. It has been shown in § 36 that in any kind of
space-time, coordinates can be chosen so that all the first
derivatives ∂gµν/∂xσ vanish at a particular point; we shall
therefore lighten the algebra by taking coordinates such that
at the point considered

∂gµν
∂xσ

= 0. (52.3)
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This condition can, of course, only be applied after all
differentiations have been performed. Then

1√
−g

∂

∂xν
(Gν

µ

√
−g) = 1√

−g
∂

∂xν
(gντgσρ

√
−g ·Bµτσρ).

Owing to (52.3) gντgσρ
√
−g can be taken outside the differential

operator, giving
gντgσρ

∂

∂xν
Bµτσρ,

which by (34.5) is equal to

1
2
gντgσρ

(
∂2gρσ
∂xµ ∂xτ

+
∂2gµτ
∂xρ ∂xσ

− ∂2gµσ
∂xρ ∂xτ

− ∂2gρτ
∂xµ ∂xσ

)
. (52.4)

The rest of Bµτσρ is omitted because it consists of products
of two vanishing factors (3-index symbols), so that after
differentiation by ∂xν one vanishing factor always remains.

By the double interchange σ for τ , ρ for ν, two terms
in (52.4) cancel out, leaving

1√
−g

∂

∂xν
(Gν

µ

√
−g) = 1

2
gντgσρ

∂

∂xν

(
∂2gρσ
∂xµ ∂xτ

− ∂2gρτ
∂xµ ∂xσ

)
. (52.51)

Similarly

1
2
gαβ

∂Gαβ

∂xµ
= 1

2
gντ

∂Gντ

∂xµ
= 1

2
gντ

∂

∂xµ
(gσρBντσρ)

= 1
4
gντgσρ

∂

∂xµ

(
∂2gρσ
∂xν ∂xτ

+
∂2gντ
∂xρ ∂xσ

− ∂2gνσ
∂xρ ∂xτ

− ∂2gρτ
∂xν ∂xσ

)
= 1

2
gντgσρ

∂

∂xµ

(
∂2gρσ
∂xν ∂xτ

− ∂2gρτ
∂xν ∂xσ

)
, (52.52)

since the double interchange σ for τ , ρ for ν, causes two terms
to become equal to the other two.

Comparing (52.51) and (52.52) we see that the required
result is established for coordinates chosen so as to have the
property (52.3) at the point considered; and since it is a tensor
equation it must hold true for all systems of coordinates.
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The four identities can be obtained in a more elegant way

as follows. We must first establish the identity

(Bϵ
µνσ)τ + (Bϵ

µστ )ν + (Bϵ
µτν)σ = 0, (52.6)

where the final suffix denotes covariant differentiation. To
prove this we evaluate the left-hand side in terms of 3-index
symbols by substituting (34.4) in (30.4); but it is only necessary
to proceed far enough to see that the second derivatives of
the 3-index symbols cancel out cyclically, and that the first
derivatives occur only in combination with a 3-index symbol
itself as co-factor. Hence the whole expression will vanish
when the 3-index symbols (but not their derivatives) vanish,
i.e. in natural coordinates. The result is thus proved for
natural coordinates, and since it is a tensor equation it will
be true for all coordinate-systems.

Lowering the suffix ϵ, and using the antisymmetrical
properties of Bµνσϵ we have

(Bµνσϵ)τ − (Bµτσϵ)ν + (Bϵντµ)σ = 0.

Hence, multiplying by gσϵgµτ ,

(Gτ
ν)τ − (G)ν + (Gσ

ν )σ = 0,

which is equivalent to (52.1).
The crude statement in § 37, that owing to the existence

of these 4 identical relations the number of gravitational
equations is effectively reduced to 6, requires some amplifi-
cation. A relation between the first derivatives of the Gµν is
not so restrictive as a relation between the Gµν themselves,
and it is not true that if 6 of the Gµν are made to vanish the
remaining 4 will identically vanish. If we consider the 40
covariant derivatives (Gν

µ)σ, 4 of these depend on the others,
so that the vanishing of 36 of the derivatives ensures that all
40 will vanish. The effect is that the scheme of equations for
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determining the gµν is incomplete by 4, so that there remains
a four-fold arbitrariness in the values of the gµν and therefore
of the coordinate-system.

53. The material energy-tensor.

Let ρ0 be the proper-density of matter, and let dxµ/ds refer
to the motion of the matter; we write, as in (46.8),

T µν = ρ0
dxµ
ds

dxν
ds

. (53.1)

Then T µν (with the associated mixed and covariant tensors) is
called the energy-tensor of the matter.

For matter moving with any velocity relative to Galilean
coordinates, the coordinate-density ρ is given by

ρ = ρ0

(
dt

ds

)2

, (53.2)

for, as explained in (14.2), the FitzGerald factor β = dt/ds

appears twice, once for the increase of mass with velocity and
once for the contraction of volume.

Hence in Galilean coordinates

T µν = ρ
dxµ
dt

dxν
dt

, (53.3)

so that if u, v, w are the components of velocity

T µν = ρu2 , ρvu, ρwu, ρu

ρuv , ρv2 , ρwv, ρv

ρuw, ρvw, ρw2 , ρw

ρu , ρv , ρw , ρ

(53.4)

In matter atomically constituted, a volume which is re-
garded as small for macroscopic treatment contains particles
with widely divergent motions. Thus the terms in (53.4)

should be summed for varying motions of the particles.
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For macroscopic treatment we express the summation in the
following way.—

Let (u, v, w) refer to the motion of the centre of mass of
the element, and (u1, v1, w1) be the internal motion of the
particles relative* to the centre of mass. Then in a term
of our tensor such as ∑

ρ(u + u1)(v + v1), the cross-products
will vanish, leaving ∑

ρuv +
∑
ρu1v1. Now ∑

ρu1v1 represents
the rate of transfer of u-momentum by particles crossing a
plane perpendicular to the y-axis, and is therefore equal to
the internal stress usually denoted by pxy. We have therefore
to add to (53.4) the tensor formed by the internal stresses,
bordered by zeroes. The summation can now be omitted,
ρ referring to the whole density, and u, v, w to the average
or mass-motion of macroscopic elements. Accordingly

T µν = pxx + ρu2 , pyx + ρvu, pzx + ρwu, ρu

pxy + ρuv , pyy + ρv2 , pyz + ρwv, ρv

pxz + ρuw, pyz + ρvw, pzz + ρw2 , ρw

ρu , ρv , ρw , ρ

(53.5)

Consider the equations

∂T µν

∂xν
= 0. (53.6)

Taking first µ = 4, this gives by (53.5)

∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
+
∂ρ

∂t
= 0, (53.71)

which is the usual “equation of continuity” in hydrodynamics.

*In the sense of elementary mechanics, i.e. the simple difference
of the velocities.
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For µ = 1, we have
∂pxx
∂x

+
∂pxy
∂y

+
∂pxz
∂z

= −
(
∂(ρu2)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
+
∂(ρu)

∂t

)
= −u

(
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
+
∂ρ

∂t

)
− ρ

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
∂u

∂t

)
= −ρ Du

Dt
(53.72)

by (53.71). Du/Dt is the acceleration of the element of the
fluid.

This is the well-known equation of hydrodynamics when
no body-force is acting. (By adopting Galilean coordinates
any field of force acting on the mass of the fluid has been
removed.)

Equations (53.71) and (53.72) express directly the conserva-
tion of mass and momentum, so that for Galilean coordinates
these principles are contained in

∂T µν/∂xν = 0.

In fact ∂T µν/∂xν represents the rate of creation of momen-
tum and mass in unit volume. In classical hydrodynamics
momentum may be created in the volume (i.e. may appear
in the volume without having crossed the boundary) by the
action of a body-force ρX, ρY , ρZ; and these terms are added
on the right-hand side of (53.72). The creation of mass is con-
sidered impossible. Accordingly the more general equations
of classical hydrodynamics are

∂T µν

∂xν
= (ρX, ρY, ρZ, 0). (53.81)

In the special relativity theory mass is equivalent to energy,
and the body-forces by doing work on the particles will also
create mass, so that

∂T µν

∂xν
= (ρX, ρY, ρZ, ρS), (53.82)
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where ρS is the work done by the forces ρX, ρY , ρZ. These
older formulae are likely to be only approximate; and the
exact formulae must be deduced by extending the general
relativity theory to the case when fields of force are present,
viz. to non-Galilean coordinates.

It is often convenient to use the mixed tensor T νµ in place
of T µν. For Galilean coordinates we obtain from (53.5)*

T νµ

↓→ µ

ν

= −pxx − ρu2 , −pyx − ρvu, −pzx − ρwu, ρu

−pxy − ρuv , −pyy − ρv2 , −pyz − ρwv, ρv

−pxz − ρuw, −pyz − ρvw, −pzz − ρw2 , ρw

−ρu , −ρv , −ρw , ρ

(53.91)

The equation equivalent to (53.82) is then
∂T νµ
∂xν

= (−ρX,−ρY,−ρZ, ρS). (53.92)

That is to say ∂T νµ/∂xν is the rate of creation of negative
momentum and of positive mass or energy in unit volume.

54. New derivation of Einstein’s law of gravitation.

We have found that for Galilean coordinates
∂T µν

∂xν
= 0. (54.1)

This is evidently a particular case of the tensor equation

(T µν)ν = 0. (54.21)

Or we may use the equivalent equation

(T νµ )ν = 0, (54.22)

which results from lowering the suffix µ. In other words the
divergence of the energy-tensor vanishes.

*E.g. T 1
2 = ρσ2T

σ1 = 0− T 21 + 0 + 0.
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Taking the view that energy, stress, and momentum

belong to the world (space-time) and not to some extraneous
substance in the world, we must identify the energy-tensor
with some fundamental tensor, i.e. a tensor belonging to the
fundamental series derived from gµν.

The fact that the divergence of T νµ vanishes points to
an identification with (Gν

µ − 1
2
gνµG) whose divergence vanishes

identically (§ 52). Accordingly we set

Gν
µ − 1

2
gνµG− 8πT νµ , (54.3)

the factor 8π being introduced for later convenience in coor-
dinating the units.

To pass from (54.1) to (54.21) involves an appeal to the
hypothetical Principle of Equivalence; but by taking (54.3) as
our fundamental equation of gravitation (54.21) becomes an
identity requiring no hypothetical assumption.

We thus arrive at the law of gravitation for continuous
matter (46.6) but with a different justification. Appeal is now
made to a Principle of Identification. Our deductive theory
starts with the interval (introduced by the fundamental axiom
of § 1), from which the tensor gµν is immediately obtained.
By pure mathematics we derive other tensors Gµν, Bµνσρ, and
if necessary more complicated tensors. These constitute our
world-building material; and the aim of the deductive theory
is to construct from this a world which functions in the
same way as the known physical world. If we succeed,
mass, momentum, stress, etc. must be the vulgar names for
certain analytical quantities in the deductive theory; and it is
this stage of naming the analytical tensors which is reached
in (54.3). If the theory provides a tensor Gν

µ − 1
2
gνµG which

behaves in exactly the same way as the tensor summarising
the mass, momentum and stress of matter is observed to
behave, it is difficult to see how anything more could be



CH. IV NEW DERIVATION OF EINSTEIN’S LAW OF GRAVITATION 214
required of it*.

By means of (53.91) and (54.3) the physical quantities ρ, u,
v, w, pxx, …, pzz are identified in terms of the fundamental
tensors of space-time. There are 10 of these physical quan-
tities and 10 different components of Gν

µ − 1
2
gνµG, so that the

identification is just sufficient. It will be noticed that this
identification gives a dynamical, not a kinematical definition
of the velocity of matter u, v, w; it is appropriate, for exam-
ple, to the case of a rotating homogeneous and continuous
fly-wheel, in which there is no velocity of matter in the kine-
matical sense, although a dynamical velocity is indicated by
its gyrostatic properties†. The connection with the ordinary
kinematical velocity, which determines the direction of the
world-line of a particle in four dimensions, is followed out
in § 56.

Contracting (54.3) by setting ν = µ, and remembering that
gµµ = 4, we have

G = 8πT, (54.4)

so that an equivalent form of (54.3) is

Gν
µ = −8π(T νµ − 1

2
gνµT ). (54.5)

When there is no material energy-tensor this gives

Gν
µ = 0,

which is equivalent to Einstein’s law Gµν = 0 for empty space.
According to the new point of view Einstein’s law of

gravitation does not impose any limitation on the basal
structure of the world. Gµν may vanish or it may not. If it

*For a complete theory it would be necessary to show that matter
as now defined has a tendency to aggregate into atoms leaving large
tracts of the world vacant. The relativity theory has not yet succeeded
in finding any clue to the phenomenon of atomicity.

†Space, Time and Gravitation, p. 194.
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vanishes we say that space is empty; if it does not vanish we
say that momentum or energy is present; and our practical
test whether space is occupied or not—whether momentum
and energy exist there—is the test whether Gµν exists or not*.

Moreover it is not an accident that it should be this
particular tensor which is capable of being recognised by
us. It is because its divergence vanishes—because it satisfies
the law of conservation—that it fulfils the primary condition
for being recognised as substantial. If we are to surround
ourselves with a perceptual world at all, we must recognise
as substance that which has some element of permanence.
We may not be able to explain how the mind recognises as
substantial the world-tensor Gν

µ − 1
2
gνµG, but we can see that

it could not well recognise anything simpler. There are no
doubt minds which have not this predisposition to regard
as substantial the things which are permanent; but we shut
them up in lunatic asylums.

The invariant

T = gµνT
µν

= gµν · ρ0
dxµ
ds

dxν
ds

= ρ0,

since
gµν dxµ dxν = ds2.

Thus
G = 8πT = 8πρ0. (54.6)

*We are dealing at present with mechanics only, so that we can
scarcely discuss the part played by electromagnetic fields (light) in
conveying to us the impression that space is occupied by something.
But it may be noticed that the crucial test is mechanical. A real image
has the optical properties but not the mechanical properties of a solid
body.
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Einstein and de Sitter obtain a naturally curved world by

taking instead of (54.3)

Gν
µ − 1

2
gνµ(G− 2λ) = −8πT νµ , (54.71)

where λ is a constant. Since the divergence of gνµ or of gµν

vanishes, the divergence of this more general form will also
vanish, and the laws of conservation of mass and momentum
are still satisfied identically. Contracting (54.71), we have

G− 4λ = 8πT = 8πρ0. (54.72)

For empty space G = 4λ, and T νµ = 0; and thus the equation
reduces to

Gν
µ = λgνµ,

or
Gµν = λgµν ,

as in (37.4).
When account is taken of the stresses in continuous mat-

ter, or of the molecular motions in discontinuous matter, the
proper-density of the matter requires rather careful defini-
tion. There are at least three possible definitions which can
be justified; and we shall denote the corresponding quantities
by ρ0, ρ00, ρ000.

(1) We define
ρ0 = T.

By reference to (54.6) it will be seen that this represents the
sum of the densities of the particles with different motions,
each particle being referred to axes with respect to which it is itself
at rest.

(2) We can sum the densities for the different particles
referring them all to axes which are at rest in the matter as a
whole. The result is denoted by ρ00. Accordingly

ρ00 = T44 referred to axes at rest in the matter as a whole.
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(3) If a perfect fluid is referred to axes with respect to

which it is at rest, the stresses pxx, pyy, pzz are each equal to the
hydrostatic pressure p. The energy-tensor (53.5) accordingly
becomes

T µν = p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 ρ00

Writing ρ00 = ρ000 − p, the pressure-terms give a tensor −gµνp.
Accordingly we have have the tensor equation applicable to
any coordinate-system

T µν = ρ000
dxµ
ds

dxν
ds

− gµνp. (54.81)

Thus if the energy-tensor is analysed into two terms depend-
ing respectively on two invariants specifying the state of the
fluid, we must take these invariants to be p and ρ000.

The three quantities are related by

ρ0 = ρ00 − 3p = ρ000 − 4p. (54.82)

If a fluid is incompressible, i.e. if the closeness of packing
of the particles is independent of p, the condition must be
that ρ0 is constant*. Incompressibility is concerned with
constancy not of mass-density but of particle-density, so
that no account should be taken of increases of mass of the
particles due to motion relative to the centre of mass of the
matter as a whole.

For a liquid or solid the stress does not arise entirely from
molecular motions, but is due mainly to direct repulsive forces
between the molecules held in proximity. These stresses must,
of course, be included in the energy-tensor (which would
otherwise not be conserved) just as the gaseous pressure is

*Many writers seem to have defined incompressibility by the con-
dition ρ00 = constant. This is surely a most misleading definition.
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included. It will be shown later that if these repulsive forces
are Maxwellian electrical forces they contribute nothing to ρ0,
so that ρ0 arises entirely from the molecules individually
(probably from the electrons individually) and is independent
of the circumstances of packing.

Since ρ0 is the most useful of the three quantities in
theoretical investigations we shall in future call it the proper-
density (or invariant density) without qualification.

55. The force.

By (51.2) the equation (T νµ )ν = 0 becomes
1√
−g

∂

∂xν
(T νµ

√
−g) = {µν, α}T να . (55.1)

Let us choose coordinates so that √
−g = 1; then

∂

∂xν
T νµ = {µν, α}T να . (55.2)

In most applications the velocity of the matter is extremely
small compared with the velocity of light, so that on the
right of this equation T 4

4 = ρ is much larger than the other
components of T να . As a first approximation we neglect the
other components, so that

∂

∂xν
T νµ = {µ4, 4}ρ. (55.3)

This will agree with classical mechanics (53.92) if

−X, −Y, −Z = {14, 4}, {24, 4}, {34, 4}. (55.4)

The 3-index symbols can thus be interpreted as compo-
nents of the field of force. The three quoted are the leading
components which act proportionately to the mass or energy;
the others, neglected in Newtonian mechanics, are evoked
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by the momenta and stresses which form the remaining
components of the energy-tensor.

The limitation √
−g = 1 is not essential if we take account of

the confusion of tensor-densities with tensors referred to at
the end of § 49. It will be remembered that the force (X,Y, Z)

occurs because we attribute to our mesh-system an abstract
Galilean geometry which is not the natural geometry. Either
inadvertently or deliberately we place ourselves in the position
of an observer who has mistaken his non-Galilean mesh-
system for rectangular coordinates and time. We therefore
mistake the unit mesh for the unit of natural volume, and
the density of the energy-tensor Tνµ reckoned per unit mesh
is mistaken for the energy-tensor itself T νµ reckoned per unit
natural volume. For this reason the conservation of the
supposed energy-tensor should be expressed analytically by
∂Tνµ/∂xν = 0 and when a field of force intervenes the equations
of classical hydrodynamics should be written

∂

∂xν
Tνµ = T4

4(−X,−Y,−Z, 0), (55.51)

the supposed density ρ being really the “density-density” ρ√−g
or T4

4*.
*It might seem preferable to avoid this confusion by immediately

identifying the energy, momentum and stress with the components
of Tν

µ, instead of adopting the roundabout procedure of identifying
them with T ν

µ and noting that in practice Tν
µ is inadvertently substi-

tuted. The inconvenience is that we do not always attribute abstract
Galilean geometry to our coordinate-system. For example, if polar co-
ordinates are used, there is no tendency to confuse the mesh dr dθ dϕ
with the natural volume r2 sin θ dr dθ dϕ; in such a case it is much
more convenient to take T ν

µ as the measure of the density of energy,
momentum and stress. It is when by our attitude of mind we attribute
abstract Galilean geometry to coordinates whose natural geometry is
not accurately Galilean, that the automatic substitution of Tν

µ for the
quantity intended to represent T ν

µ occurs.
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Since (55.1) is equivalent to

∂

∂xν
Tνµ = {µν, α}Tνα, (55.52)

the result (55.4) follows irrespective of the value of √
−g.

The alternative formula (51.51) may be used to calculate T νµν,
giving

∂

∂xν
Tνµ = 1

2
Tαβ

∂gαβ
∂xµ

. (55.6)

Retaining on the right only T44, we have by comparison
with (55.51)

X, Y, Z = −1

2

∂g44
∂x

, −1

2

∂g44
∂y

, −1

2

∂g44
∂z

. (55.7)

Hence, for a static coordinate-system

X dx+ Y dy + Z dz = −1

2

(
∂g44
∂x

dx+
∂g44
∂y

dy +
∂g44
∂z

dz

)
= − 1

2
dg44,

so that X, Y , Z are derivable from a potential

Ω = − 1
2
g44 + const.

Choosing the constant so that g44 = 1 when Ω = 0

g44 = 1− 2Ω. (55.8)

Special cases of this result will be found in (15.4) and (38.8),
Ω being the potential of the centrifugal force and of the
Newtonian gravitational force respectively.

Let us now briefly review the principal steps in our new
derivation of the laws of mechanics and gravitation. We
concentrate attention on the world-tensor T νµ defined by

T νµ = − 1

8π
(Gν

µ − 1
2
gνµG).
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The question arises how this tensor would be recognised in
nature—what names has the practical observer given to its
components? We suppose tentatively that when Galilean or
natural coordinates are used T 4

4 is recognised as the amount
of mass or energy per unit volume, T 4

1 , T 4
2 , T 4

3 as the negative
momentum per unit volume, and the remaining components
contain the stresses according to the detailed specifications
in (53.91). This can only be tested by examining whether
the components of T νµ do actually obey the laws which mass,
momentum and stress are known by observation to obey.
For natural coordinates the empirical laws are expressed by
∂T νµ/∂xν = 0, which is satisfied because our tensor from its
definition has been proved to satisfy (T νµ )ν = 0 identically.
When the coordinates are not natural, the identity T νµν = 0

gives the more general law
∂

∂xν
Tνµ =

1

2

∂gαβ
∂xµ

Tαβ.

We attribute an abstract Galilean geometry to these co-
ordinates, and should accordingly identify the components
of T νµ as before, just as though the coordinates were natural;
but owing to the resulting confusion of unit mesh with unit
natural volume, the tensor-densities T4

1, T4
2, T4

3, T4
4 will now be

taken to represent the negative momentum and energy per
unit volume.

In accordance with the definition of force as rate of change
of momentum, the quantity on the right will be recognised
as the (negative) body-force acting on unit volume, the three
components of the force being given by µ = 1, 2, 3. When
the velocity of the matter is very small compared with the
velocity of light as in most ordinary problems, we need only
consider on the right the component T44 or ρ; and the force
is then due to a field of acceleration of the usual type with
components − 1

2
∂g44/∂x1, − 1

2
∂g44/∂x2, − 1

2
∂g44/∂x3. The potential Ω

of the field of acceleration is thus connected with g44 by the
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relation g44 = 1−2Ω. When this approximation is not sufficient
there is no simple field of acceleration; the acceleration of
the matter depends not only on its position but also on its
velocity and even on its state of stress. Einstein’s law of
gravitation for empty space Gµν = 0 follows at once from the
above identification of T νµ .

56. Dynamics of a particle.

An isolated particle is a narrow tube in four dimensions
containing a non-zero energy-tensor and surrounded by a
region where the energy-tensor is zero. The tube is the
world-line or track of the particle in space-time.

The momentum and mass of the particle are obtained by
integrating T4

µ over a three-dimensional volume; if the result
is written in the form

−Mu, −Mv, −Mw, M,

then M is the mass (relative to the coordinate system), and
(u, v, w) is the dynamical velocity of the particle, i.e. the ratio
of the momenta to the mass.

The kinematical velocity of the particle is given by the
direction of the tube in four dimensions, viz.

(
dx1

dx4

,
dx2

dx4

,
dx3

dx4

)
along the tube. For completely continuous matter there is
no division of the energy-tensor into tubes and the notion of
kinematical velocity does not arise.

It does not seem to be possible to deduce without special
assumptions that the dynamical velocity of a particle is equal
to the kinematical velocity. The law of conservation merely
shows that (Mu,Mv,Mw,M) is constant along the tube when
no field of force is acting; it does not show that the direction
of this vector is the direction of the tube.

I think there is no doubt that in nature the dynamical and
kinematical velocities are the same; but the reason for this
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must be sought in the symmetrical properties of the ultimate
particles of matter. If we assume as in § 38 that the particle
is the nucleus of a symmetrical field, the result becomes
obvious. A symmetrical particle which is kinematically at
rest cannot have any momentum since there is no preferential
direction in which the momentum could point; in that case
the tube is along the t-axis, and so also is the vector (0, 0, 0,M).
It is not necessary to assume complete spherical symmetry;
three perpendicular planes of symmetry would suffice. The
ultimate particle may for example have the symmetry of an
anchor-ring.

It might perhaps be considered sufficient to point out that
a “particle” in practical dynamics always consists of a large
number of ultimate particles or atoms, so that the symmetry
may be merely a consequence of haphazard averages. But
we shall find in § 80, that the same difficulty occurs in
understanding how an electrical field affects the direction of
the world-line of a charged particle, and the two problems
seem to be precisely analogous. In the electrical problem the
motions of the ultimate particles (electrons) have been exper-
imented on individually, and there has been no opportunity
of introducing the symmetry by averaging. I think therefore
that the symmetry exists in each particle independently.

It seems necessary to suppose that it is an essential
condition for the existence of an actual particle that it should
be the nucleus of a symmetrical field, and its world-line must
be so directed and curved as to assure this symmetry. A
satisfactory explanation of this property will be reached in
§ 66.

With this understanding we may use the equation (53.1),
involving kinematical velocity,

T µν = ρ0
dxµ
ds

dxν
ds

, (56.1)

in place of (53.4), involving dynamical velocity. From the
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identity T µνν = 0, we have by (51.41)

∂

∂xν
(T µν

√
−g) = −{αν, µ}Tαν

√
−g. (56.2)

Integrate this through a very small four-dimensional vol-
ume. The left-hand side can be integrated once, giving

[∫∫∫
T µ1

√
−g dx2 dx3 dx4 +

∫∫∫
T µ2

√
−g dx1 dx3 dx4 + · · ·

]
= −

∫∫∫∫
{αν, µ}Tαν ·

√
−g dτ. (56.3)

Suppose that in this volume there is only a single particle,
so that the energy-tensor vanishes everywhere except in a
narrow tube. By (56.1) the quadruple integral becomes

−
∫∫∫∫

{αν, µ}dxα
ds

dxν
ds

ρ0
√
−g dτ = −{αβ, µ}dxα

ds

dxβ
ds

mds, (56.4)

since ρ0
√
−g dτ = ρ0 dW ·ds = dm ·ds, where dm is the proper-mass.

On the left the triple integrals vanish except at the two
points where the world-line intersects the boundary of the
region. For convenience we draw the boundary near these
two points in the planes dx1 = 0, so that only the first of the
four integrals survives. The left-hand side of (56.3) becomes

[∫∫∫
ρ0
√
−g dxµ

ds

dx1

ds
dx2 dx3 dx4

]
, (56.51)

the bracket denoting the difference at the two ends of the
world-line.

The geometrical volume of the oblique cylinder cut off
from the tube by sections dx2 dx3 dx4 at a distance apart ds

measured along the tube is

dx1

ds
· ds dx2 dx3 dx4.
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Multiplying by ρ0

√
−g we get the amount of ρ0 contained*,

which is dmds. Hence (56.51) reduces to[
m
dxµ
ds

]
.

The difference at the two limits is
d

ds

(
m
dxµ
ds

)
ds, (56.52)

where ds is now the length of track between the two limits
as in (56.4).

By (56.4) and (56.52) the equation reduces to
d

ds

(
m
dxµ
ds

)
= −m{αβ, µ} dxα

ds

dxβ
ds

. (56.6)

Provided that m is constant this gives the equations of a
geodesic (28.5), showing that the track of an isolated particle
is a geodesic. The constancy of m can be proved formally as
follows—

From (56.6)

mgµν
dxν
ds

· d
ds

(
m
dxµ
ds

)
= −m2[αβ, ν]

dxν
ds

dxα
ds

dxβ
ds

= − 1
2
m2 ∂gαν

∂xβ

dxβ
ds

dxα
ds

dxν
ds

= − 1
2
m2 dgαν

ds

dxα
ds

dxν
ds

= − 1
2
m2 dgµν

ds

dxµ
ds

dxν
ds

.

Adding the same equation with µ and ν interchanged

gµν ·m
dxν
ds

· d
ds

(
m
dxµ
ds

)
+ gµν ·m

dxµ
ds

· d
ds

(
m
dxν
ds

)
+m · dxµ

ds
·m dxν

ds
· dgµν
ds

= 0

*The amount of density in a four-dimensional volume is, of course,
not the mass but a quantity of dimensions mass× time.
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or

d

ds

(
gµν ·m

dxµ
ds

·m dxν
ds

)
= 0.

By (22.1) this gives dm2/ds = 0. Accordingly the invariant mass
of an isolated particle remains constant.

The present proof does not add very much to the argument
in § 17 that the particle follows a geodesic because that is
the only track which is absolutely defined. Here we postulate
symmetrical properties for the particle (referred to proper-
coordinates); this has the effect that there is no means of
fixing a direction in which it could deviate from a geodesic.
For further enlightenment we must wait until Chapter V.

On reconsideration I think that it is unnecessary to as-
sume that a particle has symmetrical properties in order to
prove that the dynamical velocity is equal to the kinemati-
cal velocity. Possibly some limitations must be imposed on
the structure of the particle, beyond the definition in the
text, viz. that a particle is a tube containing non-vanishing
energy-tensor surrounded by a region of zero energy-tensor;
but these limitations will be much less stringent than the
assumption of symmetry.

In natural coordinates ∂Tνµ/∂xν = 0, so that
∂T1

4

∂x1

+
∂T2

4

∂x2

+
∂T2

4

∂x2

+
∂T2

4

∂x2

= 0,

which may be compared with the equation in elementary
electrostatics

∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

= 0.

The latter equation leads by Gauss’s theorem to the concep-
tion of unit tubes of force, the whole space being divided
into tubes running in the direction of (Ex, Ey, Ez) and the flux
of this vector across any section of a tube remaining constant.
Similarly in four dimensions we shall have unit tubes of Tµ4

running in the direction of the vector and containing con-
stant flux. Obviously such a tube cannot stray into a region
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where Tµ4 = 0, since the constancy of flux could not then be
maintained. Hence the unit tubes must run along inside the
world-tube bounding the particle, and for an infinitesimal
particle their direction cannot deviate appreciably from the
direction of the world-tube. But the unit tubes have the di-
rection of Tµ4 , i.e. the dynamical velocity, and the world-tube
has the direction of dxµ/ds, i.e. the kinematical velocity.

I believe this argument is unassailable if we assume that
every portion of the particle has the same dynamical velocity,
so that the unit tubes run parallel to one another. In
the more general case complications are conceivable which
require fuller discussion*, e.g. the tubes may spiral round
inside the world-tube in a screw of narrow thread. Or
the world-curvature inside the particle may be so large and
variable that natural coordinates are inadmissible. I think,
however, that few if any of these cases will prove to be
genuine exceptions, when the dynamical velocity of the
separate elements has been averaged over the particle.

57. Equality of gravitational and inertial mass.
Gravitational waves.

The term gravitational mass can be used in two senses; it
may refer to (a) the response of a particle to a gravitational
field of force, or (b) to its power of producing a gravitational
field of force. In the sense (a) its identity with inertial mass
is axiomatic in our theory, the separation of the field of
force from the inertial field being dependent on our arbitrary
choice of an abstract geometry. We accordingly use the
term exclusively in the sense (b), and we have shown in
§§ 38, 39 that the constant of integration m represents the
gravitational mass. But in the present discussion the ρ0 which

*The worst complications are avoided if we refuse to admit negative
mass. This prevents the tubes from doubling back.
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occurs in the tensor Tµν refers to inertial mass defined by the
conservation of energy and momentum. The connection is
made via equation (54.3), where on the left the mass appears
in terms of gµν, i.e. in terms of its power of exerting (or
being accompanied by) a gravitational field; and on the right
it appears in the energy-tensor which comprises ρ0 according
to (53.1). But it will be remembered that the factor 8π in (54.3)

was chosen arbitrarily, and this must now be justified*. This
coefficient of proportionality corresponds to the Newtonian
constant of gravitation.

The proportionality of gravitational and inertial mass, and
the “constant of gravitation” which connects them, are con-
ceptions belonging to the approximate Newtonian scheme,
and therefore presuppose that the gravitational fields are so
weak that the equations can be treated as linear. For more in-
tense fields the Newtonian terminology becomes ambiguous,
and it is idle to inquire whether the constant of gravitation
really remains constant when the mass is enormously great.
Accordingly we here discuss only the limiting case of very
weak fields, and set

gµν = δµν + hµν , (57.1)

where δµν represents Galilean values, and hµν will be a small
quantity of the first order whose square is neglected. The
derivatives of the gµν will be small quantities of the first order.

We have, correct to the first order,

Gµν = gσρBµνσρ

= 1
2
gσρ

(
∂2gµν
∂xσ ∂xρ

+
∂2gσρ
∂xµ ∂xν

− ∂2gµσ
∂xν ∂xρ

− ∂2gνρ
∂xµ ∂xσ

)
(57.2)

by (34.5).

*It has been justified in § 46, which has a close connection with
the present paragraph; but the argument is now proceeding in the
reverse direction.
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We shall try to satisfy this by breaking it up into two

equations
Gµν =

1
2
gσρ

∂2gµν
∂xσ ∂xρ

(57.31)

and
0 = gσρ

(
∂2gσρ
∂xµ ∂xν

− ∂2gµσ
∂xν ∂xρ

− ∂2gνρ
∂xµ ∂xσ

)
. (57.32)

The second equation becomes, correct to the first order,

0 = δσρ
(

∂2hσρ
∂xµ ∂xν

− ∂2hµσ
∂xν ∂xρ

− ∂2hνρ
∂xµ ∂xσ

)
=

∂2h

∂xµ ∂xν
−

∂2hσµ
∂xν ∂xρ

− ∂2hρν
∂xµ ∂xσ

,

where
hρµ = δσρhµσ; h = hρρ = δσρhσρ.

This is satisfied if
∂hαµ
∂xα

=
1

2

∂h

∂xµ

or
∂

∂xα
(hαµ − 1

2
δαµh) = 0. (57.4)

The other equation (57.31) may be written

□hµν = 2Gµν

or
□hαµ = 2Gα

µ,

showing that Gα
µ is a small quantity of the first order. Hence

□(hαµ − 1
2
δαµh) = 2(Gα

µ − 1
2
gαµG)

= −16πTαµ . (57.5)

This “equation of wave-motion” can be integrated. Since
we are dealing with small quantities of the first order, the
effect of the deviations from Galilean geometry will only
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affect the results to the second order; accordingly the well-
known solution* may be used, viz.

hαµ − 1
2
δαµh =

1

4π

∫
(−16πTαµ )

′ dV ′

r′
, (57.6)

the integral being taken over each element of space-vol-
ume dV ′ at a coordinate distance r′ from the point considered
and at a time t− r′, i.e. at a time such that waves propagated
from dV ′ with unit velocity can reach the point at the time
considered.

If we calculate from (57.6) the value of
∂

∂xα
(hαµ − 1

2
δαµh),

the operator ∂/∂xα indicates a displacement in space and time
of the point considered, involving a change of r′. We may,
however, keep r′ constant on the right-hand side and displace
to the same extent the element dV ′ where (Tαµ )

′ is calculated.
Thus

∂

∂xα
(hαµ − 1

2
δαµh) = −4

∫ {
∂

∂xα
(Tαµ )

}′
dV ′

r′
.

But by (55.2) ∂Tαµ /∂xα is of the second order of small quantities,
so that to our approximation (57.4) is satisfied.

The result is that
□hµν = 2Gµν (57.7)

satisfies the gravitational equations correctly to the first order,
because both the equations into which we have divided (57.2)

then become satisfied. Of course there may be other solutions
of (57.2), which do not satisfy (57.31) and (57.32) separately.

For a static field (57.7) reduces to

−∇2hµν = 2Gµν

= −16π(Tµν − 1
2
δµνT ) by (54.5).

*Rayleigh, Theory of Sound, vol. II, p. 104, equation (3).
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Also for matter at rest T = T44 = ρ (the inertial density) and
the other components of Tµν vanish; thus

∇2(h11, h22, h33, h44) = 8πρ(1, 1, 1, 1).

For a single particle the solution of this equation is well
known to be

h11, h22, h33, h44 = −2m

r
.

Hence by (57.1) the complete expression for the interval is

ds2 = −
(
1 +

2m

r

)
(dx2 + dy2 + dz2) +

(
1− 2m

r

)
dt2, (57.8)

agreeing with (46.15). But m as here introduced is the inertial
mass and not merely a constant of integration. We have
shown in §§ 38, 39 that the m in (46.15) is the gravitational
mass reckoned with constant of gravitation unity. Hence
we see that inertial mass and gravitational mass are equal
and expressed in the same units, when the constant of
proportionality between the world-tensor and the physical-
tensor is chosen to be 8π as in (54.3).

In empty space (57.7) becomes

□hµν = 0,

showing that the deviations of the gravitational potentials are
propagated as waves with unit velocity, i.e. the velocity of
light (§ 30). But it must be remembered that this represen-
tation of the propagation, though always permissible, is not
unique. In replacing (57.2) by (57.31) and (57.32), we introduce
a restriction which amounts to choosing a special coordinate-
system. Other solutions of (57.2) are possible, corresponding
to other coordinate-systems. All the coordinate-systems dif-
fer from Galilean coordinates by small quantities of the first
order. The potentials gµν pertain not only to the gravitational
influence which has objective reality, but also to the coordi-
nate-system which we select arbitrarily. We can “propagate”
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coordinate-changes with the speed of thought, and these may
be mixed up at will with the more dilatory propagation
discussed above. There does not seem to be any way of dis-
tinguishing a physical and a conventional part in the changes
of the gµν.

The statement that in the relativity theory gravitational
waves are propagated with the speed of light has, I believe,
been based entirely on the foregoing investigation; but it will
be seen that it is only true in a very conventional sense. If
coordinates are chosen so as to satisfy a certain condition
which has no very clear geometrical importance, the speed is
that of light; if the coordinates are slightly different the speed
is altogether different from that of light. The result stands or
falls by the choice of coordinates and, so far as can be judged,
the coordinates here used were purposely introduced in order
to obtain the simplification which results from representing
the propagation as occurring with the speed of light. The
argument thus follows a vicious circle.

Must we then conclude that the speed of propagation of
gravitation is necessarily a conventional conception without
absolute meaning? I think not. The speed of gravitation
is quite definite; only the problem of determining it does
not seem to have yet been tackled correctly. To obtain
a speed independent of the coordinate-system chosen, we
must consider the propagation not of a world-tensor but
of a world-invariant. The simplest world-invariant for this
purpose is Bϵ

µνσB
µνσ
ϵ , since G and GµνG

µν vanish in empty space.
It is scarcely possible to treat of the propagation of an isolated
pulse of gravitational influence, because there seems to be no
way of starting a sudden pulse without calling in supernatural
agencies which violate the equations of mechanics. We may
consider the regular train of waves caused by the earth in
its motion round the sun. At a distant point in the ecliptic
Bϵ
µνσB

µνσ
ϵ will vary with an annual periodicity; if it has a
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maximum or minimum value at the instant when the earth
is seen to transit the sun, the inference is that the wave of
disturbance has travelled to us at the same speed as the light.
(It may perhaps be objected that there is no proof that the
disturbance has been propagated from the earth; it might be
a stationary wave permanently located round the sun which
is as much the cause as the effect of the earth’s annual
motion. I do not think the objection is valid, but it requires
examination.) There does not seem to be any grave difficulty
in treating this problem; and it deserves investigation.

Further light has been obtained on the problem whether
the propagation of gravitation with the fundamental velocity
is more than a conventional representation. We can show
that the absolute disturbance, measured independently of the
particular coordinate-system employed above, is propagated
with the velocity of light.

Let us make a small transformation of the coordinate-
system, viz.

xα = gαµx
′
µ + ξα,

where the ξα are small quantities of the first order, i.e. of the
same order as hµν. Then by (23.22)

δµν + h′
µν = (δαβ + hαβ)

(
gαµ +

∂ξα
∂x′

µ

)
= δµν + hµν + δµβ

∂ξβ
∂x′

ν

+ δαν
∂ξα
∂x′

µ

,

correct to the first order. Hence the difference between h′
µν

and hµν is of the same order as the quantities themselves,
and the law of propagation of hµν will not apply even
approximately to h′

µν.
Contrast this with the transformation of the Riemann-

Christoffel tensor, which is also of the first order of small
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quantities

B′
µνσρ = Bαβγδ

(
gαµ +

∂ξα
∂x′

µ

)(
gβν +

∂ξβ
∂x′

ν

)(
gγσ +

∂ξγ
∂x′

σ

)(
gδρ +

∂ξδ
∂x′

ρ

)
= Bµνσρ,

correct to the first order. Accordingly the law of propagation
of Bµνσρ will apply approximately to B′

µνσρ. (We do not expect
it to apply accurately since the velocity of light is altered to
the first order by the transformation.)

Hence, whereas the propagation of hµν with the velocity
of light is the property of a particular coordinate-system, the
propagation of Bµνσρ with this speed is general.

It is instructive to consider this problem in detail for
the case of plane gravitational waves. We consider plane
waves travelling with velocity V in the direction x1. The
coefficients hµν can be grouped so as to correspond to three
kinds of waves, which can exist independently of one another,
viz.

transverse-transverse (TT) waves, h22, h23, h33

longitudinal-transverse (LT) waves, h12, h24, h13, h34

longitudinal-longitudinal (LL) waves. h11, h14, h44

The condition for empty space Gµν = 0 leads to the follow-
ing set of equations which must be satisfied*:

h22 + h33 = 0, (57.91)

(1− V 2)(h22, h23, h33) = 0, (57.92)

h24 = V h12; h34 = V h13, (57.93)

h44 − 2V h14 + V 2h11 = 0. (57.94)

*Proc. Roy. Soc. 102 A. p. 268.
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It follows from (57.92) that for TT waves V = 1, so that these
waves travel with the velocity of light. For the other two
classes of waves there is no reason why V should be unity.

To understand the nature of LT and LL waves which do
not travel with the velocity of light we suppose h22, h23, h33 = 0,
so that no TT waves are present. Then in consequence of
conditions (57.93) and (57.94) it is found that the Riemann-
Christoffel tensor vanishes altogether. Accordingly space-
time is flat, and no absolute disturbance is occurring. LT

and LL waves are spurious; they are merely sinuosities of
our coordinate-system. They exist, not in the world, but
in our mental attitude, and the only speed relevant to their
propagation is the “speed of thought.” TT waves contribute
to the Riemann-Christoffel tensor and involve a disturbance
of the curvatures of space-time; we have seen that these
genuine waves have the speed of light.

The special coordinate-system used above does not nec-
essarily eliminate all LL and LT waves, but it permits them
only if they travel with the speed of light. Spurious waves
with this speed can take advantage of their resemblance to
the genuine waves so as to slip through the censorship.

If we group the coefficients of TT waves in the triad, h22 +

h33, h22 − h33, h23, equation (57.91) shows that the first of these
is a type of wave which cannot exist in empty space. This
is because such a wave carries energy (real energy T νµ not
the pseudo-energy tνµ carried by all TT waves), and space
containing real energy is not to be regarded as empty. Light-
waves and other kinds of electromagnetic waves belong to
this class and involve a propagation of h22 + h33.

A spinning rod sets up a train of gravitational waves which
travel away towards infinity. The interesting question arises
whether these waves will carry away the energy of the rod
so that it will gradually come to rest of its own accord. The
analogous problem of spontaneous loss of energy of rotation
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of a double star is of considerable astronomical interest. The
double star problem is still unsolved; but the result for a
spinning rod, or for any rotating material bound together
by cohesive force, has been obtained by Einstein (Berlin.
Sitzungsberichte, 1916, p. 688; 1918, p. 154). Reference may
also be made to the author’s discussion (Proc. Roy. Soc. 102 A,
p. 268) which in principle follows Einstein’s method and
except for a factor 2 confirms his calculation.

The result is that a rod of moment of inertia I, spinning
with angular velocity ω, loses energy at the rate

32

5
kI2ω6 (57.101)

per unit time, where k = 1 for gravitational units and k =

2.7 · 10−60 for C.G.S. units. The rate of decay of the rotation is
in all practical cases exceedingly small.

The gravitational waves constitute a genuine disturbance
of space-time, but their energy, represented by the pseudo-
tensor tνµ, is regarded as an analytical fiction as will be
explained in § 59. In Einstein’s original method the outward
flow of this pseudo-energy is calculated. Criticism was
directed against his investigation owing to the employment
of this fiction, but Einstein had no difficulty in defending its
validity. We may, however, look at the problem from another
point of view which ignores the fate of the lost energy, and
has a peculiar historic interest of its own. If gravitation is
not propagated instantaneously the lag may cause tangential
components of the force to occur, so that there will be a
couple presumably opposing the rotation. Laplace anticipated
that if gravitation were propagated with the speed of light this
disturbing couple would be large enough to be appreciable
in astronomical systems, and deduced from its absence that
gravitation must have a much greater speed. We now
know that the first order effect which Laplace expected is
compensated; but the loss of energy (57.101) is actually the
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residual Laplace effect of the third order of small quantities,
as determined by modern theory. The rod comes to rest
because, taking account of the propagation from one end
to the other, the gravitational attraction of its particles on
one another is not exactly in the line of the rod and thus
creates a couple destroying the rotation—in short the action
and reaction are not equal and opposite. The following new
deduction of (57.101), which is somewhat shorter than the
investigations above quoted, brings out this aspect of the
problem.

Setting µ = 4 in (55.6)

∂Tν4
∂xν

= 1
2
Tαβ

gαβ
∂t

.

Hence integrating over a three-dimensional region enclosing
the rod

∂

∂t

∫
T4

4dV = 1
2

∫
Tαβ

∂gαβ
∂t

dV, (57.102)

since the other terms on the left yield surface integrals which
vanish because the boundary does not pass through matter.
Equation (57.102) expresses the rate of change of material
energy T 4

4 within the region, i.e. in the rod which is the only
material system there.

In order to calculate the value of ∂gαβ/∂t to be substituted
in (57.102) we use (57.7)

□hαβ = 2Gαβ = −16π(Tαβ − 1
2
δαβT ). (57.103)

The solution of this wave-equation is studied fully in § 74(d).
We have by (74.71)

hαβ = −4

∫ [
T ′
αβ − 1

2
δαβT

′

r(1− vr)

]
dV ′. (57.104)

Here the square bracket is used to indicate appropriately
antedated values; r is the distance from the moving source dV ′

at the appropriate moment to the point where hαβ is to be
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calculated; and vr is the component velocity of dV ′ towards
this point. Although we shall find it necessary to retain
somewhat high powers of the velocity in the coefficients
of periodic terms, it is unnecessary to take account of
the FitzGerald factor β occurring as a constant multiplier
independent of the time. For the same reason we can
replace Tαβ by Tαβ in (57.102). Squares of hαβ have been
neglected.

Hence by (57.102) and (57.104) the rate of loss of energy of
the rod is

2

∫ ∫ {
Tαβ

∂

∂t

[
T ′
αβ

r(1− vr)

]
− 1

2
T
∂

∂t

[
T ′

r(1− vr)

]}
dV dV ′, (57.105)

since Tαβδαβ = T to the adopted order of approximation. This
integral exhibits the loss of energy as arising from the mutual
action of pairs of elements of the rod, dV and dV ′.

The antedated values can be expanded in terms of con-
temporaneous values of r and T ′

αβ by the series*[
T ′
αβ

r(1− vr)

]
=
T ′
αβ

r
− d

dt
T ′
αβ +

∞∑
2

(−1)n

n!

dn

dtn
(rn−1T ′

αβ), (57.106)

the quantities on the right not being antedated.
Let the rod, spinning in the plane of xy, be along the

axis of x at the instant t = 0, the origin being at the centre.
Let dV then be at x and dV ′ at x′. The varying distance of the
source dV ′ from the fixed point x instantaneously occupied
by dV , is

r =
√
x2 + x′2 − 2xx′ cosωt.

This must be used in (57.106) and t must be made zero
after the differentiations. In the present application we can
simplify (57.106) by noting that if Tαβ is any component which
does not vanish when t = 0, T ′

αβ will be an even function of t,

*See (74.94).
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so that derivatives of odd order disappear. Accordingly for
our application

∂

∂t

[
T ′
αβ

r(1− vr)

]
= − d2

dt2
T ′
αβ −

1

6

d4

dt4
{T ′

αβ(x
2 + x′2 − 2xx′ cosωt)}

− 1

120

d6

dt6
{T ′

αβ(x
2 + x′2 − 2xx′ cosωt)2} − . . . . (57.107)

This must be substituted in (57.105) and the earliest non-
vanishing terms picked out. Assuming that the rod is
symmetrical (but not necessarily of uniform density) terms
containing an odd power of x or x′ will vanish on integration.

(a) Stress components, T 11, T 22.

These are small compared with the momentum and mass
components and only the first term of the expansion (57.107)

is required. Since r does not appear, the double integration
breaks up into the product of two independent integrals. The
contribution to (57.105) is

−2

∫
T 11dV · d

2

dt2

∫
T ′
11dV

′ − 2

∫
T 22dV · d

2

dt2

∫
T ′
22dV

′. (57.108)

If σ is the line-density of the rod T 22dV = σω2x2dx, so that∫
T 22dV = Iω2.

The component T 11 represents the tension of the rod and it is
easily found by elementary dynamics that its integral is −Iω2.

For the moving source the corresponding integrals are Iω2 cos 2ωt
and −Iω2 cos 2ωt. Hence (57.108) gives the result 16I2ω6.

(b) Momentum components, T 24, T 42.

We have T 24dV = σωxdx, T ′
24dV

′ = −σ′ωx′dx′ cosωt.



CH. IV EQUALITY OF GRAVITATIONAL AND INERTIAL MASS 240
The first term of (57.107) now yields nothing, owing to the

odd powers of x and x′. We take the second term and obtain

−2

∫ ∫
σωxdx · σ′ωx′dx′ · 1

6
(2ω)4xx′ = − 16

3
I2ω6.

T 42 gives an equal contribution, making a total of − 32
3
I2ω6.

(c) Mass components, T 44, T .

T 44dV = σdx, T ′
44dV

′ = σdx′.

The third term of (57.107) is now required, giving

2

∫ ∫
σdx · σ′dx′ · 1

120
(2ω)6 · 2x2x′2 = 32

15
I2ω6.

The proper-density T and the coordinate-density T 44 are
practically the same, so that the term in T cancels half the
above amount, leaving 16

15
I2ω6.

Gathering together (a), (b) and (c) the rate of loss of energy
is

(16− 32
3
+ 16

15
)I2ω6 = 32

5
I2ω6,

agreeing with the result already stated.
If a is the order of magnitude of the linear dimensions

of the system and v of the velocities, this result is of or-
der (M/a)2v6. Since h44 is of order (M/a) the neglect of
higher powers of hµν excludes from the discussion terms
of order (M/a)3v2 and (M/a)4v2. The former may possibly,
and the latter will almost certainly occur; the approxima-
tion accordingly assumes that such terms are negligible in
comparison with (M/a)2v6. There is no theoretical difficulty
in the existence of cohesive systems with small mass and
large velocities for which our approximation is valid; but for
gravitational systems, M/a is necessarily of the same order of
magnitude as v2, and the approximation fails. Thus the decay
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of energy (if any) of a double star cannot be investigated by
this method.

In a sense it is true that our success in solving the problem
for cohesive systems and our failure for gravitational systems
is due to our comparative ignorance of the nature of cohesive
forces. Presumably cohesive forces are propagated with the
fundamental velocity and our assumption that the tension
in the spinning rod lies wholly in the line of the rod may
not be strictly true. On the other hand the cohesion is
between neighbouring particles and we must not think of it
as propagated from end to end of the rod in the way that
the gravitational attraction is propagated. For this reason it
seems plausible to neglect the propagation of cohesion; but
even if the effect is appreciable we can scarcely suppose that
the lag of the cohesive forces taken alone would accelerate
the rotation of the rod, so that there seems no possibility
of the gravitational loss of energy found in this discussion
being neutralised. The problem of the double star is more
difficult; we should have to take account of the effect of the
gravitational field in disturbing the propagation of its own
potentials and we cannot be sure that even the sign of (57.101)

is correct.
The spontaneous loss of energy of a spinning rod is inter-

esting in connection with the problem of absolute rotation.
We used often to hear the suggestion that a moving star
would gradually be brought to rest owing to the back-pres-
sure of its own radiation. Obviously there must be a fallacy*
in the argument, since there is no “rest” for the star to be
brought to. Similarly it might be thought that the conclu-
sion that a spinning rod spontaneously comes to rest must be
fallacious. But the relativity theory does not deny absolute

*The actual fallacy lay in the neglect of the gradual loss of mass of
the star which is radiating energy—a non-vanishing force d(Mv)/dt is
not inconsistent with uniform velocity if M varies.
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rotation; or at least if it does, its denial has not the same
plain meaning as its denial of absolute translation.

58. Lagrangian form of the gravitational equations.

The Lagrangian function L is defined by
L = gµν

√
−g

(
{µα, β}{νβ, α} − {µν, α}{αβ, β}

)
, (58.1)

which forms part of the expression for G (= gµνGµν

√
−g). For

any small variation of L

δL = {µα, β} δ
(
gµν

√
−g {νβ, α}

)
+ {νβ, α} δ

(
gµν

√
−g {µα, β}

)
− {µν, α} δ

(
gµν

√
−g {αβ, β}

)
− {αβ, β} δ

(
gµν

√
−g {µν, α}

)
−
(
{µα, β} {νβ, α} − {µν, α}{αβ, β}

)
δ
(
gµν

√
−g

)
. (58.2)

The first term in (58.2)

= 1
2
{µα, β} δ

(√
−g · gµνgαϵ

(
∂gνϵ
∂xβ

+
∂gβϵ
∂xν

− ∂gβν
∂xϵ

))
= 1

2
{µα, β} δ

(√
−g · gµνgαϵ ∂gνϵ

∂xβ

)
= − 1

2
{µα, β} δ

(√
−g · ∂g

µα

∂xβ

)
by (35.11)

= − 1
2
{µν, α} δ

(√
−g · ∂g

µν

∂xα

)
. (58.31)

The second term reduces to the same.
The third term becomes by (35.4)

−{µν, α} δ
(
gµν

∂

∂xα

√
−g

)
. (58.32)

In the fourth term we have
gµν

√
−g {µν, α} = − ∂

∂xν
(gαν

√
−g),

by (51.41), since the divergence of gαν vanishes. Hence with
some alterations of dummy suffixes, the fourth term becomes

{νβ, β} gαµ δ
(

∂

∂xα
(gµν

√
−g)

)
. (58.33)
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Substituting these values in (58.2), we have

δL =
[
−{µν, α}+ gαµ{νβ, β}

]
δ

(
∂

∂xα
(gµν

√
−g)

)
−
[
{µα, β}{νβ, α} − {µν, α}{αβ, β}

]
δ(gµν

√
−g). (58.4)

We write
gµν = gµν

√
−g; gµνα =

∂

∂xα
(gµν

√
−g). (58.45)

Then when L is expressed as a function of the gµν and gµνα ,
(58.4) gives

∂L

∂gµν
= −

[
{µα, β}{νβ, α} − {µν, α}{αβ, β}

]
, (58.51)

∂L

∂gµνα
=

[
−{µν, α}+ gαµ{νβ, β}

]
. (58.52)

Comparing with (37.2) we have

Gµν =
∂

∂xα

∂L

∂gµνα
− ∂L

∂gµν
. (58.6)

This form resembles that of Lagrange’s equations in dy-
namics. Regarding gµν as a coordinate q, and xα as a four-di-
mensional time t, so that gµνα is a velocity q′, the gravitational
equations Gµν = 0 correspond to the well-known form

d

dt

∂L

∂q′
− ∂L

∂q
= 0.

The two following formulae express important properties
of the Lagrangian function:

gµν
∂L

∂gµν
= −L, (58.71)

gµνα
∂L

∂gµνα
= 2L. (58.72)

The first is obvious from (58.51). To prove the second, we
have

gµνα =
∂

∂xα
(gµν

√
−g) =

√
−g ∂g

µν

∂xα
+ gµν

√
−g {αϵ, ϵ}

=
√
−g

[
−{ϵα, µ}gϵν − {ϵα, ν}gµϵ + {αϵ, ϵ}gµν

]
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by (30.1) since the covariant derivative of gµν vanishes.

Hence by (58.52)

gµνα
∂L

∂gµνα

=
√
−g

[
{µν, α}{ϵα, µ}gϵν + {µν, α}{ϵα, ν}gϵµ − {µν, α}{αϵ, ϵ}gµν

− {νβ, β}gαµ {ϵα, µ}gϵν − {νβ, β}gαµ {ϵα, ν}gϵµ + {νβ, β}gαµ {αϵ, ϵ}gµν
]
,

which by change of dummy suffixes becomes

=
√
−g

[
{βν, α}{µα, β}gµν + {µβ, α}{να, β}gνµ − {µν, α}{αβ, β}gµν

− {νβ, β}{µα, α}gµν − {αβ, β}{νµ, α}gνµ + {νβ, β}{µϵ, ϵ}gµν
]

= 2L by (58.1).

The equations (58.71) and (58.72) show that the Lagrangian
function is a homogeneous function of degree −1 in the
“coordinates” and of degree 2 in the “velocities.”

We can derive a useful expression for G

G = gµνGµν

= gµν
∂

∂xα

∂L

∂gµνα
− gµν

∂L

∂gµν
by (58.6)

=
∂

∂xα

(
gµν

∂L

∂gµνα

)
− gµνα

∂L

∂gµνα
− gµν

∂L

∂gµν

=
∂

∂xα

(
gµν

∂L

∂gµνα

)
− L (58.8)

by (58.71) and (58.72).
It will be seen that (G + L) has the form of a diver-

gence (51.12); but the quantity of which it is the divergence is
not a vector-density, nor is L a scalar-density.

We shall derive another formula which will be needed in
§ 59,

d(gµν
√
−g) =

√
−g(dgµν + gµν · 1

2
gαβ dgαβ) by (35.3).



CH. IV PSEUDO-ENERGY-TENSOR OF THE GRAVITATIONAL FIELD 245
Hence, using (35.2),

Gµν d(g
µν
√
−g) =

√
−g(−Gµν dgµν +

1
2
Ggαβ dgαβ)

= −(Gµν − 1
2
gµνG)

√
−g · dgµν

= 8π Tµν dgµν . (58.91)

Accordingly

8π Tµν
∂gµν
∂xα

= Gµνg
µν
α

= gµνα

(
∂

∂xβ

∂L

∂gµνβ
− ∂L

∂gµν

)
=

∂

∂xβ

(
gµνα

∂L

∂gµνβ

)
− ∂

∂xβ
gµνα · ∂L

∂gµνβ
− gµνα

∂L

∂gµν
. (58.92)

Now
∂L

∂xα
=

∂L

∂gµν
∂gµν

∂xα
+

∂L

∂gµνβ

∂gµνβ
∂xα

,

and since
∂gµνβ
∂xα

=
∂2gµν

∂xα ∂xβ
=
∂gµνα
∂xβ

,

we see that (58.92) reduces to

8π Tµν
∂gµν
∂xα

=
∂

∂xβ

(
gµνα

∂L

∂gµνβ

)
− ∂L

∂xα

=
∂

∂xβ

{
gµνα

∂L

∂gµνβ
− gβαL

}
. (58.93)

59. Pseudo-energy-tensor of the gravitational field.

The formal expression of the conservation of the material
energy and momentum is contained in the equations

∂Tνµ
∂xν

= 0, (59.1)

or, if we name the coordinates x, y, z, t,
∂

∂x
T1
µ +

∂

∂y
T2
µ +

∂

∂z
T3
µ +

∂

∂t
T4
µ = 0.
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Multiply by dx dy dz and integrate through a given three-
dimensional region. The last term is

∂

∂t

∫∫∫
T4
µ dx dy dz.

The other three terms yield surface-integrals over the bound-
ary of the region. Thus the law (59.1) states that the rate
of change of ∫∫∫

T4
µ dx dy dz is equal to certain terms which

describe something going on at the boundary of the region.
In other words, changes of this integral cannot be created
in the interior of the region, but are always traceable to
transmission across the boundary. This is clearly what is
meant by conservation of the integral.

This equation (59.1) applies only in the special case when
the coordinates are such that there is no field of force. We
have generalised it by substituting the corresponding tensor
equation T νµν = 0; but this is no longer a formal expression of
the conservation of anything. It is of interest to compare
the traditional method of generalising (59.1) in which formal
conservation is adhered to.

In classical mechanics the law of conservation is restored
by recognising another form of energy—potential energy—
which is not included in Tνµ. This is supposed to be stored
up in the gravitational field; and similarly the momentum
and stress components may have their invisible complements
in the gravitational field. We have therefore to add to Tνµ

a complementary expression tνµ denoting potential energy,
momentum and stress; and conservation is only asserted for
the sum. If

Sν
µ = Tνµ + tνµ, (59.2)

then (59.1) is generalised in the form

∂Sν
µ

∂xν
= 0. (59.3)
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Accordingly the difference between the relativity treatment

and the classical treatment is as follows. In both theories it
is recognised that in certain cases Tνµ is conserved, but that in
the general case this conservation breaks down. The relativity
theory treats the general case by discovering a more exact
formulation of what happens to Tνµ when it is not strictly
conserved, viz. Tνµν = 0. The classical theory treats it by
introducing a supplementary energy, so that conservation is
still maintained but for a different quantity, viz. ∂Sν

µ/∂xν = 0.
The relativity treatment adheres to the physical quantity
and modifies the law; the classical treatment adheres to
the law and modifies the physical quantity. Of course,
both methods should be expressible by equivalent formulae;
and we have in our previous work spoken of Tνµν = 0 as
the law of conservation of energy and momentum, because,
although it is not formally a law of conservation, it expresses
exactly the phenomena which classical mechanics attributes
to conservation.

The relativity treatment has enabled us to discover the
exact equations, and we may now apply these to obtain the
corresponding exact expression for the quantity Sν

µ introduced
in the classical treatment.

It is clear that tνµ and therefore Sν
µ cannot be tensor-

densities, because tνµ vanishes when natural coordinates are
used at a point, and would therefore always vanish if it were
a tensor-density. We call tνµ the pseudo-tensor-density of
potential energy.

The explicit value of tνµ must be calculated from the
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condition (59.3), or

∂tνµ
∂xν

= −
∂Tνµ
∂xν

= − 1
2
Tαβ

∂gαβ
∂xµ

by (55.6)

= − 1

16π

∂

∂xν

{
gαβµ

∂L

∂gαβν
− gνµL

}
by (58.93).

Hence
16πtνµ = gνµL− gαβµ

∂L

∂gαβν
. (59.4)

This may remind us of the Hamiltonian integral of energy

−h = L−
∑

q′
∂L

∂q′

in general dynamics.
We can form a pseudo-scalar-density by contraction

of (59.4)

16πt = 4L− gαβµ
∂L

∂gαβµ

= 2L by (58.72).

Thus we obtain the interesting comparison with (54.4)

L = 8πt

G = 8πT

 (59.5)

It should be understood that in this section we have been
occupied with the transition between the old and new points
of view. The quantity tνµ represents the potential energy of
classical mechanics, but we do not ourselves recognise it as
an energy of any kind. It is not a tensor-density and it
can be made to vanish at any point by suitably choosing the
coordinates; we do not associate it with any absolute feature
of world-structure. In fact finite values of tνµ can be produced
in an empty world containing no gravitating matter merely
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by choice of coordinates. The tensor-density Tνµ comprises all
the energy which we recognise; and we call it gravitational or
material energy indiscriminately according as it is expressed
in terms of gµν or ρ0, u, v, w.

This difference between the classical and the relativity
view of energy recalls the remarks on the definition of
physical quantities made in the Introduction. As soon as the
principle of conservation of energy was grasped, the physicist
practically made it his definition of energy, so that energy
was that something which obeyed the law of conservation.
He followed the practice of the pure mathematician, defining
energy by the properties he wished it to have, instead of
describing how he had measured it. This procedure has
turned out to be rather unlucky in the light of the new
developments. It is true that a quantity Sν

µ can be found
which obeys the definition, but it is not a tensor and is
therefore not a direct measure of an intrinsic condition of
the world. Rather than saddle ourselves with this quantity,
which is not now of primary interest, we go back to the
more primitive idea of vis viva—generalised, it is true, by
admitting heat or molecular vis viva but not potential energy.
We find that this is not in all cases formally conserved, but it
obeys the law that its divergence vanishes; and from our new
point of view this is a simpler and more significant property
than strict conservation.

Integrating over an isolated material body we may set∫∫∫
T4
µ dx dy dz = −Mu, −Mv, −Mw, M,∫∫∫

S4
µ dx dy dz = −M ′u′, −M ′v′, −M ′w′, M ′,

where the latter expression includes the potential energy and
momentum of the body. Changes of M ′u′, etc. can only occur
by transfer from regions outside the body by action passing
through the boundary; whereas changes of Mu, etc. can be
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produced by the mutual attractions of the particles of the
body. It is clear that the kinematical velocity, or direction
of the world-line of the body, corresponds to u : v : w : 1; the
direction of u′ : v′ : w′ : 1 can be varied at will by choosing
different coordinate-systems.

The components (t14, t
2
4, t

3
4) constitute a “Poynting vector”

representing the flow of potential energy at any point. No
physical significance can be attached to the localisation of the
energy flow, but the total flux of this vector through a closed
surface in empty space will by (59.3) give correctly the rate of
diminution of material and potential energy (T4

4 + t44) within
the surface. If there is within the surface a material system in
periodic motion, coordinates will naturally be chosen so that
t44 undergoes no secular change; the flux will then give the
secular change of T4

4, i.e. the loss of energy from the material
system due to the gravitational waves produced by it.

60. Action.

The invariant integral

A =

∫∫∫∫
ρ0
√
−g dτ (60.11)

represents the action of the matter in a four-dimensional
region.

By (49.42),

A =

∫∫∫∫
ρ0 dW ds

=

∫∫
mds, (60.12)

where m is the invariant mass or energy.
Thus the action of a particle having energy m for a proper-

time ds is equal to mds, agreeing with the definition of action
in ordinary mechanics as energy multiplied by time. By (54.6)
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another form is

A =
1

8π

∫∫∫∫
G
√
−g dτ, (60.2)

so that (ignoring the numerical factor) G√−g, or G, represents
the action-density of the gravitational field. Note that
material action and gravitational action are alternative aspects
of the same thing; they are not to be added together to give
a total action.

But in stating that the gravitational action and the material
action are necessarily the same thing, we have to bear in mind
a very peculiar conception which is almost always associated
with the term Action. From its first introduction, action
has always been looked upon as something whose sole raison
d’être is to be varied—and, moreover, varied in such a way as
to defy the laws of nature! We have thus to remember that
when a writer begins to talk about action, he is probably
going to consider impossible conditions of the world. (That
does not mean that he is talking nonsense—he brings out the
important features of the possible conditions by comparing
them with impossible conditions.) Thus we may not always
disregard the difference between material and gravitational
action; it is impossible that there should be any difference,
but then we are about to discuss impossibilities.

We have to bear in mind the two aspects of action in
this subject. It is primarily a physical quantity having a
definite numerical value, given indifferently by (60.11) or (60.2),
which is of special importance because it is invariant. But
it also denotes a mathematical function of the variables; the
functional form, which is all important, will differ according
to which of the two expressions is used. In particular we
have to consider the partial derivatives, and these will depend
on the variables in terms of which the action is expressed.

The Hamiltonian method of variation of an integral is of
great importance in this subject; several examples of it will
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be given presently. I think it is unfortunate that this valuable
method is nearly always applied in the form of a principle of
stationary action. By considering the variation of the integral
for small variations of the gµν, or other variables, we obtain
a kind of generalised differential coefficient which I will call
the Hamiltonian derivative. It may be possible to construct
integrals for which the Hamiltonian derivatives vanish, so
that the integral has the stationary property. But just as in
the ordinary differential calculus we are not solely concerned
with problems of maxima and minima, and we take some
interest in differential coefficients which do not vanish; so
Hamiltonian derivatives may be worthy of attention even
when they disappoint us by failing to vanish.

Let us consider the variation of the gravitational action in
a region, viz.

8π δA = δ

∫
G
√
−g dτ,

for arbitrary small variations δgµν which vanish at and near*
the boundary of the region. By (58.8)

δ

∫
G
√
−g dτ = −δ

∫
L dτ + δ

∫
∂

∂xα

(
gµν

∂L

∂gµνα

)
dτ.

Also since L is a function of gµν and gµνα∫
δL dτ =

∫ (
∂L

∂gµν
δgµν +

∂L

∂gµνα
δgµνα

)
dτ,

and, by partial integration of the second term,

=

∫ (
∂L

∂gµν
− ∂

∂xα

∂L

∂gµνα

)
δgµν dτ +

∫
∂

∂xα

(
∂L

∂gµνα
δgµν

)
dτ.

By (58.6) the first integrand becomes −Gµν δg
µν, so that we have

δ

∫
G
√
−g dτ =

∫
Gµν δ(g

µν
√
−g) dτ +

∫
∂

∂xα

(
gµν δ

(
∂L

∂gµνα

))
dτ. (60.3)

*So that their first derivatives also vanish.
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The second term can be integrated immediately giving a
triple integral over the boundary of the four-dimensional
region; and it vanishes because all variations vanish at the
boundary by hypothesis. Hence

δ

∫
G
√
−g dτ =

∫
Gµν δ(g

µν
√
−g) dτ (60.41)

= −
∫

(Gµν − 1
2
gµνG) δgµν

√
−g dτ (60.42)

by (58.91).
I call the coefficient −(Gµν − 1

2
gµνG) the Hamiltonian deriva-

tive of G with respect to gµν, writing it symbolically
hG

hgµν
= −(Gµν − 1

2
gµνG) = 8πT µν . (60.43)

We see from (60.42) that the action A is only stationary
when the energy-tensor T µν vanishes, that is to say in empty
space. In fact action is only stationary when it does not
exist—and not always then.

It would thus appear that the Principle of Stationary
Action is in general untrue. Nevertheless some modified
statement of the principle appears to have considerable sig-
nificance. In the actual world the space occupied by matter
(electrons) is extremely small compared with the empty re-
gions. Thus the Principle of Stationary Action, although not
universally true, expresses a very general tendency—a ten-
dency with exceptions*. Our theory does not account for this
atomicity of matter; and in the stationary variation of action
we seem to have an indication of a way of approaching this
difficult problem, although the precise formulation of the law
of atomicity is not yet achieved. It is suspected that it may

*I do not regard electromagnetic fields as constituting an exception,
because they have not yet been taken into account in our work. But
the action of matter has been fully included, so that the break-down
of the principle as applied to matter is a definite exception.
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involve an “action” which is capable only of discontinuous
variation.

It is not suggested that there is anything incorrect in
the principle of least action as used in classical mechanics.
The break-down occurs when we attempt to generalise it for
variations of the state of the system beyond those hitherto
contemplated. Indeed it is obvious that the principle must
break down if pressed to extreme generality. We may
discriminate (a) possible states of the world, (b) states which
although impossible are contemplated, (c) impossible states
which are not contemplated. Generalisation of the principle
consists in transferring states from class (c) to class (b); there
must be some limit to this, for otherwise we should find
ourselves asserting that the equation δA ̸= 0 is not merely not
a possible equation but also not even an impossible equation.

61. A property of invariants.

Let K be any invariant function of the gµν and their
derivatives up to any order, so that∫

K
√
−g dτ is an invariant.

The small variations δ(K
√
−g) can be expressed as a linear

sum of terms involving δgµν, δ(∂gµν/dxα), δ(∂2gµν/dxα dxβ), etc.
By the usual method of partial integration employed in the
calculus of variations, these can all be reduced to terms
in δgµν, together with complete differentials.

Thus for variations which vanish at the boundary of the
region, we can write

δ

∫
K
√
−g dτ =

∫
P µν δgµν

√
−g dτ, (61.1)

where the coefficients, here written P µν, can be evaluated
when the analytical expression for K is given. The complete
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differentials yield surface-integrals over the boundary, so that
they do not contribute to the variations. In accordance with
our previous notation (60.43), we have

P µν =
hK

hgµν
. (61.2)

We take P µν to be symmetrical in µ and ν, since any
antisymmetrical part would be meaningless owing to the
inner multiplication by δgµν. Also since δgµν is an arbitrary
tensor P µν must be a tensor.

Consider the case in which the δgµν arise merely from a
transformation of coordinates. Then (61.1) vanishes, not from
any stationary property, but because of the invariance of K.
The δgµν are not now arbitrary independent variations, so that
it does not follow that P µν vanishes.

Comparing gµν and gµν+δgµν by (23.22), since they correspond
to a transformation of coordinates,

gµν = (gαβ + δgαβ)
∂(xα + δxα)

∂xµ
· ∂(xβ + δxβ)

∂xν

= (gαβ + δgαβ)
∂xα
∂xµ

∂xβ
∂xν

+ gαβ
∂xα
∂xµ

∂(δxβ)

∂xν
+ gαβ

∂xβ
∂xν

∂(δxα)

∂xµ
.

But
∂xα
∂xµ

= gαµ ,
∂xβ
∂xν

= gβν by (22.3).

Hence
gµν = gµν + δgµν + gµβ

∂(δxβ)

∂xν
+ gαν

∂(δxα)

∂xµ
.

This is a comparison of the fundamental tensor at xα + δxα in
the new coordinate-system with the value at xα in the old
system. There would be no objection to using this value of δgµν
provided that we took account of the corresponding δ(dτ). We
prefer, however, to keep dτ fixed in the comparison, and must
compare the values at xα in both systems. It is therefore
necessary to subtract the change δxα · ∂gµν/∂xα of gµν in the
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distance δxα; hence

−δgµν = gµβ
∂(δxβ)

∂xν
+ gαν

∂(δxα)

∂xµ
+
∂gµν
∂xα

δxα. (61.3)

Hence (61.1) becomes

δ

∫
K
√
−g dτ

= −
∫
P µν

√
−g

(
gµα

∂

∂xν
(δxα) + gνα

∂

∂xµ
(δxα) +

∂gµν
∂xα

δxα

)
dτ

which, by partial integration,

=

∫ {
∂

∂xν
(gµαP

µν
√
−g) + ∂

∂xµ
(gναP

µν
√
−g)− P µν

√
−g ∂gµν

∂xα

}
δxα dτ

= 2

∫ {
∂

∂xν
Pν
µ − 1

2
Pµν ∂gµν

∂xα

}
δxα dτ

= 2

∫
P ν
αν δxα

√
−g dτ by (51.51). (61.4)

This has to vanish for all arbitrary variations δxα—deformations
of the mesh-system—and accordingly

(P ν
α )ν = 0. (61.5)

We have thus demonstrated the general theorem—
The Hamiltonian derivative of any fundamental invariant is

a tensor whose divergence vanishes.
The theorem of § 52 is a particular case, since T µν is the

Hamiltonian derivative of G by (60.43).

62. Alternative energy-tensors.

We have hitherto identified the energy-tensor with Gν
µ −

1
2
gνµG mainly because the divergence of the latter vanishes

identically; but the theorem just proved enables us to derive
other fundamental tensors whose divergence vanishes, so that
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alternative identifications of the energy-tensor would seem
to be possible. The three simplest fundamental invariants are

K = G, K ′ = GµνG
µν , K ′′ = Bρ

µνσB
µνσ
ρ . (62.1)

Hitherto we have taken hK/hgµν to be the energy-tensor; but if
hK ′/hgµν were substituted, the laws of conservation of energy
and momentum would be satisfied, since the divergence
vanishes. Similarly hK ′′/hgµν could be used.

The condition for empty space is given by the vanishing of
the energy-tensor. Hence for the three possible hypotheses,
the law of gravitation in empty space is

hK

hgµν
,

hK ′

hgµν
,

hK ′′

hgµν
= 0 (62.2)

respectively.
It is easy to see that the last two tensors contain fourth

derivatives of the gµν; so that if we can lay it down as an
essential condition that the law of gravitation in empty space
must be expressed by differential equations of the second
order, the only possible energy-tensor is the one hitherto
accepted. For fourth-order equations the question of the
nature of the boundary conditions necessary to supplement
the differential equations would become very difficult; but
this does not seem to be a conclusive reason for rejecting
such equations.

The two alternative tensors are excessively complicated
expressions; but when applied to determine the field of an
isolated particle, they become not unmanageable. The field,
being symmetrical, must be of the general form (38.2), so
that we have only to determine the disposable coefficients λ

and ν both of which must be functions of r only. K ′ can
be calculated in terms of λ and ν without difficulty from
equations (38.6); but the expression for K ′′ turns out to be
rather simpler and I shall deal with it. By the method of
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§ 38, we find

K′′ = K ′′√−g = 2e
1
2 (λ+ν) sin θ

{
e−2λ(λ′2 + ν ′2)

+ 2r2e−2λ( 1
4
λ′ν ′ − 1

4
ν ′2 − 1

2
ν ′′)2 + 2(1− e−λ)2/r2

}
. (62.3)

It is clear that the integral of K′′ will be stationary for
variations from the symmetrical condition, so that we need
only consider variations of λ and ν and their derivatives with
respect to r. Thus the gravitational equations hK′′/hgµν = 0 are
equivalent to

hK ′′

hλ
= 0,

hK ′′

hν
= 0. (62.4)

Now for a variation of λ

δ

∫
K dτ =

∫(
∂K

∂λ
δλ+

∂K

∂λ′ δλ
′ +

∂K

∂λ′′ δλ
′′
)
dτ

=

∫ {
∂K

∂λ
− ∂

∂r

(
∂K

∂λ′

)
+

∂2

∂r2

(
∂K

∂λ′′

)}
δλ dτ + surface-integrals.

Hence our equations (62.4) take the Lagrangian form
hK ′′

hλ
=
∂K′′

∂λ
− ∂

∂r

∂K′′

∂λ′ +
∂2

∂r2
∂K′′

∂λ′′ = 0

hK ′′

hν
=
∂K′′

∂ν
− ∂

∂r

∂K′′

∂ν ′
+

∂2

∂r2
∂K′′

∂ν ′′
= 0

 (62.5)

From these λ and ν are to be determined.
It can be shown that one exact solution is the same as in

§ 38, viz.
e−λ = eν = γ = 1− 2m/r. (62.6)

For taking the partial derivatives of (62.3), and applying (62.6)

after the differentiation,
∂K′′

∂λ
= − 3

2
K′′ + 4

(1− e−λ)

r4
· 2e 1

2 (λ+ν) sin θ =
(
−72

m2

r4
+ 16

m

r3

)
sin θ,

∂K′′

∂λ′ = 2e
1
2 (λ+ν) sin θ

{
2e−2λλ′ + r2e−2λ( 1

4
λ′ν ′ − 1

4
ν ′2 − 1

2
ν ′′)ν ′

}
=

(
24
m2

r3
− 8

m

r2

)
sin θ,
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∂K′′

∂λ′′ = 0,

∂K′′

∂ν
= 1

2
K′′ = 24

m2

r4
sin θ,

∂K′′

∂ν ′
= 2e

1
2 (λ+ν) sin θ

{
2e−2λν ′ + 4r2e−2λ( 1

4
λ′ν ′ − 1

4
ν ′2 − 1

2
ν ′′)( 1

4
λ′ − 1

2
ν ′)

}
=

(
−40

m2

r3
+ 8

m

r2

)
sin θ,

∂K′′

∂ν ′′
= −2e

1
2 (λ+ν) sin θ · 2r2e−2λ( 1

4
λ′ν ′ − 1

4
ν ′2 − 1

2
ν ′′)

=

(
16
m2

r2
− 8

m

r

)
sin θ.

On substituting these values, (62.5) is verified exactly.
The alternative law hK ′/hgµν = 0 is also satisfied by the same

solution. For

δ(GµνG
µν
√
−g) = Gµν δ(G

µν
√
−g) +Gµν

√
−g δGµν ,

hence the variation of K ′√−g vanishes wherever Gµν = 0. Any
field of gravitation agreeing with Einstein’s law will satisfy
the alternative law proposed, but not usually vice versa.

There are doubtless other symmetrical solutions for the
alternative laws of gravitation which are not permitted by
Einstein’s law, since the differential equations are now of
the fourth order and involve two extra boundary conditions
either at the particle or at infinity. It may be asked, Why
should these be excluded in nature? We can only answer that
it may be for the same reason that negative mass, doublets,
electrons of other than standard mass, or other theoretically
possible singularities in the world, do not occur; the ultimate
particle satisfies conditions which are at present unknown to
us.

It would seem therefore that there are three admissible
laws of gravitation (62.2). Each can give precisely the same
gravitational field of the sun, and all astronomical phenomena
are the same whichever law is used. Small differences may
appear in the cross-terms due to two or more attracting
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bodies; but as was shown in our discussion of the lunar
theory these are too small to be detected by astronomical
observation. Each law gives precisely the same mechanical
phenomena, since the conservation of energy and momentum
is satisfied. When we ask which of the three is the law of
the actual world, I am not sure that the question has any
meaning. The subject is very mystifying, and the following
suggestions are put forward very tentatively.

The energy-tensor has been regarded as giving the defi-
nition of matter, since it comprises the properties by which
matter is described in physics. Our three energy-tensors
give us three alternative material worlds; and the question is
which of the three are we looking at when we contemplate
the world around us; but if these three material worlds are
each doing the same thing (within the limits of observa-
tional accuracy) it seems impossible to decide whether we are
observing one or other or all three.

To put it another way, an observation involves the relation
of the T νµ of our bodies to the T νµ of external objects, or
alternatively of the respective T ′ν

µ or T ′′ν
µ. If these are the same

relation it seems meaningless to ask which of the three bodies
and corresponding worlds the relation is between. After all
it is the relation which is the reality. In accepting T νµ as the
energy-tensor we are simply choosing the simplest of three
possible modes of representing the observation.

One cannot but suspect that there is some identical
relation between the Hamiltonian derivatives of the three
fundamental invariants. If this relation were discovered it
would perhaps clear up a rather mysterious subject.

63. Gravitational flux from a particle.

Let us consider an empty region of the world, and try
to create in it one or more particles of small mass δm by



CH. IV GRAVITATIONAL FLUX FROM A PARTICLE 261
variations of the gµν within the region. By (60.12) and (60.2),

δ

∫
G
√
−g dτ = 8π

∑
δm · ds, (63.1)

and by (60.42) the left-hand side is zero because the space is
initially empty. In the actual world particles for which δm · ds
is negative do not exist; hence it is impossible to create any
particles in an empty region, so long as we adhere to the
condition that the gµν and their first derivatives must not be
varied on the boundary. To permit the creation of particles
we must give up this restriction and accordingly resurrect the
term

δ

∫
G
√
−g dτ =

∫
∂

∂xα

(
gµν δ

(
∂L

∂gµνα

))
dτ, (63.2)

which was discarded from (60.3). On performing the first
integration, (63.2) gives the flux of the normal component of

gµν δ

(
∂L

∂gµνα

)
= gµν

√
−g δ

[
−{µν, α}+ gαµ{νβ, β}

]
(63.3)

across the three-dimensional surface of the region. The close
connection of this expression with the value of tνµ in (59.6)

should be noticed.
Take the region in the form of a long tube and create a

particle of gravitational mass δm along its axis. The flux (63.3)

is an invariant, since δm · ds is invariant, so we may choose
the special coordinates of § 38 for which the particle is at
rest. Take the tube to be of radius r and calculate the flux
for a length of tube dt = ds. The normal component of (63.3)

is given by α = 1 and accordingly the flux is
∫
gµν

√
−g δ

[
−{µν, 1}+ g1µ{νβ, β}

]
dθ dϕ dt

= 4πr2 ds ·
[
−gµν δ{µν, 1}+ gµ1 δ

(
∂

∂xν
log

√
−g

)]
, (63.4)
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which by (38.5)

= 4πr2 ds

{
e−λ δ( 1

2
λ′)− 1

r2
δ(re−λ)− 1

r2 sin2 θ
δ(r sin2 θ e−λ)

− e−ν δ( 1
2
eν−λν ′)− e−λ δ

(
2

r

)}
. (63.5)

Remembering that the variations involve only δm, this reduces
to

4πr2 ds

(
−δγ′ − 2

r
δγ

)
= 8π δm · ds. (63.6)

We have ignored the flux across the two ends of the tube.
It is clear that these will counterbalance one another.

This verification of the general result (63.1) for the case
of a single particle gives another proof of the identity of
gravitational mass with inertial mass.

We see then that a particle is attended by a certain flux of
the quantity (63.3) across all surrounding surfaces. It is this
flux which makes the presence of a massive particle known
to us, and characterises it; in an observational sense the flux
is the particle. So long as the space is empty the flux is
the same across all surrounding surfaces however distant, the
radius r of the tube having disappeared in the result; so that
in a sense the Newtonian law of the inverse square has a
direct analogue in Einstein’s theory.

In general the flux is modified in passing through a region
containing other particles or continuous matter, since the
first term on the right of (60.3) no longer vanishes. This
may be ascribed analytically to the non-linearity of the
field equations, or physically to the fact that the outflowing
influence can scarcely exert its action on other matter without
being modified in the process. In our verification for the
single particle the flux due to δm was independent of the
value of m originally present; but this is an exceptional case
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due to symmetrical conditions which cause the integral of
T µν δgµν to vanish although T µν is not zero. Usually the flux
due to δm will be modified if other matter is initially present.

For an isolated particle mds in any region is stationary
for variations of its track, this condition being equivalent
to (56.6). Hence for this kind of variation the action 8π

∑
mds

in a region is stationary. The question arises how this is to be
reconciled with our previous result (§ 60) that the principle
of stationary action is untrue for regions containing matter.
The reason is this:—when we give arbitrary variations to
the gµν, the matter in the tube will in general cease to be
describable as a particle, because it has lost the symmetry of
its field*. The action therefore is only stationary for a special
kind of variation of gµν in the neighbourhood of each particle
which deforms the track without destroying the symmetry of
the particle; it is not stationary for unlimited variations of
the gµν.

The fact that the variations which cause the failure of
the principle of stationary action—those which violate the
symmetry of the particles—are impossible in the actual world
is irrelevant. Variations of the track of the particle are equally
impossible, since in the actual world a particle cannot move
in any other way than that in which it does move. The whole
point of the Principle of Stationary Action is to show the
relation of an actual state of the world to slightly varied states
which cannot occur. Thus the break-down of the principle
cannot be excused. But we can see now why it gives correct
results in ordinary mechanics, which takes the tracks of the
particles as the sole quantities to be varied, and disregards the
more general variations of the state of the world for which
the principle ceases to be true.

*It will be remembered that in deriving (56.6) we had to assume
the symmetry of the particle.
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64. Retrospect.

We have developed the mathematical theory of a contin-
uum of four dimensions in which the points are connected in
pairs by an absolute relation called the interval. In order that
this theory may not be merely an exercise in pure mathemat-
ics, but may be applicable to the actual world, the quantities
appearing in the theory must at some point be tied on to the
things of experience. In the earlier chapters this was done by
identifying the mathematical interval with a quantity which
is the result of practical measurement with scales and clocks.
In the present chapter this point of contact of theory and
experience has passed into the background, and attention has
been focussed on another opportunity of making the connec-
tion. The quantity Gν

µ − 1
2
gνµG appearing in the theory is, on

account of its property of conservation, now identified with
matter, or rather with the mechanical abstraction of matter
which comprises the measurable properties of mass, momen-
tum and stress sufficing for all mechanical phenomena. By
making the connection between mathematical theory and the
actual world at this point, we obtain a great lift forward.

Having now two points of contact with the physical world,
it should become possible to construct a complete cycle of
reasoning. There is one chain of pure deduction passing
from the mathematical interval to the mathematical energy-
tensor. The other chain binds the physical manifestations of
the energy-tensor and the interval; it passes from matter as
now defined by the energy-tensor to the interval regarded
as the result of measurements made with this matter. The
discussion of this second chain still lies ahead of us.

If actual matter had no other properties save such as are
implied in the functional form of Gν

µ− 1
2
gνµG, it would, I think,

be impossible to make measurements with it. The property
which makes it serviceable for measurement is discontinuity
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(not necessarily in the strict sense, but discontinuity from
the macroscopic standpoint, i.e. atomicity). So far our only
attempt to employ the new-found matter for measuring
intervals has been in the study of the dynamics of a particle
in § 56; we had there to assume that discrete particles exist
and further that they have necessarily a symmetry of field; on
this understanding we have completed the cycle for one of
our most important test-bodies—the moving particle—the
geodesic motion of which is used, especially in astronomy,
for comparing intervals. But the theory of the use of matter
for the purpose of measuring intervals will be taken up in a
more general way at the beginning of the next chapter, and
it will be seen how profoundly the existence of the complete
cycle has determined that outlook on the world which we
express in our formulation of the laws of mechanics.

It is a feature of our attitude towards nature that we pay
great regard to that which is permanent; and for the same
reason the creation of anything in the midst of a region is
signalised by us as more worthy of remark than its entry in
the orthodox manner through the boundary. Thus when we
consider how an invariant depends on the variables used to
describe the world, we attach more importance to changes
which result in creation than to changes which merely involve
transfer from elsewhere. It is perhaps for this reason that
the Hamiltonian derivative of an invariant gives a quantity
of greater significance for us than, for example, the ordinary
derivative. The Hamiltonian derivative has a creative quality,
and thus stands out in our minds as an active agent working
in the passive field of space-time. Unless this idiosyncrasy
of our practical outlook is understood, the Hamiltonian
method with its casting away of boundary integrals appears
somewhat artificial; but it is actually the natural method
of deriving physical quantities prominent in our survey of
the world, because it is guided by those principles which
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have determined their prominence. The particular form of
the Hamiltonian method known as Least Action, in which
special search is made for Hamiltonian derivatives which
vanish, does not appear at present to admit of any very
general application. In any case it seems better adapted
to give neat mathematical formulae than to give physical
insight; to grasp the equality or identity of two physical
quantities is simpler than to ponder over the behaviour of
the quantity which is their difference—distinguished though
it may be by the important property of being incapable of
existing!

According to the views reached in this chapter the law
of gravitation Gµν = 0 is not to be regarded as an expression
for the natural texture of the continuum, which can only
be forcibly broken at points where some extraneous agent
(matter) is inserted. The differentiation of occupied and
unoccupied space arises from our particular outlook on the
continuum, which, as explained above, is such that the
Hamiltonian derivatives of the principal invariant G stand
out as active agents against the passive background. It is
therefore the regions in which these derivatives vanish which
are regarded by us as unoccupied; and the law Gµν = 0 merely
expresses the discrimination made by this process.

Among the minor points discussed, we have considered
the speed of propagation of gravitational influence. It is
presumed that the speed is that of light, but this does not
appear to have been established rigorously. Any absolute
influence must be measured by an invariant, particularly the
invariant Bρ

µνσB
µνσ
ρ . The propagation of this invariant does not

seem to have been investigated.
The ordinary potential energy of a weight raised to a

height is not counted as energy in our theory and does not
appear in our energy-tensor. It is found superfluous because
the property of our energy-tensor has been formulated as a
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general law which from the absolute point of view is simpler
than the formal law of conservation. The potential energy
and momentum tνµ needed if the formal law of conservation
is preserved is not a tensor, and must be regarded as a
mathematical fiction, not as representing any significant
condition of the world. The pseudo-energy-tensor tνµ can
be created and destroyed at will by changes of coordinates;
and even in a world containing no attracting matter (flat
space-time) it does not necessarily vanish. It is therefore
impossible to regard it as of a nature homogeneous with the
proper energy-tensor.



CHAPTER V
CURVATURE OF SPACE AND TIME

65. Curvature of a four-dimensional manifold.

IN the general Riemannian geometry admitted in our theory
the gµν may be any 10 functions of the four coordinates xµ.
A four-dimensional continuum obeying Riemannian ge-

ometry can be represented graphically as a surface of four
dimensions drawn in a Euclidean hyperspace of a sufficient
number of dimensions. Actually 10 dimensions are required,
corresponding to the number of the gµν. For let (y1, y2, y3, . . . , y10)

be rectangular Euclidean coordinates, and (x1, x2, x3, x4) param-
eters on the surface; the equations of the surface will be of
the form

y1 = f1(x1, x2, x3, x4), . . . . . . , y10 = f10(x1, x2, x3, x4).

For an interval on the surface, the Euclidean geometry of
the y’s gives

−ds2 = dy21 + dy22 + dy23 + · · ·+ dy210

=

{(
∂f1
∂x1

)2

+

(
∂f2
∂x1

)2

+ · · ·+
(
∂f10
∂x1

)2}
dx2

1 + · · ·

+

{
∂f1
∂x1

∂f1
∂x2

+ · · ·+ ∂f10
∂x1

∂f10
∂x2

}
2 dx1 dx2 + · · · .

Equating the coefficients to the given functions gµν, we have
10 partial differential equations of the form

∂f1
∂xµ

∂f1
∂xν

+ · · ·+ ∂f10
∂xµ

∂f10
∂xν

= gµν ,
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to be satisfied by the 10 f ’s. Clearly it would not be possible
to satisfy these equations with less than 10 f ’s except in special
cases.

When we use the phrase “curvature” in connection with
space-time, we always think of it as embedded in this way in
a Euclidean space of higher dimensions. It is not suggested
that the higher space has any existence; the purpose of
the representation is to picture more vividly the metrical
properties of the world. It must be remembered too that a
great variety of four-dimensional surfaces in 10 dimensions
will possess the same metric, i.e. be applicable to one another
by bending without stretching, and any one of these can
be chosen to represent the metric of space-time. Thus a
geometrical property of the chosen representative surface
need not necessarily be a property belonging intrinsically to
the space-time continuum.

A four-dimensional surface free to twist about in six
additional dimensions has bewildering possibilities. We
consider first the simple case in which the surface, or at least
a small portion of it, can be drawn in Euclidean space of five
dimensions.

Take a point on the surface as origin. Let (x1, x2, x3, x4)

be rectangular coordinates in the tangent plane (four-dimen-
sional) at the origin; and let the fifth rectangular axis along
the normal be z. Then by Euclidean geometry

−ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 + dz2, (65.1)

imaginary values of ds corresponding as usual to real distances
in space. The four-dimensional surface will be specified by a
single equation between the five coordinates, which we may
take to be

z = f(x1, x2, x3, x4).

If the origin is a regular point this can be expanded in powers
of the x’s. The deviation from the tangent plane is of the
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second order compared with distances parallel to the plane;
consequently z does not contain linear terms in the x’s. The
expansion accordingly starts with a homogeneous quadratic
function, and the equation is of the form

2z = aµνxµxν , (65.2)

correct to the second order. For a fixed value of z the
quadric (65.2) is called the indicatrix.

The radius of curvature of any normal section of the
surface is found by the well-known method. If t is the radius
of the indicatrix in the direction of the section (direction
cosines l1, l2, l3, l4), the radius of curvature is

ρ =
t2

2z
=

1

aµνlµlν
.

In particular, if the axes are rotated so as to coincide with the
principal axes of the indicatrix, (65.2) becomes

2z = k1 dx
2
1 + k2 dx

2
2 + k3 dx

2
3 + k4 dx

2
4, (65.3)

and the principal radii of curvature of the surface are the
reciprocals of k1, k2, k3, k4.

Differentiating (65.2)

dz = aµνxµ dxν , dz2 = aµνxµ dxν · aστxσ dxτ .

Hence, substituting in (65.1)

−ds2 = dx2
1 + dx2

2 + dx2
3 + dx2

4 + (aµνaστxµxσ) dxν dxτ

for points in the four-dimensional continuum. Accordingly

−gντ = gτν + aµνaστxµxσ. (65.4)

Hence at the origin the gµν are Euclidean; their first
derivatives vanish; and their second derivatives are given by

∂2gντ
∂xµ ∂xσ

= −(aµνaστ + aσνaµτ ),
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by (35.5).

Calculating the Riemann-Christoffel tensor by (34.5), since
the first derivatives vanish,

Bµνσρ =
1

2

(
∂gσρ

∂xµ ∂xν
+

∂gµν
∂xσ ∂xρ

− ∂gµσ
∂xν ∂xρ

− ∂gνρ
∂xµ ∂xσ

)
= aµνaσρ − aµσaνρ. (65.51)

Hence, remembering that the gτρ have Euclidean values −gρσ,

Gµν = gσρBµνσρ = −aµν(a11 + a22 + a33 + a44) + aµσaνσ. (65.52)

In particular

G11 = −a11(a11 + a22 + a33 + a44) + a211 + a212 + a213 + a214

= (a212 − a11a22) + (a213 − a11a33) + (a214 − a11a44). (65.53)

Also

G = gµνGµν = −G11 −G22 −G33 −G44

= −2
{
(a212 − a11a22) + (a213 − a11a33) + (a214 − a11a44)

+ (a223 − a22a33) + (a224 − a22a44) + (a234 − a33a44)
}
. (65.54)

When the principal axes are taken as in (65.3), these results
become

G11 = −k1(k2 + k3 + k4)

G22 = −k2(k1 + k3 + k4); etc.

 (65.55)

and
G = 2(k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4). (65.6)

The invariant G has thus a comparatively simple interpre-
tation in terms of the principal radii of curvature. It is a
generalisation of the well-known invariant for two-dimen-
sional surfaces 1/ρ1ρ2, or k1k2. But this interpretation is only
possible in the simple case of five dimensions. In general
five dimensions are not sufficient to represent even the small
portion of the surface near the origin; for if we set Gµν = 0
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in (65.55), we obtain kµ = 0, and hence by (65.51) Bµνσρ = 0. Thus
it is not possible to represent a natural gravitational field
(Gµν = 0, Bµνσρ ̸= 0) in five Euclidean dimensions.

In the more general case we continue to call the invariant G
the Gaussian curvature although the interpretation in terms
of normal curvatures no longer holds. It is convenient also
to introduce a quantity called the radius of spherical curvature,
viz. the radius of a hypersphere which has the same Gaussian
curvature as the surface considered*.

Considering the geometry of the general case, in 10 dimen-
sions the normal is a six-dimensional continuum in which
we can take rectangular axes z1, z2, …, z6. The surface is then
defined by six equations which near the origin take the form

2zr = arµνxµxν (r = 1, 2, . . . , 6).

The radius of curvature of a normal section in the direction lµ

is then
ρ =

t2

2
√
z21 + z22 + · · ·+ z26

=
1√

(a1µνlµlν)2 + · · ·+ (a6µνlµlν)2
.

It is, however, of little profit to develop the properties of
normal curvature, which depend on the surface chosen to
represent the metric of space-time and are not intrinsic in
the metric itself. We therefore follow a different plan, intro-
ducing the radius of spherical curvature which has invariant
properties.

Reverting for the moment to five dimensions, consider the
three-dimensional space formed by the section of our surface
by x1 = 0. Let G(1) be its Gaussian curvature. Then G(1) is
formed from G by dropping all terms containing the suffix 1—
a dimension which no longer enters into consideration.

*A hypersphere of four dimensions is by definition a four-di-
mensional surface drawn in five dimensions so that (65.6) applies to
it. Accordingly if its radius is R, we have G = 12/R2. For three
dimensions G = 6/R2; for two dimensions G = 2/R2.
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Accordingly G − G(1) consists of those terms of G which
contain the suffix 1; and by (65.53) and (65.54) we have

1
2
(G−G(1)) = −G11. (65.71)

Introducing the value g11 = −1 at the origin

G11 − 1
2
g11G = 1

2
G(1). (65.72)

This result obtained for five dimensions is perfectly gen-
eral. From the manner in which (65.4) was obtained, it will
be seen that each of the six z’s will make contributions to gντ

which are simply additive; we have merely to sum aµνaστxµxσ

for the six values of aµνaστ contributed by the six terms dz2r .
All the subsequent steps involve linear equations and the
work will hold for six z’s just as well as for one z. Hence
(65.72) is true in the general case when the representation
requires 10 dimensions.

Now consider the invariant quadric

(Gµν − 1
2
gµνG) dxµ dxν = 3. (65.81)

Let ρ1 be the radius of this quadric in the x1 direction, so that
dxµ = (ρ1, 0, 0, 0) is a point on the quadric; the equation gives

(G11 − 1
2
g11G)ρ

2
1 = 3,

so that by (65.72)

G(1) =
6

ρ21
. (65.82)

But for a hypersphere of radius R of three dimensions
(k1 = k2 = k3 = 1/R; k4 disappears) the Gaussian curvature
is 6/R2. Hence ρ1 is the radius of spherical curvature of the
three-dimensional section of the world perpendicular to the
axis x1.

Now the quadric (65.81) is invariant, so that the axis x1

may be taken in any arbitrary direction. Accordingly we see
that—
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The radius of the quadric (Gµν = 1

2
gµνG) dxµ dxν = 3 in any

direction is equal to the radius of spherical curvature of the
corresponding three-dimensional section of the world.

We call this quadric the quadric of curvature.

66. Interpretation of Einstein’s law of gravitation.

We take the later form of Einstein’s law (37.4)

Gµν = λgµν , (66.1)

in empty space, λ being a universal constant at present
unknown but so small as not to upset the agreement with
observation established for the original form Gµν = 0. We at
once obtain G = 4λ, and hence

Gµν − 1
2
gµνG = −λgµν .

Substituting in (65.81) the quadric of curvature becomes

−λgµν dxµ dxν = 3,

or
−ds2 = 3/λ. (66.2)

That is to say, the quadric of curvature is a sphere of ra-
dius √

3/λ, and the radius of curvature in every direction* and
at every point in empty space has the constant length √

3/λ.
Conversely if the directed radius of curvature in empty

space is homogeneous and isotropic Einstein’s law will hold.
The statement that the radius of curvature is a constant

length requires more consideration before its full significance

*For brevity I use the phrase “radius of curvature in a direction”
to mean the radius of spherical curvature of the three-dimensional
section of the world at right angles to that direction. There is no other
radius of curvature associated with a direction likely to be confused with
it.
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is appreciated. Length is not absolute, and the result can
only mean constant relative to the material standards of length
used in all our measurements and in particular in those
measurements which verify Gµν = λgµν. In order to make
a direct comparison the material unit must be conveyed to
the place and pointed in the direction of the length to be
measured. It is true that we often use indirect methods
avoiding actual transfer or orientation; but the justification of
these indirect methods is that they give the same result as a
direct comparison, and their validity depends on the truth of
the fundamental laws of nature. We are here discussing the
most fundamental of these laws, and to admit the validity
of the indirect methods of comparison at this stage would
land us in a vicious circle. Accordingly the precise statement
of our result is that the radius of curvature at any point
and in any direction is in constant proportion to the length
of a specified material unit placed at the same point and
orientated in the same direction.

This becomes more illuminating if we invert the comparison—

The length of a specified material structure bears a constant
ratio to the radius of curvature of the world at the place and in
the direction in which it lies. (66.3)

The law no longer appears to have any reference to the
constitution of an empty continuum. It is a law of material
structure showing what dimensions a specified collection of
molecules must take up in order to adjust itself to equilibrium
with surrounding conditions of the world.

The possibility of the existence of an electron in space is
a remarkable phenomenon which we do not yet understand.
The details of its structure must be determined by some
unknown set of equations, which apparently admit of only
two discrete solutions, the one giving a negative electron and
the other a positive electron or proton. If we solve these
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equations to find the radius of the electron in any direction,
the result must necessarily take the form

radius of electron in given direction = numerical
constant × some function of the conditions in the
space into which the electron was inserted.

And since the quantity on the left is a directed length, the
quantity on the right must be a directed length. We have
just found one directed length characteristic of the empty
space in which the electron was introduced, viz. the radius of
spherical curvature of a corresponding section of the world.
Presumably by going to third or fourth derivatives of the gµν

other independent directed lengths could be constructed; but
that seems to involve an unlikely complication. There is
strong ground then for anticipating that the solution of the
unknown equations will be

radius of electron in any direction = numerical
constant × radius of curvature of space-time in that
direction.

This leads at once to the law (66.3).
As with the electron, so with the atom and aggregations of

atoms forming the practical units of material structure. Thus
we see that Einstein’s law of gravitation is the almost in-
evitable outcome of the use of material measuring-appliances
for surveying the world, whatever may be the actual laws
under which material structures are adjusted in equilibrium
with the empty space around them.

Imagine first a world in which the curvature, referred to
some chosen (non-material) standard of measurement, was
not isotropic. An electron inserted in this would need to
have the same anisotropy in order that it might obey the
same detailed conditions of equilibrium as a symmetrical
electron in an isotropic world. The same anisotropy persists
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in any material structure formed of these electrons. Finally
when we measure the world, i.e. make comparisons with
material structures, the anisotropy occurs on both sides of the
comparison and is eliminated. Einstein’s law of gravitation
expresses the result of this elimination. The symmetry and
homogeneity expressed by Einstein’s law is not a property
of the external world, but a property of the operation of
measurement.

From this point of view it is inevitable that the constant λ
cannot be zero; so that empty space has a finite radius of
curvature relative to familiar standards. An electron could
never decide how large it ought to be unless there existed
some length independent of itself for it to compare itself
with.

It will be noticed that our rectangular coordinates (x1, x2, x3, x4)

in this and the previous section approximate to Euclidean,
not Galilean, coordinates. Consequently x4 is imaginary
time, and G(1) is not in any real direction in the world. There
is no radius of curvature in a real timelike direction. This
does not mean that our discussion is limited to three dimen-
sions; it includes all directions in the four-dimensional world
outside the light-cone, and applies to the space-dimensions
of material structures moving with any speed up to the speed
of light. The real quadric of curvature terminates at the
light-cone, and the mathematical continuation of it lies not
inside the cone but in directions of imaginary time which do
not concern us.

By consideration of extension in timelike directions we
obtain a confirmation of these views, which is, I think,
not entirely fantastic. We have said that an electron would
not know how large it ought to be unless there existed
independent lengths in space for it to measure itself against.
Similarly it would not know how long it ought to exist unless
there existed a length in time for it to measure itself against.
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But there is no radius of curvature in a timelike direction;
so the electron does not know how long it ought to exist.
Therefore it just goes on existing indefinitely.

The alternative laws of gravitation discussed in § 62 would
be obtained if the radius of the unit of material structure
adjusted itself as a definite fraction not of the radius of
curvature, but of other directed lengths (of a more complex
origin) characteristic of empty space-time.

In § 56 it was necessary to postulate that the gravitational
field due to an ultimate particle of matter has symmetrical
properties. This has now been justified. We have introduced
a new and far-reaching principle into the relativity theory,
viz. that symmetry itself can only be relative; and the particle,
which so far as mechanics is concerned is to be identified
with its gravitational field, is the standard of symmetry. We
reach the same result if we attempt to define symmetry by
the propagation of light, so that the cone ds = 0 is taken as
the standard of symmetry. It is clear that if the locus ds = 0

has complete symmetry about an axis (taken as the axis of t)
ds2 must be expressible by the formula (38.12).

The double-linkage of field and matter, matter and field,
will now be realised. Matter is derived from the fundamental
tensor gµν by the expression Gν

µ − 1
2
gνµG; but it is matter so

derived which is initially used to measure the fundamental
tensor gµν. We have in this section considered one simple
consequence of this cycle—the law of gravitation. It needs a
broader analysis to follow out the full consequences, and this
will be attempted in Chapter VII, Part II.

67. Cylindrical and spherical space-time.

According to the foregoing section λ does not vanish, and
there is a small but finite curvature at every point of space
and time. This suggests the consideration of the shape and
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size of the world as a whole.

Two forms of the world have been suggested—
(1) Einstein’s cylindrical world. Here the space-dimen-

sions correspond to a sphere, but the time-dimension is
uncurved.

(2) De Sitter’s spherical world. Here all dimensions are
spherical; but since it is imaginary time which is homoge-
neous with the space-coordinates, sections containing real
time become hyperbolas instead of circles.

We must describe these two forms analytically. A point
on the surface of a sphere of radius R is described by two
angular variables θ, ϕ, such that

−ds2 = R2(dθ2 + sin2 θ dϕ2).

Extending this to three dimensions, we have three angular
variables such that

−ds2 = R2
{
dχ2 + sin2 χ (dθ2 + sin2 θ dϕ2)

}
. (67.11)

Accordingly in Einstein’s form the interval is given by

ds2 = −R2 dχ2 −R2 sin2 χ (dθ2 + sin2 θ dϕ2) + dt2. (67.12)

Of course this form applies only to a survey of the
world on the grand scale. Trifling irregularities due to the
aggregation of matter into stars and stellar systems are treated
as local deviations which can be disregarded.

Proceeding from the origin in any direction, Rχ is the
distance determined by measurement with rigid scales. But
the measured area of a sphere of radius Rχ is not 4πR2χ2 but
4πR2 sin2 χ. There is not so much elbow-room in distant parts
as Euclid supposed. We reach a “greatest sphere” at the
distance 1

2
πR; proceeding further, successive spheres contract

and decrease to a single point at a distance πR—the greatest
distance which can exist.
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The whole volume of space (determined by rigid scales) is

finite and equal to
π∫

0

4πR2 sin2 χ ·Rdχ = 2π2R3. (67.2)

Although the volume of space is finite, there is no boundary;
nor is there any centre of spherical space. Every point stands
in the same relation to the rest of space as every other point.

To obtain de Sitter’s form, we generalise (67.11) to four
dimensions (i.e. a spherical four-dimensional surface drawn
in Euclidean space of five dimensions). We have four angular
variables ω, ζ, θ, ϕ, and

−ds2 = R2
[
dω2 + sin2 ω

{
dζ2 + sin2 ζ(dθ + sin2 θ dϕ2)

}]
. (67.31)

In order to obtain a coordinate-system whose physical inter-
pretation is more easily recognisable, we make the transfor-
mation

cosω = cosχ cos it,

cot ζ = cotχ sin it,

which gives
sinχ = sin ζ sinω

tan it = cos ζ tanω.

 (67.32)

Working out the results of this substitution, we obtain
ds2 = −R2 dχ2 −R2 sin2 χ (dθ2 + sin2 θ dϕ2) +R2 cos2 χ · dt2. (67.33)

So far as space (χ, θ, ϕ) is concerned, this agrees with
Einstein’s form (67.12); but the variable t, which will be
regarded as the “time”* in this world, has different properties.
For a clock at rest (χ, θ, ϕ = const.) we have

ds = R cosχdt, (67.4)

*The velocity of light at the origin is now R. In the usual units the
time would be Rt.
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so that the “time” of any cycle is proportional to secχ. The
clock-beats become longer and longer as we recede from
the origin; in particular the vibrations of an atom become
slower. Moreover we can detect by practical measurement
this slowing down of atomic vibrations, because it is preserved
in the transmission of the light to us. The coordinates (67.33)

form a statical system, the velocity of light being independent
of t; hence the light-pulses are all delayed in transmission
by the same “time” and reach us at the same intervals of t

as they were emitted. Spectral lines emanating from distant
sources at rest should consequently appear displaced towards
the red.

At the “horizon” χ = 1
2
π, any finite value of ds corresponds

to an infinite dt. It takes an infinite “time” for anything to
happen. All the processes of nature have come to a standstill
so far as the observer at the origin can have evidence of them.

But we must recall that by the symmetry of the original
formula (67.31), any point of space and time could be chosen
as origin with similar results. Thus there can be no actual
difference in the natural phenomena at the horizon and at
the origin. The observer on the horizon does not perceive
the stoppage—in fact he has a horizon of his own at a
distance 1

2
πR where things appear to him to have come to a

standstill.
Let us send a ray of light from the origin to the horizon

and back again. (We take the double journey because the
time-lapse can then be recorded by a single clock at the
origin; the physical significance of the time for a single
journey is less obvious.) Setting ds = 0, the velocity of the
light is given by

0 = −R2 dχ2 +R2 cos2 χdt2,

so that
dt = ± secχdχ,
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whence

t = ± log tan( 1
4
π + 1

2
χ). (67.5)

This must be taken between the limits χ = 0 and 1
2
π; and again

with reversed sign between the limits 1
2
π and 0. The result is

infinite, and the journey can never be completed.
De Sitter accordingly dismisses the paradox of the arrest

of time at the horizon with the remark that it only affects
events which happen before the beginning or after the end
of eternity. But we shall discuss this in greater detail in § 70.

68. Elliptical space.

The equation (67.11) for spherical space, which appears in
both de Sitter’s and Einstein’s form of the interval, can also
be construed as representing a slightly modified kind of space
called “elliptical space.” From the modern standpoint the
name is rather unfortunate, and does not in any way suggest
its actual nature. We can approach the problem of elliptical
space in the following way—

Suppose that in spherical space the physical processes
going on at every point are exactly the same as those going
on at the antipodal point, so that one half of the world is
an exact replica of the other half. Let ABA′B′ be four points
90◦ apart on a great circle. Let us proceed from B′, via A,
to B; on continuing the journey along BA′ it is impossible
to tell that we are not repeating the journey B′A already
performed. We should be tempted to think that the arc B′A

was in fact the immediate continuation of AB, B and B′ being
the same point and only represented as wide apart through
some fault in our projective representation—just as in a
Mercator Chart we see the same Behring Sea represented at
both edges of the map. We may leave to the metaphysicist
the question whether two objects can be exactly alike, both
intrinsically and in relation to all surroundings, and yet differ
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in identity; physics has no conception of what is meant
by this mysterious differentiation of identity; and in the
case supposed, physics would unhesitatingly declare that the
observer was re-exploring the same hemisphere.

Thus the spherical world in the case considered does not
consist of two similar halves, but of a single hemisphere
imagined to be repeated twice over for convenience of pro-
jective representation. The differential geometry is the same
as for a sphere, as given by (67.11), but the connectivity is
different; just as a plane and a cylinder have the same dif-
ferential geometry but different connectivity. At the limiting
circle of any hemisphere there is a cross-connection of oppo-
site ends of the diameters which it is impossible to represent
graphically; but that is, of course, no reason against the
existence of the cross-connection.

This hemisphere which returns on itself by cross-connec-
tions is the type of elliptical space. In what follows we shall
not need to give separate consideration to elliptical space. It
is sufficient to bear in mind that in adopting spherical space
we may be representing the physical world in duplicate; for
example, the volume 2π2R3 already given may refer to the
duplicated world.

The difficulty in conceiving spherical or elliptical space
arises mainly because we think of space as a continuum in
which objects are located. But it was explained in § 1 that
location is not the primitive conception, and is of the nature
of a computational result based on the more fundamental
notion of extension or distance. In using the word “space” it
is difficult to repress irrelevant ideas; therefore let us abandon
the word and state explicitly that we are considering a network
of intervals (or distances, since at present we are not dealing
with time). The relation of interval or distance between two
points is of some transcendental character comparable, for
example, with a difference of potential or with a chemical
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affinity; the reason why this particular relation is always
associated with geometrical ideas must be sought in human
psychology rather than in its intrinsic nature. We apply
measure-numbers to the interval as we should apply them to
any other relation of the two points; and we thus obtain a
network with a number attached to every chord of the net.
We could then make a string model of the network, the
length of each string corresponding to the measure-number
of the interval. Clearly the form of this model—the existence
or non-existence of unexpected cross-connections—cannot be
predicted a priori; it must be the subject of observation and
experiment. It may turn out to correspond to a lattice drawn
by the mathematician in a Euclidean space; or it may be
cross-connected in a way which cannot be represented in a
lattice of that kind. Graphical representation is serviceable
as a tool but is dangerous as an obsession. If we can
find a graphical representation which conforms to the actual
character of the network, we may employ it; but we must not
imagine that any considerations as to suitability for graphical
representation have determined the design of the network.
From experience we know that small portions of the network
do admit of easy representation as a lattice in flat space, just
as small portions of the earth’s surface can be mapped on a
flat sheet. It does not follow that the whole earth is flat, or
that the whole network can be represented in a space without
multiple connection.

69. Law of gravitation for curved space-time.

By means of the results (43.5) the Gµν can be calculated for
either Einstein’s or de Sitter’s forms of the world. De Sitter’s
equation (67.33) is of the standard form with χ substituted
for r, and

eλ = R2, eµ = R2 sin2 χ/χ2, eν = R2 cos2 χ,
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thus

λ′ = 0, µ′ = 2 cotχ− 2χ, ν ′ = −2 tanχ,

µ′′ = −2 cosec2 χ+ 2/χ2, ν ′′ = −2 sec2 χ.

Hence by (43.5) we find after an easy reduction

G11 = −3, G22 = −3 sin2 χ, G33 = −3 sin2 χ sin2 θ, G44 = 3 cos2 χ.

These are equivalent to

Gµν =
3

R2
gµν . (69.11)

De Sitter’s world thus corresponds to the revised form of the
law of gravitation

Gµν = λgµν ,

and its radius is given by

λ =
3

R2
. (69.12)

Einstein’s form (67.12) gives similarly

eλ = R2, eµ = R2 sin2 χ/χ2, eν = 1,

from which by (43.5)

G11 = −2, G22 = −2 sin2 χ, G33 = −2 sin2 χ sin2 θ, G44 = 0, (69.21)

G = 6/R2. (69.22)

It is not possible to reconcile these values with the law
Gµν = λgµν, owing to the vanishing of G44. Einstein’s form
cannot be the natural form of empty space; but it may
nevertheless be the actual form of the world if the matter in
the world is suitably distributed. To determine the necessary
distribution we must calculate the energy-tensor (54.71)

−8πTµν = Gµν − 1
2
gµνG+ λgµν .
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We find

−8π T11 =

(
− 1

R2
+ λ

)
g11

−8π T22 =

(
− 1

R2
+ λ

)
g22

−8π T33 =

(
− 1

R2
+ λ

)
g33

−8π T44 =

(
− 3

R2
+ λ

)
g44


(69.3)

Since λ is still at our disposal, the distribution of this energy-
tensor is indeterminate. But it is noted that within the
stellar system the speed of matter, whether of molecules or of
stars, is generally small compared with the velocity of light.
There is perhaps a danger of overstressing this evidence, since
astronomical research seems to show that the greater the
scale of our exploration the more divergent are the velocities;
thus the spiral nebulae, which are perhaps the most remote
objects observed, have speeds of the order 500 km. per sec.—
at least ten times greater than the speeds observed in the
stellar system. It seems possible that at still greater distances
the velocities may increase further. However, in Einstein’s
solution we assume that the average velocity of the material
particles is always small compared with the velocity of light;
so the general features of the world correspond to

T11 = T22 = T33 = 0, T44 = ρ, T = ρ0,

where ρ0 is the average density (in natural measure) of the
matter in space.

Hence by (69.3)

λ =
1

R2
, 8πρ0 =

2

R2
. (69.4)

Accordingly if M is the total mass in the universe, we have
by (67.2)

M = 2π2R2ρ0

= 1
2
πR2. (69.5)
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R can scarcely be less than 1018 kilometres since the distances
of some of the globular clusters exceed this. Remembering
that the gravitational mass of the sun is 1.5 kilometres, the
mass of the matter in the world must be equivalent to at least
a trillion suns, if Einstein’s form of the world is correct.

It seems natural to regard de Sitter’s and Einstein’s forms
as two limiting cases, the circumstances of the actual world
being intermediate between them. De Sitter’s empty world is
obviously intended only as a limiting case; and the presence
of stars and nebulae must modify it, if only slightly, in the
direction of Einstein’s solution. Einstein’s world contain-
ing masses far exceeding anything imagined by astronomers,
might be regarded as the other extreme—a world containing
as much matter as it can hold. This view denies any fun-
damental cleavage of the theory in regard to the two forms,
regarding it as a mere accident, depending on the amount of
matter which happens to have been created, whether de Sit-
ter’s or Einstein’s form is the nearer approximation to the
truth. But this compromise has been strongly challenged, as
we shall see.

70. Properties of de Sitter’s spherical world.

If in (67.33) we write r = R sinχ, we obtain
ds2 = −γ−1 dr2 − r2 dθ2 − r2 sin2 θ dϕ2 + γ dt2

where γ = 1− r2/R2 = 1− 1
3
λr2,

 (70.1)

and the customary unit of t has been restored. This solution
for empty space has already been given, equation (45.6).

We have merely to substitute this value of γ in the
investigations of §§ 38, 39, in order to obtain the motion
of material particles and of light-waves in de Sitter’s empty
world. Thus (39.31) may be written

d2r

ds2
− 1

2

γ′

γ

(
dr

ds

)2

− rγ

(
dϕ

ds

)2

+
1

2
γγ′

(
dt

ds

)2

= 0.
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Whence
d2r

ds2
= −

1
3
λr

1− 1
3
λr2

(
dr

ds

)2

+ r(1− 1
3
λr2)

(
dϕ

ds

)2

+ 1
3
λr(1− 1

3
λr2)

(
dt

ds

)2

.

(70.21)

Equation (70.21) can at once be simplified by means of (70.1)

giving
d2r

ds2
− r

(
dϕ

ds

)2

= 1
3
λr.

Since the integral of areas

r2
dϕ

ds
= h

is unaltered, the motion in de Sitter’s world is the same
as under a central repulsion varying directly with r, except
that the time in the orbit corresponds to s not t. Some of
the conclusions in this section are reached more directly by
noticing this.

For a particle at rest

dr

ds
= 0,

dϕ

ds
= 0,

(
dt

ds

)2

= γ−1.

Hence
d2r

ds2
= 1

3
λr. (70.22)

Thus a particle at rest will not remain at rest unless it
is at the origin; but will be repelled from the origin with
an acceleration increasing with the distance. A number of
particles initially at rest will tend to scatter, unless their
mutual gravitation is sufficient to overcome this tendency.

It can easily be verified that there is no such tendency
in Einstein’s world. A particle placed anywhere will remain
at rest. This indeed is necessary for the self-consistency of
Einstein’s solution, for he requires the world to be filled
with matter having negligible velocity. It is sometimes urged
against de Sitter’s world that it becomes non-statical as soon



CH. V PROPERTIES OF DE SITTER’S SPHERICAL WORLD 289
as any matter is inserted in it. But this property is perhaps
rather in favour of de Sitter’s theory than against it.

It is not impossible that the dimensions of our galaxy
may be such that in the remoter parts this cosmical repulsion
exceeds the ordinary gravitation of the system, thus setting
a limit to the extent of the permanent aggregation of stars.
Possibly also the same condition may have a bearing on the
development of spiral nebulae if these are external galaxies.

One of the most perplexing problems of cosmogony is
the great speed of the spiral nebulae. Their radial velocities
average about 600 km. per sec. and there is a great prepon-
derance of velocities of recession from the solar system. It
is usually supposed that these are the most remote objects
known (though this view is opposed by some authorities),
so that here if anywhere we might look for effects due to
a general curvature of the world. De Sitter’s theory gives a
double explanation of this motion of recession; first, there is
the general tendency to scatter according to equation (70.22);
second, there is the general displacement of spectral lines to
the red in distant objects due to the slowing down of atomic
vibrations (67.4) which would be erroneously interpreted as a
motion of recession.

The most extensive measurements of radial velocities of
spiral nebulae have been made by Prof. V. M. Slipher at
the Lowell Observatory. He has kindly prepared for me the
following table, containing many unpublished results. It is
believed to be complete up to date (Feb. 1922). For the
nebulae marked (*) the results have been closely confirmed
at other observatories; those marked (†) are not so accurate
as the others. The number in the first column refers to the
“New General Catalogue,” Memoirs R.A.S., vol. 49. One
additional nebula N.G.C. 1700 has been observed by Pease,
who found a large receding velocity but gave no numerical
estimate.
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The great preponderance of positive (receding) velocities

is very striking; but the lack of observations of southern
nebulae is unfortunate, and forbids a final conclusion. Even
if these also show a preponderance of receding velocities
the cosmogonical difficulty is perhaps not entirely removed
by de Sitter’s theory. It will be seen that two* nebulae
(including the great Andromeda nebula) are approaching
with rather high velocity and these velocities happen to be
exceptionally well determined. In the full formula (70.21)

there are no terms which under any reasonable conditions
encourage motion towards the origin†. It is therefore difficult
to account for these motions even as exceptional phenomena;
on the other hand an approaching velocity of 300 km. per sec.
is about the limit occasionally attained by individual stars or
star clusters.

The conservation of energy is satisfied in de Sitter’s world;
but from the practical standpoint it is abrogated in large
scale problems such as that of the system of the spirals, since
these are able to withdraw kinetic energy from a source not
generally taken into account.

Equation (39.44)

1

γ

(
h

r2
dr

dϕ

)2

+
h2

r2
− c2

γ
= −1

becomes on substituting for γ(
h

r2
dr

dϕ

)2

+
h2

r2
= c2 − 1− 1

3
λh2 + 1

3
λr2,

or writing u = 1/r(
du

dϕ

)2

+ u2 =
c2 − 1

h2
− 1

3
λ+

1
3
λ

h2u2
.

*N.G.C. 221 and 224 may probably be counted as one system. The
two approaching nebulae are the largest spirals in the sky.

†We are limited to the region in which (1− 1
3λr

2) is positive since
light cannot cross the barrier.
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Whence, differentiating

d2u

dϕ2
+ u = −

1
3
λ

h2
u−3. (70.3)

The orbit is the same as that of a particle under a repulsive
force varying directly as the distance. (This applies only to
the form of the orbit, not to the velocity in the orbit.) For
the motion of light the constant of areas h is infinite, and the
tracks of light-rays are the solutions of

d2u

dϕ2
+ u = 0,

i.e. straight lines. Determination of distance by parallax-mea-
surements rests on the assumption that light is propagated in
straight lines, and hence the method is exact in this system
of coordinates. In so far as the distances of celestial objects
are determined by parallaxes or parallactic motions, the coor-
dinate r will agree with their accepted distances. This result
may be contrasted with the solution for the field of a particle
in § 38 where the coordinate r has no immediate observa-
tional significance. Radial distances determined by direct
operations with measuring-rods correspond to Rχ, not r.

Some readers have found the above argument that astro-
nomical measurements of parallax determine the coordinate r

(not the proper-distance Rχ) too condensed. It may be stated
more fully as follows. We make a map of the curved world in
a Euclidean space; r and ϕ are Euclidean polar coordinates in
the map, each star being represented in the map at the point
so determined. In general, distances and angles measured
in thfe world will not agree with the distances and angles
represented in the map; but within the limits of the solar
system, where 1

3
λr2 is negligibly small, the map and the world

coalesce. Since any practical measurements are made within
the solar system, all direct measurements may be immediately



CH. V PROPERTIES OF DE SITTER’S SPHERICAL WORLD 292
transferred to the map. The astronomer completes his trian-
gulation by assuming (1) that space is Euclidean and (2) that
light travels in straight lines. These assumptions are true in
the map; hence the astronomer’s results refer to the map, and
his deduced distance of the star is the map-distance r. If he
measured the distance with measuring rods he would have to
go outside the solar system, and his measures of length could
not then be immediately transferred to the map; this method
gives the distance Rχ, disagreeing with the map-distance.

The spectroscopic radial velocity is not exactly equivalent
to dr/dt, but the divergence is unimportant. A pulse of light
emitted by an atom situated at r = R sinχ at time t will reach
the observer at the origin at time t′, where by (67.5)

t′ = t+ log tan( 1
4
π + 1

2
χ),

so that for the time-interval between two pulses

dt′ = dt+ secχdχ

=

(
1 + secχ dχ

dt

)
dt

ds
ds

=

(
secχ+ sec2 χ dχ

dt

)
ds, by (67.33)

neglecting the square of the velocity of the atom. If dt′0 is the
time for a similar atom at rest at the origin,

dt′

dt′0
= secχ+ sec2 χ dχ

dt

= secχ+ sec2 χ 1

R

dr

dt
. (70.4)

The first term represents the general shift to the red depen-
dent on position and not on velocity. Assuming that it has
been allowed for, the remaining part of the shift corresponds
to a velocity of sec3 χ dr

dt
instead of dr

dt
. The correction is

scarcely of practical importance.
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The acceleration 1

3
λr found in (70.22), if continued for the

time Rχ taken by the light from the object to reach the
origin, would cause a change of velocity of the order 1

3
λr2

or r2/R2. The Doppler effect of this velocity would be roughly
the same as the shift to the red caused by the slowing down
of atomic vibrations. We may thus regard the red shift for
distant objects at rest as an anticipation of the motion of
recession which will have been attained before we receive
the light. If de Sitter’s interpretation of the red shift in the
spiral nebulae is correct, we need not regard the deduced
large motions of recession as entirely fallacious; it is true that
the nebulae had not these motions when they emitted the
light which is now examined, but they have acquired them
by now. Even the standing still of time on the horizon
becomes intelligible from this point of view; we are supposed
to be observing a system which has now the velocity of light,
having acquired it during the infinite time which has elapsed
since the observed light was emitted.

The following paradox is sometimes found puzzling. Take
coordinates for an observer A at rest at the origin, and let
B be at rest at the time t at a considerable distance from
the origin. The vibrations of an atom at B are slower (as
measured in the time t) than those of an atom at A, and
since the coordinate-system is static this difference will be
detected experimentally by any observer who measures the
frequency of the light he receives. Accordingly B must
detect the difference, and conclude that the light from A is
displaced towards the violet relatively to his standard atom.
This is absurd since, if we choose B as origin, the light
from A should be displaced towards the red. The fallacy
lies in ignoring what has happened during the long time
of propagation from A to B or B to A; during this time
the two observers have ceased to be in relative rest, so that
compensating Doppler effects are superposed.
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To obtain a clearer geometrical idea of de Sitter’s world,

we consider only one dimension of space, neglecting the
coordinates θ and ϕ. Then by (67.31)

−ds2 = R2(dω2 + sin2 ω dζ2) = R2(dχ2 − cos2 χdt2)

= dx2 + dy2 + dz2,

where

x = R sinω cos ζ = R cosχ sin it,

y = R sinω sin ζ = R sinχ,

z = R cosω = R cosχ cos it,

and
x2 + y2 + z2 = R2.

It will be seen that real values of χ and t correspond to
imaginary values of ω and ζ and accordingly for real events
x is imaginary and y and z are real. Introducing a real
coordinate ξ = −ix, real space-time will be represented by the
hyperboloid of one sheet with its axis along the axis of ξ,

y2 + z2 − ξ2 = R2,

the geometry being of the Galilean type

ds2 = dξ2 − dy2 − dz2.

We have

r = R sinχ = y,

tanh t = −i tan it = −ix/z = ξ/z,

so that the space-partitions are made by planes perpendicular
to the axis of y, and the time-partitions by planes through
the axis of y cutting the hyperboloid into lunes.

The light-tracks, ds = 0, are the generators of the hyper-
boloid. The tracks of undisturbed particles are (non-Eu-
clidean) geodesics on the hyperboloid; and, except for y = 0,
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the space-partitions will not be geodesics, so that particles
do not remain at rest.

The coordinate-frame (r, t) of a single observer does not
cover the whole world. The range from t = −∞ to t = +∞
corresponds to values of ξ/z between ±1. The whole experi-
ence of any one observer of infinite longevity is comprised
within a 90◦ lune. Changing the origin we can have another
observer whose experience covers a different lune. The two
observers cannot communicate the non-overlapping parts of
their experience, since there are no light-tracks (generators)
taking the necessary course.

A further question has been raised, Is de Sitter’s world
really empty? In formula (70.1) there is a singularity at
r =

√
3/λ similar to the singularity at r = 2m in the solution

for a particle of matter. Must we not suppose that the
former singularity also indicates matter—a “mass-horizon” or
ring of peripheral matter necessary in order to distend the
empty region within. If so, it would seem that de Sitter’s
world cannot exist without large quantities of matter any
more than Einstein’s; he has merely swept the dust away into
unobserved corners.

A singularity of ds2 does not necessarily indicate material
particles, for we can introduce or remove such singularities
by making transformations of coordinates. It is impossible
to know whether to blame the world-structure or the inap-
propriateness of the coordinate-system. In a finite region we
avoid this difficulty by choosing a coordinate-system initially
appropriate—how this is done is very little understood—and
permitting only transformations which have no singularity in
the region. But we can scarcely apply this to a consideration
of the whole finite world since all the ordinary analytical
transformations (even a change of origin) introduce a sin-
gularity somewhere. If de Sitter’s form for an empty world
is right it is impossible to find any coordinate-system which
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represents the whole of real space-time regularly. This is no
doubt inconvenient for the mathematician, but I do not see
that the objection has any other consequences.

The whole of de Sitter’s world can be reached by a
process of continuation; that is to say the finite experience
of an observer A extends over a certain lune; he must then
hand over the description to B whose experience is partly
overlapping and partly new; and so on by overlapping lunes.
The equation Gµν = λgµν rests on the considerations of § 66,
and simply by continuation of this equation from point
to point we arrive at de Sitter’s complete world without
encountering any barrier or mass-horizon.

A possible indication that there is no real mass in de Sit-
ter’s world is afforded by a calculation of the gravitational
flux (63.4). By (63.6) this is

4πr2
(
−δy − 2

r
δγ

)
dt,

since dt can no longer be replaced by ds. On substituting
for γ it is found that the flux vanishes for all values of r.
It is true that as we approach the boundary dt/ds becomes
very great, but the complete absence of flux right up to the
boundary seems inconsistent with the existence of a genuine
mass-horizon.

I believe then that the mass-horizon is merely an illusion
of the observer at the origin, and that it continually recedes
as we move towards it.

71. Properties of Einstein’s cylindrical world.

Einstein does not regard the relation (69.5)

M = 1
2
πR = 1

2
πλ− 1

2 (71.1)

as merely referring to the limiting case when the amount
of matter in the world happens to be sufficient to make the
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form cylindrical. He considers it to be a necessary relation
between λ and M ; so that the constant λ occurring in the law
of gravitation is a function of the total mass of matter in the
world, and the volume of space is conditioned by the amount
of matter contained in it.

The question at once arises, By what mechanism can the
value of λ be adjusted to correspond with M? The creation
of a new stellar system in a distant part of the world would
have to propagate to us, not merely a gravitational field, but a
modification of the law of gravitation itself. We cannot trace
the propagation of any such influence, and the dependence
of λ upon distant masses looks like sheer action at a distance.

But the suggestion is perhaps more plausible if we look
at the inverse relation, viz. M as a function of λ. If we can
imagine the gradual destruction of matter in the world (e.g.
by coalescence of positive and negative electrons), we see
by (71.1) that the radius of space gradually contracts; but it is
not clear what is the fixed standard of length by which R is
supposed to be measured. The natural standard of length in
a theoretical discussion is the radius R itself. Choosing it as
unit, we have M = 1

2
π, whatever the number of elementary

particles in the world. Thus with this unit the mass of
a particle must be inversely proportional to the number of
particles. Now the gravitational mass is the radius of a
sphere which has some intimate relation to the structure of
the particle; and we must conclude that as the destruction
of particles proceeds, this sphere must swell up as though
some pressure were being relaxed. We might try to represent
this pressure by the gravitational flux (§ 63) which proceeds
from every particle; but I doubt whether that leads to a
satisfactory solution. However that may be, the idea that the
particles each endeavour to monopolise all space, and restrain
one another by a mutual pressure, seems to be the simplest
interpretation of (71.1) if it is to be accepted.
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We do not know whether the actual (or electrical) radius

of the particle would swell in the same proportion—by a
rough guess I should anticipate that it would depend on the
square root of the above ratio. But this radius, on which the
scale of ordinary material standards depends, has nothing to
do with equation (71.1); and if we suppose that it remains
constant, the argument of § 66 need not be affected.

In favour of Einstein’s hypothesis is the fact that among
the constants of nature there is one which is a very large
pure number; this is typified by the ratio of the radius of
an electron to its gravitational mass = 3 · 1042. It is difficult
to account for the occurrence of a pure number (of order
greatly different from unity) in the scheme of things; but
this difficulty would be removed if we could connect it with
the number of particles in the world—a number presumably
decided by pure accident*. There is an attractiveness in the
idea that the total number of the particles may play a part in
determining the constants of the laws of nature; we can more
readily admit that the laws of the actual world are specialised
by the accidental circumstance of a particular number of
particles occurring in it, than that they are specialised by
the same number occurring as a mysterious ratio in the
fine-grained structure of the continuum.

In Einstein’s world one direction is uncurved and this
gives a kind of absolute time. Our critic who has been
waiting ever since § 1 with his blank label “true time” will
no doubt seize this opportunity of affixing it. Moreover
absolute velocity is to some extent restored, for there is by
hypothesis a frame of reference with respect to which material
bodies on the average have only small velocities. Matter is

*The square of 3 · 1042 might well be of the same order as the total
number of positive and negative electrons. The corresponding radius
is 1014 parsecs. But the result is considerably altered if we take the
proton instead of the electron as the more fundamental structure.
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essential to the existence of a space-time frame according
to Einstein’s view; and it is inevitable that the space-time
frame should become to some extent materialised, thereby
losing some of the valuable elusiveness of a purely aetherial
frame. It has been suggested that since the amount of matter
necessary for Einstein’s world greatly exceeds that known to
astronomers, most of it is spread uniformly through space
and is undetectable by its uniformity. This is dangerously like
restoring a crudely material aether—regulated, however, by
the strict injunction that it must on no account perform any
useful function lest it upset the principle of relativity. We
may leave aside this suggestion, which creates unnecessary
difficulties. I think that the matter contemplated in Einstein’s
theory is ordinary stellar matter. Owing to the irregularity
of distribution of stars, the actual form of space is not at all
a smooth sphere, and the formulae are only intended to give
an approximation to the general shape.

The Lorentz transformation continues to hold for a lim-
ited region. Since the advent of the general theory, it has
been recognised that the special theory only applies to par-
ticular regions where the gµν can be treated as constants, so
that it scarcely suffers by the fact that it cannot be applied to
the whole domain of spherical space. Moreover the special
principle is now brought into line with the general principle.
The transformations of the theory of relativity relate to the
differential equations of physics; and our tendency to choose
simple illustrations in which these equations are integrable
over the whole of space-time (as simplified in the mathemat-
ical example) is responsible for much misconception on this
point.

The remaining features of Einstein’s world require little
comment. His spherical space is commonplace compared
with de Sitter’s. Each observer’s coordinate-system covers
the whole world; so that the fields of their finite experience
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coincide. There is no scattering force to cause divergent
motions. Light performs the finite journey round the world
in a finite time. There is no passive “horizon,” and in
particular no mass-horizon, real or fictitious. Einstein’s
world offers no explanation of the red shift of the spectra
of distant objects; and to the astronomer this must appear a
drawback. For this and other reasons I should be inclined to
discard Einstein’s view in favour of de Sitter’s, if it were not
for the fact that the former appears to offer a distant hope of
accounting for the occurrence of a very large pure number as
one of the constants of nature.

72. The problem of the homogeneous sphere.

For comparison with the results for naturally curved space,
we consider a problem in which the curvature is due to the
presence of ordinary matter.

The problem of determining ds2 at points within a sphere
of fluid of uniform density has been treated by Schwarzschild,
Nordström and de Donder. Schwarzschild’s solution* is

ds2 = −eλ dr2 − r2 dθ2 − r2 sin2 θ dϕ2 + eν dt2,

where
eλ = 1/(1− αr2)

eν = 1
4

(
3
√
1− αa2 −

√
1− αr2

)2
 (72.1)

*Schwarzschild’s solution is of considerable interest; but I do not
think that he solved exactly the problem which he intended to solve,
viz. that of an incompressible fluid. For that reason I do not give
the arguments which led to the solution, but content myself with
discussing what distribution of matter his solution represents. A full
account is given by de Donder, La Gravifique Einsteinienne, p. 169
(Gauthier-Villars, 1921). The original gravitational equations are used,
the natural curvature of space being considered negligible compared
with that superposed by the material sphere.
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and a and α are constants.

The formulae (46.9), which apply to this form of ds, become
on raising one suffix

−8πT 1
1 = e−λ

(
ν ′/r − (eλ − 1)/r2

)
−8πT 2

2 = e−λ
(
1
2
ν ′′ − 1

4
λ′ν ′ + 1

4
ν ′2 + 1

2
(ν ′ − λ′)/r

)
−8πT 3

3 = −8πT 2
2

−8πT 4
4 = e−λ

(
−λ′/r − (eλ − 1)/r2

)


(72.2)

We find from (72.1) that

(eλ − 1)/r2 = 1
2
λ′/r; 1

2
ν ′′ − 1

4
λ′ν ′ + 1

4
ν ′2 = 1

2
ν ′/r.

Hence

T 1
1 = T 2

2 = T 3
3 =

1

8π
eλ( 1

2
λ′ − ν ′)/r, (72.31)

T 4
4 =

1

8π
eλ · 3

2
λ′/r = 3α/8π. (72.32)

Referred to the coordinate-system (r, θ, ϕ), T 4
4 represents

the density and T 1
1 , T 2

2 , T 3
3 the stress-system. Hence

Schwarzschild’s solution gives uniform density and isotropic
hydrostatic pressure at every point.

On further working out (72.31), we find that the pressure
is

p = −T 1
1 =

α

8π

{
3
2
(1− αr2)

1
2 − 3

2
(1− αa2)

1
2

}{
3
2
(1− αa2)

1
2 − 1

2
(1− αr2)

1
2

} . (72.4)

We see that the pressure vanishes at r = a, and would
become negative if we attempted to continue the solution
beyond r = a. Hence the sphere r = a gives the boundary of
the fluid. If it is desired to continue the solution outside the
sphere, another form of ds2 must be taken corresponding to
the equations for empty space.

Unless a >
√

8/9α the pressure will everywhere be finite.
This condition sets an upper limit to the possible size of a
fluid sphere of given density. The limit exists because the
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presence of dense matter increases the curvature of space, and
makes the total volume of space smaller. Clearly the volume
of the material sphere cannot be larger than the volume of
space.

For spheres which are not unduly large (e.g. not much
larger than the stars) this solution corresponds approximately
to the problem of the equilibrium of an incompressible fluid.
The necessary conditions are satisfied, viz.

(1) The density is uniform.
(2) The pressure is zero at the surface.
(3) The stress-system is an isotropic hydrostatic pressure,

and therefore satisfies the conditions of a perfect fluid.
(4) The pressure is nowhere infinite, negative, or imagi-

nary.
Further equation (72.4) determines the pressure at any

distance from the centre.
The components of an energy-tensor are usually altered

when a transformation of coordinates is made, so that before
interpreting them in terms of pressure and density it is
necessary to ascertain that the appropriate coordinate-system
has been used, viz. natural coordinates. To pass from the
coordinates (r, θ, ϕ, t) to the natural coordinates at any point it
is necessary to make a transformation of scale of r and t at
that point. This transformation leaves the mixed tensor T νµ

unaltered, although it would alter T µν and Tµν. Accordingly
the results (72.31) and (72.32) are valid for natural measure, and
the arbitrariness of our original coordinate-system does not
affect the definiteness of our conclusions.

But in concluding that the solution represents a perfect
fluid of uniform density, the density referred to is T 4

4 or
ρ00. For reasons explained in § 54 this condition does
not seem correct for an incompressible fluid. We need a
solution in which T or ρ0 is constant throughout the sphere;
Schwarzschild has not solved this problem. For large spheres
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the central pressure is enormous and the difference of the
two solutions may be considerable.

I make this comment with some hesitation because it
is difficult to be certain what limit an actual liquid would
approach when the enormously increasing pressure is unable
to bring the ultimate particles appreciably nearer together.
In a gas the pressure is represented by molecular velocities
and its nature is understood. Here it may be a Maxwellian
electromagnetic stress, in which case the conclusion that ρ0

is constant continues to hold true. But it may be some more
mysterious quantum manifestation, as to which we can make
no prediction.

If it is assumed that Schwarzschild’s result

a <
√

8/9α

is correct as regards order of magnitude, the radius of
the greatest possible mass of water would be 370 million
kilometres. The radius of the star Betelgeuse is something
like half of this; but its density is much too small to lead to
any interesting applications of the foregoing result.

Admitting Einstein’s modification of the law of gravita-
tion, with λ depending on the total amount of matter in the
world, the size of the greatest sphere is easily determined.
By (69.4) R2 = 1/4πρ0, from which R (for water) is very nearly
300 million kilometres.
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RADIAL VELOCITIES OF SPIRAL NEBULAE
+ indicates receding, − approaching

N.G.C. R.A. Dec. Rad. Vel. N.G.C. R.A. Dec. Rad. Vel.
h m ◦ ′ km. per sec. h m ◦ ′ km. per sec.

221 0 38 +40 26 − 300 4151* 12 6 +39 51 + 980
224* 0 38 +40 50 − 300 4214 12 12 +36 46 + 300
278† 0 47 +47 7 + 650 4258 12 15 +47 45 + 500
404 1 5 +35 17 − 25 4382† 12 21 +18 38 + 500
584† 1 27 − 7 17 +1800 4449 12 24 +44 32 + 200
598* 1 29 +30 15 − 260 4472 12 25 + 8 27 + 850
936 2 24 − 1 31 +1300 4486† 12 27 +12 50 + 800

1023 2 35 +38 43 + 300 4526 12 30 + 8 9 + 580
1068* 2 39 − 0 21 +1120 4565† 12 32 +26 26 +1100
2683 8 48 +33 43 + 400 4594* 12 36 −11 11 +1100
2841† 9 16 +51 19 + 600 4649 12 40 +12 0 +1090
3031 9 49 +69 27 − 30 4736 12 47 +41 33 + 290
3034 9 49 +70 5 + 290 4826 12 53 +22 7 + 150
3115† 10 1 − 7 20 + 600 5005 13 7 +37 29 + 900
3368 10 42 +12 14 + 940 5055 13 12 +42 37 + 450
3379* 10 43 +13 0 + 780 5194 13 26 +47 36 + 270
3489† 10 56 +14 20 + 600 5195† 13 27 +47 41 + 240
3521 11 2 + 0 24 + 730 5236† 13 32 −29 27 + 500
3623 11 15 +13 32 + 800 5866 15 4 +56 4 + 650
3627 11 16 +13 26 + 650 7331 22 33 +33 23 + 500
4111† 12 3 +43 31 + 800



CHAPTER VI
ELECTRICITY

73. The electromagnetic equations.

IN the classical theory the electromagnetic field is described
by a scalar potential Φ and a vector potential (F,G,H).

The electric force (X,Y, Z) and the magnetic force (α, β, γ) are
derived from these according to the equations

X = −∂Φ
∂x

− ∂F

∂t

α =
∂H

∂y
− ∂G

∂z

 (73.1)

The classical theory does not consider any possible inter-
action between the gravitational and electromagnetic fields.
Accordingly these definitions, together with Maxwell’s equa-
tions, are intended to refer to the case in which no field of
force is acting, i.e. to Galilean coordinates. We take a special
system of Galilean coordinates and set

κµ = (F,G,H,Φ) (73.21)

for that system. Having decided to make κµ a contravariant
vector we can find its components in any other system of co-
ordinates, Galilean or otherwise, by the usual transformation
law; but, of course, we cannot tell without investigation what
would be the physical interpretation of those components.
In particular we must not assume without proof that the
components of κµ in another Galilean system would agree
with the new F , G, H, Φ determined experimentally for that
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system. At the present stage, we have defined κµ in all
systems of coordinates, but the equation (73.21) connecting it
with experimental quantities is only known to hold for one
particular Galilean system.

Lowering the suffix with Galilean gµν, we have

κµ = (−F,−G,−H,Φ). (73.22)

Let the tensor

Fµν ≡ κµν − κνµ =
∂κµ
∂xν

− ∂κν
∂xµ

(73.3)

as in (32.2).
Then by (73.1)

F14 =
∂κ1

∂x4

− ∂κ4

∂x1

=
∂(−F )
∂t

− ∂Φ

∂x
= X,

F23 =
∂κ2

∂x3

− ∂κ3

∂x2

=
∂(−G)
∂z

− ∂(−H)

∂y
= α.

Accordingly the electric and magnetic forces together
form the curl of the electromagnetic potential. The complete
scheme for Fµν is

Fµν

↓→ µ

ν

= 0 −γ β −X
γ 0 −α −Y

−β α 0 −Z
X Y Z 0

(73.41)

Using Galilean values of gµν to raise the two suffixes,

F µν = 0 −γ β X

γ 0 −α Y

−β α 0 Z

−X −Y −Z 0

(73.42)

Let ρ be the density of electric charge and σx, σy, σz the
density of electric current. We set

Jµ = (σx, σy, σz, ρ). (73.5)
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Here again we must not assume that the components of Jµ
will be recognised experimentally as electric charge and
current-density except in the original system of coordinates.

The universally accepted laws of the electromagnetic field
are those given by Maxwell. Maxwell’s equations are

∂Z

∂y
− ∂Y

∂z
= −∂α

∂t
,
∂X

∂z
− ∂Z

∂x
= −∂β

∂t
,
∂Y

∂x
− ∂X

∂y
= −∂γ

∂t
, (73.61)

∂γ

∂y
− ∂β

∂z
=
∂X

∂t
+ σx,

∂α

∂z
− ∂γ

∂x
=
∂Y

∂t
+ σy,

∂β

∂x
− ∂α

∂y
=
∂Z

∂t
+ σz,

(73.62)

∂X

∂x
+
∂Y

∂y
+
∂Z

∂z
= ρ, (73.63)

∂α

∂x
+
∂β

∂y
+
∂γ

∂z
= 0. (73.64)

The Heaviside-Lorentz unit of charge is used so that the
factor 4π does not appear. The velocity of light is as usual
taken to be unity. Specific inductive capacity and mag-
netic permeability are merely devices employed in obtaining
macroscopic equations, and do not occur in the exact theory.

It will be seen by reference to (73.41) and (73.42) that
Maxwell’s equations are equivalent to

∂Fµν
∂xσ

+
∂Fνσ
∂xµ

+
∂Fσµ
∂xν

= 0, (73.71)

∂F µν

∂xν
= Jµ. (73.72)

The first comprises the four equations (73.61) and (73.64); and
the second comprises (73.62) and (73.63).

On substituting Fµν = ∂κµ/∂xν − ∂κν∂xµ in (73.71) it will be
seen that the equation is satisfied identically. Also (73.72) is
the simplified form for Galilean coordinates of (F µν)ν = Jµ.
Hence Maxwell’s laws reduce to the simple form

Fµν =
∂κµ
∂xν

− ∂κν
∂xµ

, (73.73)

F µν
ν = Jµ, (73.74)
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which are tensor equations.

By (51.52) the second equation becomes
∂Fµν

∂xν
= Jµ. (73.75)

Owing to the antisymmetry of Fµν, ∂2Fµν/∂xµ ∂xν vanishes, the
terms in the summation cancelling in pairs. Hence

∂2Fµν

∂xµ ∂xν
=
∂Jµ

∂xµ
= 0, (73.76)

whence, by (51.12),
(Jµ)µ = 0. (73.77)

The divergence of the charge-and-current vector vanishes.
For our original coordinates (73.77) becomes

∂σx
∂x

+
∂σy
∂y

+
∂σz
∂z

+
∂ρ

∂t
= 0. (73.78)

If the current is produced by the motion of the charge with
velocity (u, v, w), we have σx, σy, σz = ρu, ρv, ρw, so that

∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
+
∂ρ

∂t
= 0,

which is the usual equation of continuity (cf. (53.71)), showing
that electric charge is conserved.

It may be noted that even in non-Galilean coordinates the
charge-and-current vector satisfies the strict law of conserva-
tion

∂Jµ

∂xµ
= 0.

This may be contrasted with the material energy and mo-
mentum which, it will be remembered, do not in the general
case satisfy

∂Tνµ
∂xν

= 0,

so that it becomes necessary to supplement them by the
pseudo-energy-tensor tνµ (§ 59) in order to maintain the
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formal law. Both T µν and Jµ have the property which in the
relativity theory we recognise as the natural generalisation of
conservation, viz. T µνν = 0, Jνµ = 0.

If the charge is moving with velocity

dx

dt
,
dy

dt
,
dz

dt
,

we have

Jµ = ρ
dx

dt
, ρ
dy

dt
, ρ
dz

dt
, ρ

= ρ
ds

dt

(
dx

ds
,
dy

ds
,
dz

ds
,
dt

ds

)
. (73.81)

The bracket constitutes a contravariant vector; consequently
ρ ds/dt is an invariant. Now ds/dt represents the FitzGerald
contraction, so that a volume which would be measured as
unity by an observer moving with the charge will be measured
as ds/dt by an observer at rest in the coordinates chosen. The
invariant ρ ds/dt is the amount of charge in this volume, i.e.
unit proper-volume.

We write
ρ0 = ρ

ds

dt
,

so that ρ0 is the proper-density of the charge. If Aµ is the
velocity-vector dxµ/ds of the charge, then (73.81) becomes

Jµ = ρ0A
µ. (73.82)

Charge, unlike mass, is not altered by motion relative to the
observer. This follows from the foregoing result that the
amount of charge in an absolutely defined volume (unit
proper-volume) is an invariant. The reason for this difference
of behaviour of charge and mass will be understood by
reference to (53.2) where the FitzGerald factor ds/dt occurs
squared.
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For the observer S using our original system of Galilean

coordinates, the quantities kµ, Fµν and Jµ represent the elec-
tromagnetic potential, force, and current, according to def-
inition. For another observer S′ with different velocity, we
have corresponding quantities κ′

µ, F ′
µν, J ′µ, obtained by the

transformation-laws; but we have not yet shown that these
are the quantities which S′ will measure when he makes
experimental determinations of potential, force, and current
relative to his moving apparatus. Now if S′ recognises certain
measured quantities as potential, force, and current it must
be because they play the same part in the world relative to
him, as κµ, Fµν and Jµ play in the world relative to S. To
play the same part means to have the same properties, or
fulfil the same relations or equations. But κ′

µ, F ′
µν and J ′µ

fulfil the same equations in S′’s coordinates as κµ, Fµν and Jµ

do in S’s coordinates, because the fundamental equations (73.73),
(73.74) and (73.77) are tensor equations holding in all systems of
coordinates. The fact that Maxwell’s equations are tensor
equations, enables us to make the identification of κµ, Fµν,
Jµ with the experimental potential, force, and current in all
systems of Galilean coordinates and not merely in the system
initially chosen.

In one sense our proof is not yet complete. There are other
equations obeyed by the electromagnetic variables which have
not yet been discussed. In particular there is the equation
which prescribes the motion of a particle carrying a charge
in the electromagnetic field. We shall show in § 76 that
this also is of the tensor form, so that the accented variables
continue to play the same part in S′’s experience which the
unaccented variables play in S’s experience. But even as it
stands our proof is sufficient to show that if there exists
for S′ a potential, force, and current precisely analogous to
the potential, force, and current of S, these must be expressed
by κ′

µ, Fµν, J ′µ, because other quantities would not satisfy
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the equations already obtained. The proviso must clearly be
fulfilled unless the special principle of relativity is violated.

When an observer uses non-Galilean coordinates, he
will as usual treat them as though they were Galilean and
attribute all discrepancies to the effects of the field of force
which is introduced. κµ, Fµν and Jµ will be identified with the
potential, force, and current, just as though the coordinates
were Galilean. These quantities will no longer accurately obey
Maxwell’s original form of the equations, but will conform
to our generalised tensor equations (73.73) and (73.74). The
replacement of (73.72) by the more general form (73.74) extends
the classical equations to the case in which a gravitational
field of force is acting in addition to the electromagnetic
field.

74. Electromagnetic waves.

(a) Propagation of electromagnetic potential.

It is well known that the electromagnetic potentials F ,
G, H, Φ are not determinate. They are concerned in actual
phenomena only through their curl—the electromagnetic
force. The curl is unaltered, if we replace

−F, −G, −H, Φ by − F +
∂V

∂x
, −G+

∂V

∂y
, −H +

∂V

∂z
, Φ+

∂V

∂t
,

where V is an arbitrary function of the coordinates. The
latter expression gives the same field of electromagnetic force
and may thus equally well be adopted for the electromagnetic
potentials.

It is usual to avoid this arbitrariness by selecting from the
possible values the set which satisfies

∂F

∂x
+
∂G

∂y
+
∂H

∂z
+
∂Φ

∂t
= 0.
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Similarly in general coordinates we remove the arbitrariness
of κµ by imposing the condition

(κµ)µ = 0. (74.1)

When the boundary-condition at infinity is added, the value
of κµ becomes completely determinate.

By (73.74) and (73.3)

J = (Fα
µ )α = (gαβFµβ)α = gαβ(Fµβ)α

= gαβ(κµβα − κβµα) (74.2)

= gαβ(κµβα − κβαµ +Bϵ
βαµκϵ) by (34.3)

= gαβ(κµ)βα − (καα)µ +Gϵ
µκϵ.

The operator gαβ(. . . )βα has been previously denoted by □.
Also, by (74.1) καα = 0. Hence

□κµ = Jµ −Gϵ
µκϵ. (74.31)

In empty space this becomes

□κµ = 0, (74.32)

showing that κµ is propagated with the fundamental velocity.
If the law of gravitation Gµν = λgµν for curved space-time is

adopted, the equation in empty space becomes

(□+ λ)κµ = 0. (74.33)

(b) Propagation of electromagnetic force.

To determine a corresponding law of propagation of Fµν

we naturally try to take the curl of (74.31); but care is
necessary since the order of the operations curl and □ is not
interchangeable.
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By (74.2)

Jµν = gαβ(κµβαν − κβµαν)

= gαβ(κµβνα − κβµνα)

− gαβ(Bϵ
µνακϵβ +Bϵ

βνακµϵ −Bϵ
βνακϵµ −Bϵ

µνακβϵ) by (34.8)

= gαβ(κµβν − κβµν)α − gαβ(Bϵ
µναFϵβ −Bϵ

βναFϵµ)

= gαβ(κµνβ − κβµν +Bϵ
µβνκϵ)α −BµναϵF

ϵα −Gϵ
νFϵµ.

Hence

Jµν − Jνµ = gαβ(κµνβ − κνµβ −Bϵ
βµνκϵ +Bϵ

µβνκϵ +Bϵ
νβµκϵ)α

− (Bµναϵ −Bνµαϵ)F
ϵα −Gϵ

νFϵµ +Gϵ
µFϵν .

But by the cyclic relation (34.6)

Bϵ
βµν +Bϵ

µνβ +Bϵ
νβµ = 0.

Also by the antisymmetric properties

(Bµναϵ −Bνµαϵ)F
ϵα = 2BµναϵF

ϵα.

Hence the result reduces to

Jµν − Jνµ = gαβ(κµν − κνµ)βα −Gϵ
νFϵµ +Gϵ

µFϵν − 2BµναϵF
ϵα,

so that

□Fµν = Jµν − Jνµ −Gϵ
µFϵν +Gϵ

νFϵµ + 2BµναϵF
ϵα. (74.41)

In empty space this becomes

□Fµν = 2BµναϵF
ϵα (74.42)

for an infinite world. For a curved world undisturbed by
attracting matter, in which Gϵ

µ = λgϵµ, Bµναϵ = 1
3
λ(gµνgαϵ − gµαgνϵ),

the result is
(□+ 4

3
λ)Fµν = 0. (74.43)
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It need not surprise us that the velocity of propagation of
electromagnetic potential and of electromagnetic force is not
the same (cf. (74.33) and (74.43)). The former is not physically
important since it involves the arbitrary convention καα = 0.

But the result (74.42) is, I think, unexpected. It shows
that the equations of propagation of electromagnetic force
involve the Riemann-Christoffel tensor; and therefore this is
not one of the phenomena for which the ordinary Galilean
equations can be immediately generalised by the principle of
equivalence. This naturally makes us uneasy as to whether we
have done right in adopting the invariant equations of prop-
agation of light (ds = 0, δ ∫ ds = 0) as true in all circumstances;
but the investigation which follows is reassuring.

(c) Propagation of a wave-front.

The conception of a “ray” of light in physical optics is by
no means elementary. Unless the wave-front is of infinite
extent, the ray is an abstraction, and to appreciate its meaning
a full discussion of the phenomena of interference fringes
is necessary. We do not wish to enter on such a general
discussion here; and accordingly we shall not attempt to
obtain the formulae for the tracks of rays of light for the case
of general coordinates ab initio. Our course will be to reduce
the general formulae to such a form, that the subsequent
work will follow the ordinary treatment given in works on
physical optics.

The fundamental equation treated in the usual theory of
electromagnetic waves is(

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)
κµ = 0, (74.51)

which is the form taken by □κµ = 0 in Galilean coordinates.
When the region of space-time is not flat we cannot immedi-
ately simplify □κµ in this way; but we can make a considerable
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simplification by adopting natural coordinates at the point
considered. In that case the 3-index symbols (but not their
derivatives) vanish, and

□κµ = gαβ(κµ)αβ

= gαβ
(

∂2κµ
∂xα ∂xβ

− ∂

∂xα
{µβ, ϵ} · κϵ

)
.

Hence the law of propagation □κµ = 0 becomes in natural
coordinates(

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)
κµ = gαβ

∂

∂xα
{µβ, ϵ} · κϵ. (74.52)

At first sight this does not look very promising for a
justification of the principle of equivalence. We cannot
make all the derivatives ∂{µβ, ϵ}/∂xα vanish by any choice of
coordinates, since these determine the Riemann-Christof-
fel tensor. It looks as though the law of propagation in
curved space-time involves the Riemann-Christoffel tensor,
and consequently differs from the law in flat space-time.
But the inner multiplication by gαβ saves the situation. It is
possible to choose coordinates such that gαβ ∂{µβ, ϵ}/∂xα van-
ishes for all the sixteen possible combinations of µ and ϵ*.
For these coordinates (74.52) reduces to (74.51), and the usual
solution for flat space-time will apply at the point considered.

A solution of (74.51), giving plane waves, is

κµ = Aµ exp 2πi

λ
(lx+my + nz − ct). (74.53)

Here Aµ is a constant vector; l, m, n are direction cosines so
that l2 +m2 + n2 = 1. Substituting in (74.51) we find that it will

*According to (36.55) it is possible by a transformation to increase
∂{µβ, ϵ}/∂xα by an arbitrary quantity aϵµβα, symmetrical in µ, β and α.
The sixteen quantities gαβaϵµβα (µ, ϵ = 1, 2, 3, 4) will not have to fulfil
any conditions of symmetry, and may be chosen independently of one
another Hence we can make the right-hand side of (74.52) vanish by
an appropriate transformation.
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be satisfied if c2 = 1 and the first and second derivatives of
l, m, n, c vanish. According to the usual discussion of this
equation (l,m, n) is the direction of the ray and c the velocity
of propagation along the ray.

The vanishing of first and second derivatives of (l,m, n)

shows that the direction of the ray is stationary at the point
considered. (The light-oscillations correspond to Fµν (not κµ)
and the direction of the ray would not necessarily agree with
(l,m, n) if the first derivatives did not vanish; consequently
the stationary property depends on the vanishing of second
derivatives as well.) Further the velocity c along the ray is
unity.

It follows that in any kind of space-time the ray is a
geodesic, and the velocity is such as to satisfy the equation
ds = 0. Stated in this form, the result deduced for a very
special system of coordinates must hold for all coordinate-
systems since it is expressed invariantly. The expression for
the potential (74.53) is, of course, only valid for the special
coordinate-system.

We have thus arrived at a justification of the law for the
track of a light-pulse (§ 47 (4)) which has been adopted in
our previous work.

(d) Solution of the equation □κµ = Jµ.

We assume that space-time is flat to the order of approxi-
mation required, and accordingly adopt Galilean coordinates.
The equation becomes

∂2κµ

∂t2
−∇2κµ = Jµ,

of which the solution (well known in the theory of sound) is

{κµ}x,y,z,t =
1

4π

∫∫∫
{Jµ}ξ,η,ζ,t−r ·

dξ dη dζ

r
, (74.61)
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where r is the distance between (x, y, z) and (ξ, η, ζ).

The contributions to κµ of each element of charge or
current are simply additive; accordingly we shall consider a
single element of charge de moving with velocity Aµ, and
determine the part of κµ corresponding to it. By (73.81) the
equation becomes

κµ =
1

4π

ds

dt
Aµ

∫∫∫
ρ
dξ dη dζ

r
, (74.62)

where all quantities on the right are taken for the time t− r.
For an infinitesimal element we may take ρ constant

and insert limits of integration; but these limits must be
taken for the time t − r, and this introduces an important
factor representing a kind of Doppler effect. If the element
of charge is bounded by two planes perpendicular to the
direction of r, the limits of integration are from the front
plane at time t − r to the rear plane at time t − r − dr. If vr is
the component velocity in the direction of r, the front plane
has had time to advance a distance vr dr. Consequently the
instantaneous thickness of the element of charge is less than
the distance between the limits of integration in the ratio
1− vr; and the integration is over a volume (1− vr)

−1 times the
instantaneous volume of the element of charge. Hence∫∫∫

ρ dξ dη dζ =
de

1− vr
.

Writing as usual β for the FitzGerald factor dt/ds, (74.62) be-
comes

κµ =

{
Aµ de

4πrβ(1− vr)

}
t−r

=

{
de(u, v, w, 1)

4πr(1− vr)

}
t−r

. (74.71)

In most applications the motion of the charge can be
regarded as uniform during the time of propagation of the
potential through the distance r. In that case

{r(1− vr)}t−r = {r}t,
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the present distance being less than the antedated distance
by vrr. The result then becomes

κµ =

{
Aµ de

4πrβ

}
t

=

{
de(u, v, w, 1)

4πr

}
t

. (74.72)

It will be seen that the scalar potential Φ of a charge is
unaltered by uniform motion, and must be reckoned for the
present position of the charge, not from the antedated position.

The equation (74.71) can be written in the pseudo-tensor
form

κµ =

{
Aµ de

4πAνRν

}
RαRα=0

, (74.8)

where Rµ is the pseudo-vector representing the displacement
from the charge (ξ, η, ζ, τ ) to the point (x, y, z, t) where κµ is
reckoned. The condition RαRα = 0 gives

−(x− ξ)2 − (y − η)2 − (z − ζ)2 + (t− τ)2 = 0,

so that
τ = t− r.

Also

AνRν = −βu(x− ξ)− βv(y − η)− βw(z − ζ) + β(t− τ)

= −βvrr + βr

= rβ(1− vr).

A finite displacement Rµ is not a vector in the general
theory. We call it a pseudo-vector because it behaves as a
vector for Galilean coordinates and Lorentz transformations.
Thus the equation (74.8) does not admit of application to
coordinates other than Galilean.

Equation (74.71) expresses the potential at time t in terms
of the positions and strengths of the sources at a time t − r,
different for each source. Evidently it will be useful for
practical calculation to have a formula giving the potential at
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time t in terms of the positions and strengths of the sources
at the time t. This formula is obtained as follows.

Consider a fixed point P at time t and a moving source P ′

at time t − τ . Let the motion of the source be prescribed so
that the distance PP ′ is given as a function of t− τ , viz.

PP ′ = r = f(t− τ).

Then the component velocity of P ′ along P ′P is

vr = −dr/dt = −f ′(t− τ).

Suppose that the wave emitted from P ′ at time t − τ has at
time t reached a point Q in the direction P ′P . Let PQ = α, so
that

α = τ − r = τ − f(t− τ), (74.91)

the wave-velocity being unity. Then α is a function of t and
vice versa. By differentiating (74.91)

1 =
dτ

dα
+ f ′(t− τ)

dτ

dα
= (1− vr)

dτ

dα
.

Hence, if ϕ(t− τ) is any quantity associated with the source P ′

at the time t− τ{
ϕ

r(1− vr)

}
t−τ

=
ϕ(t− τ)

f(t− τ)

dτ

dα
=

d

dα
F (t− τ), (74.92)

where F ′ = −ϕ/f .
The appropriate value of τ required in calculating a re-

tarded potential is given by the condition that Q coincides
with P , i.e. α = 0. Hence[

ϕ

r(1− vr)

]
=

{
d

dα
F (t− τ)

}
α=0

, (74.93)

the square bracket indicating the antedated value.
By Lagrange’s theorem on the expansion of implicit func-

tions, writing (74.91) in the form

(t− τ) = (t− α)− f(t− τ),
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we have

F (t−τ) = F (t−α)−F ′(t−α)f(t−α)−
∞∑
2

1

n!

∂n−1

∂αn−1
(F ′(t−α){f(t−α)}n)

= F (t− α) + ϕ(t− α) +

∞∑
2

1

n!

∂n−1

∂αn−1
(ϕ(t− α){f(t− α)}n)

by (74.92). Substituting in (74.93), and noting that ∂/∂α = −∂/∂t,
we obtain[

ϕ

r(1− vr)

]
= −F ′(t)− d

dt
ϕ(t) +

∞∑
2

(−1)n

n!

dn

dtn
(ϕ(t){f(t)}n).

Hence [
ϕ

r(1− vr)

]
=
ϕ

r
− dϕ

dt
ϕ(t) +

∞∑
2

(−1)n

n!

dn

dtn
(rn−1ϕ). (74.94)

where on the right r and ϕ are to be taken for the time t.
This expansion has been used in § 57.

75. The Lorentz transformation of electromagnetic
force.

The Lorentz transformation for an observer S′ moving
relatively to S with a velocity u along the x-axis is

x′
1 = q(x1 − ux4), x′

2 = x2, x′
3 = x3, x′

4 = q(x4 − ux1), (75.1)

where
q = (1− u2)−

1
2 .

We use q instead of β in order to avoid confusion with the
component β of magnetic force.

We have
∂x′

1

∂x1

=
∂x′

4

∂x4

= q,
∂x′

1

∂x4

=
∂x′

4

∂x1

= −qu, ∂x′
2

∂x2

=
∂x′

3

∂x3

= 1, (75.2)

and all other derivatives vanish.
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To calculate the electromagnetic force for S′ in terms of

the force for S, we apply the general formulae of transforma-
tion (23.21). Thus

γ′ = F ′12 =
∂x′

1

∂xα

∂x′
2

∂xβ
Fαβ

=
∂x′

1

∂x1

∂x′
2

∂x2

F 12 +
∂x′

1

∂x4

∂x′
2

∂x2

F 42

= qγ − quY.

Working out the other components similarly, the result is

X ′ = X, Y ′ = q(Y − uγ), Z ′ = q(Z + uβ)

α′ = α, β′ = q(β + uZ), γ′ = q(γ − uY )

 (75.3)

which are the formulae given by Lorentz.
The more general formulae when the velocity of the

observer S′ is (u, v, w) become very complicated. We shall
only consider the approximate results when the square of the
velocity is neglected. In that case q = 1, and the formulae (75.3)

can be completed by symmetry, viz.

X ′ = X − wβ + vγ

α′ = α + wY − vZ

 (75.4)

76. Mechanical effects of the electromagnetic field.

According to the elementary laws, a piece of matter carry-
ing electric charge of density ρ experiences in an electrostatic
field a mechanical force

ρX, ρY, ρZ

per unit volume. Moving charges constituting electric cur-
rents of amount (σx, σy, σz) per unit volume are acted on by a
magnetic field, so that a mechanical force

γσy − βσz, ασz − γσx, βσx − ασy



CH. VI MECHANICAL EFFECTS OF THE ELECTROMAGNETIC FIELD 322
per unit volume is experienced.

Hence if (P,Q,R) is the total mechanical force per unit
volume

P = ρX + γσy − βσz

Q = ρY + ασz − γσx

R = ρZ + βσx − ασy

 (76.1)

The rate at which the mechanical force does work is

S = σxX + σyY + σzZ.

The magnetic part of the force does no work since it acts at
right angles to the current of charged particles.

By (73.41) and (73.5) we find that these expressions are
equivalent to

(P,Q,R,−S) = FµνJ
ν .

We denote the vector FµνJ
ν by hµ. Raising the suffix with

Galilean gµν we have

(P,Q,R, S) = −hµ = −F µ
νJ

ν . (76.2)

The mechanical force will change the momentum and
energy of the material system; consequently the material
energy-tensor taken alone will no longer be conserved. In
order to preserve the law of conservation of momentum and
energy, we must recognise that the electric field contains an
electromagnetic momentum and energy whose changes are
equal and opposite to those of the material system*. The

*Notwithstanding the warning conveyed by the fate of potential
energy (§ 59) we are again running into danger by generalising energy
so as to conform to an assigned law. I am not sure that the danger
is negligible. But we are on stronger ground now, because we know
that there is a world-tensor which satisfies the assigned law Tµν

ν = 0;
whereas the potential energy was introduced to satisfy ∂Sν

µ/∂xν = 0,
and it was only a speculative possibility (now found to be untenable)
that there existed a tensor with that property.
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whole energy-tensor will then consist of two parts, Mν

µ due
to the matter and Eν

µ due to the electromagnetic field.
We keep the notation T νµ for the whole energy-tensor—the

thing which is always conserved, and is therefore to be
identified with Gν

µ − 1
2
gνµG. Thus

T νµ =Mν
µ + Eν

µ. (76.3)

Since P , Q, R, S measure the rate of increase of momentum
and energy of the material system, they may be equated
to ∂Mµν/∂xν as in (53.82). Thus

∂Mµν

∂xν
= −hµ.

The equal and opposite change of the momentum and energy
of the electromagnetic field is accordingly given by

∂Eµν

∂xν
= +hµ.

These equations apply to Galilean or to natural coordinates.
We pass over to general coordinates by substituting covariant
derivatives, so as to obtain the tensor equations

Mµν
ν = −hµ = −Eµν

ν , (76.4)

which are independent of the coordinates used. This satisfies

T µνν = (Mµν + Eµν)ν = 0.

Consider a charge moving with velocity (u, v, w). We have
by (75.4)

ρX ′ = ρX − (ρw)β + (ρv)γ

= ρX − σzβ + σyγ

= P.

The square of the velocity has been neglected, and to this
order of approximation ρ′ = ρ. Thus to the first order in
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the velocities, the mechanical force on a moving charge is
(ρ′X, ρ′Y, ρ′Z); just as the mechanical force on a charge at rest is
(ρX, ρY, ρZ). We obtain the force on the moving charge either
by applying the formula (76.1) in the original coordinates, or
by transforming to new coordinates in which the charge is
at rest so that σx, σy, σz = 0. The equivalence of the two
calculations is in accordance with the principle of relativity
for uniform motion.

If the square of the velocity is not neglected, no such sim-
ple relation exists. The mechanical force (mass×acceleration)
will not be exactly the same in the accented and unaccented
systems of coordinates, since the mass and acceleration are
altered by terms involving the square of the velocity. In
fact we could not expect any accurate relation between the
mechanical force (P,Q,R) and the electric force (X,Y, Z) in dif-
ferent systems of coordinates; the former is part of a vector,
and the latter part of a tensor of the second rank.

Perhaps it might have been expected that with the advent
of the electron theory of matter it would become unnecessary
to retain a separate material energy-tensor Mµν, and that
the whole energy and momentum could be included in the
energy-tensor of the electromagnetic field. But we cannot
dispense with Mµν. The fact is that an electron must not
be regarded as a purely electromagnetic phenomenon; that
is to say, something enters into its constitution which is not
comprised in Maxwell’s theory of the electromagnetic field.
In order to prevent the electronic charge from dispersing
under its own repulsion, non-Maxwellian “binding forces”
are necessary, and it is the energy, stress and momentum of
these binding forces which constitute the material energy-
tensor Mµν.

The equation (76.2) giving the mechanical force due to an
electromagnetic field is essentially a macroscopic equation; it
expresses the results of experiments on matter in bulk. We
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must not assume that it holds for a single electron—in fact it
is probably untrue.

This limitation has been obscured by the fact that the law
of motion of a single electron, which has been discovered
empirically, has a false resemblance to (76.2). But as shall
be explained in § 80 the force on the electron is F ′µ

νJ
ν,

where F ′µ
ν is the applied external field, not the actual field F µ

ν

modified by the presence of the accelerated electron. In a
macroscopically continuous distribution of charge and current
the distinction between F and F ′ is of no importance*; but
in an electronic distribution F − F ′ is of the same order
of magnitude as F ′ at the only points which matter, viz.
where Jµ ̸= 0. According to § 80 the condition FµνF

µν =

0 fulfilled in empty space appears to be replaced by the
condition that the integral of this expression over the electron
vanishes, or by some condition nearly akin to this. The
appearance of an integral equation in the microscopic laws of
physics is in accordance with modern expectation.

From (76.2) the expression Eν
µ for the electromagnetic

energy-tensor is obtained. This accordingly refers to the
macroscopic electromagnetic field, and has nothing to do
with the intense forces within and between the atoms. We
then recognise that the whole energy-tensor (which is con-
served identically) must consist of the two parts Mν

µ and Eν
µ

supposed to be due respectively to the continuous matter and
the continuous electromagnetic field. The question whether
we could possibly dispense with Mν

µ does not arise, because
the macroscopic conception does not admit local electronic
fields.

In passing to the microscopic problem we assume that
the state of the world at any point is still described by the
variables gµν and Fµν. We continue to construct the formal

*The material is assumed to be non-polarisable. Polarisation
introduces the complications discussed in § 82.
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quantities Tµν and Eµν according to (54.3) and (77.2). The former
has an evident importance because it is identically conserved;
the latter is only of interest because it is continuous with
the genuine electromagnetic energy-tensor which still exists
in regions outside matter. Outside matter Tµν and Eµν coa-
lesce; inside matter they cannot be equal because E vanishes
identically. The difference is called the non-Maxwellian en-
ergy-tensor Mµν. It will be seen that the separation of Tµν

into Mµν + Eµν is somewhat different according as the prob-
lem is treated macroscopically or microscopically, since in
the former case the energy of the intense Maxwellian fields
around the electrons is included in Mµν.

77. The electromagnetic energy-tensor.

To determine explicitly the value of Eν
µ we have to rely on

the relation found in the preceding section

Eν
µν = hµ = FµνJ

ν = FµνF
νσ
σ . (77.1)

The solution of this differential equation is

Eν
µ = −F ναFµα +

1
4
gνµF

αβFαβ. (77.2)

To verify this we take the divergence, remembering that
covariant differentiation obeys the usual distributive law and
that gνµ is a constant.

Eν
µν = −F να

ν Fµα − F ναFµαν +
1
4
gνµ(F

αβ
ν Fαβ + FαβFαβν)

= −F να
ν Fµα − F ναFµαν +

1
2
gνµF

αβFαβν by (26.3)

= −F να
ν Fµα − 1

2
F βαFµαβ − 1

2
FαβFµβα +

1
2
FαβFαβµ

by changes of dummy suffixes,

= Fαν
ν Fµα + 1

2
Fαβ(Fµαβ + Fβµα + Fαβµ)

by the antisymmetry of F µν.
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It is easily verified that

Fµαβ + Fβµα + Fαβµ =
∂Fµα
∂xβ

+
∂Fβµ
∂xα

+
∂Fαβ
∂xµ

= 0

by (30.3) and (73.71); the terms containing the 3-index symbols
mutually cancel.

Hence
Eν
µν = Fαν

ν Fµα = JαFµα,

agreeing with (77.1).
It is of interest to work out the components of the energy-

tensor (77.2) in Galilean coordinates by (73.41) and (73.42). We
have

FαβFαβ = 2(α2 + β2 + γ2 −X2 − Y 2 − Z2), (77.3)

E1
1 = 1

2
(α2 − β2 − γ2) + 1

2
(X2 − Y 2 − Z2), (77.41)

E2
1 = αβ +XY, (77.42)

E4
1 = βZ − γY, (77.43)

E4
4 = 1

2
(α2 + β2 + γ2) + 1

2
(X2 + Y 2 + Z2). (77.44)

The last gives the energy or mass of the electromagnetic field;
the third expression gives the momentum; the first two give
the stresses in the field. In all cases these formulae agree
with those of the classical theory.

Momentum, being rate of flow of mass, is also the rate
of flow of energy. In the latter aspect it is often called
Poynting’s vector. It is seen from (77.43) that the momentum
is the vector-product of the electric and magnetic forces—to
use the terminology of the elementary vector theory.

From Eν
µ we can form a scalar E by contraction, just

as T is formed from T νµ . The invariant density T will be
made up of the two parts E and M , the former arising
from the electromagnetic field and the latter from the matter
or non-Maxwellian stresses involved in the electron. It
turns out, however, that E is identically zero, so that the
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electromagnetic field contributes nothing to the invariant
density. The invariant density must be attributed entirely to
the non-Maxwellian binding stresses. Contracting (77.2)

E = −F µαFµα +
1
4
gµµF

αβFαβ = 0, (77.5)

since gµµ = 4.
The question of the origin of the inertia of matter presents

a very curious paradox. We have to distinguish—
the invariant mass m arising from the invariant density T , and
the relative mass M arising from the coordinate density T 44.
As we have seen, the former cannot be attributed to the
electromagnetic field. But it is generally believed that the
latter—which is the ordinary mass as understood in physics—
arises solely from the electromagnetic fields of the electrons,
the inertia of matter being simply the energy of the electro-
magnetic fields contained in it. It is probable that this view,
which arose in consequence of J. J. Thomson’s researches*,
is correct; so that ordinary or relative mass may be regarded
as entirely electromagnetic, whilst invariant mass is entirely
non-electromagnetic.

How then does it happen that for an electron at rest,
invariant mass and relative mass are equal, and indeed syn-
onymous?

Probably the distinction of Maxwellian and non-Maxwellian
stresses as tensors of different natures is artificial—like the
distinction of gravitational and inertial fields—and the real
remedy is to remodel the electromagnetic equations so as to
comprehend both in an indissoluble connection. But so long
as we are ignorant of the laws obeyed by the non-Maxwellian
stresses, it is scarcely possible to avoid making the separation.
From the present point of view we have to explain the
paradox as follows—

*Phil. Mag. vol. 11 (1881), p. 229.
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Taking an electron at rest, the relative mass is determined

solely by the component E44; but the stress-components of Eµν

make a contribution to E which exactly cancels that of E44,
so that E = 0. These stresses are balanced by non-Maxwellian
stresses M 11, …, M33; the balancing being not necessarily exact
in each element of volume, but exact for the region round the
electron taken as a whole. Thus the term which cancels E44 is
itself cancelled, and E44 becomes reinstated. The final result
is that the integral of T is equal to the integral of E44 for the
electron at rest.

It is usually assumed that the non-Maxwellian stresses
are confined to the interior, or the close proximity, of the
electrons, and do not wander about in the detached way
that the Maxwellian stresses do, e.g. in light-waves. I shall
adopt this view in order not to deviate too widely from
other writers, although I do not see any particular reason for
believing it to be true*.

If then all non-Maxwellian stresses are closely bound to
the electrons, it follows that in regions containing no matter
Eν
µ is the entire energy-tensor. Then (54.3) becomes

Gν
µ − 1

2
gνµG = −8πEν

µ. (77.6)

Contracting,
G = 8πE = 0,

and the equation simplifies to
Gµν = −8πEµν (77.7)

for regions containing electromagnetic fields but no matter.
We may notice that the Gaussian curvature of space-time is
zero even when electromagnetic energy is present provided
there are no electrons in the region.

*We may evade the difficulty by extending the definition of elec-
trons or matter to include all regions where Maxwell’s equations are
inadequate (e.g. regions containing quanta).
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Since for electromagnetic energy the invariant mass, m, is

zero, and the relative mass, M , is finite, the equation (12.3)

M = m
dt

ds

shows that ds/dt is zero. Accordingly free electromagnetic
energy must always have the velocity of light.

78. The gravitational field of an electron.

This problem differs from that of the gravitational field of
a particle (§ 38) in that the electric field spreads through all
space, and consequently the energy-tensor is not confined to
a point or small sphere at the origin.

For the most general symmetrical field we take as before

g11 = −eλ, g22 = −r2, g33 = −r2 sin2 θ, g44 = eν . (78.1)

Since the electric field is static, we shall have

F,G,H = κ1, κ2, κ3 = 0,

and κ4 will be a function of r only. Hence the only surviving
components of Fµν are

F41 = −F14 = κ′
4, (78.2)

the accent denoting differentiation with respect to r. Then

F 41 = g44g11F41 = −e−(λ+ν)κ′
4,

and
F41 = F 41

√
−g = −e− 1

2 (λ+ν)r2 sin θ · κ′
4.

Hence by (73.75) the condition for no electric charge and
current (except at the singularity at the origin) is

∂F41

∂x1

= − sin θ ∂

∂r
(e−

1
2 (λ+ν)r2κ′

4) = 0, (78.3)
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so that

κ′
4 =

ϵ

r2
e

1
2 (λ+ν), (78.4)

where ϵ is a constant of integration.
Substituting in (77.2) we find

E1
1 = −E2

2 = −E3
3 = E4

4 = 1
2
e−λ−νκ′2

4

=
1

2

ϵ2

r4
. (78.5)

By (77.7) we have to substitute −8πEµν for zero on the right-
hand side of (38.61–38.64). The first and fourth equations give
as before λ′ = −ν ′; and the second equation now becomes

eν(1 + rν ′)− 1 = −8πg22E
2
2

= −4πϵ2/r2.

Hence writing eν = γ,

γ + rγ′ = 1− 4πϵ2/r2,

so that
rγ = r + 4πϵ2/r − 2m,

where 2m is a constant of integration.
Hence the gravitational field due to an electron is given

by
ds2 = −γ−1 dr2 − r2 dθ2 − r2 sin2 θ dϕ2 + γ dt2,

with
γ = 1− 2m

r
+

4πϵ2

r2
. (78.6)

This result appears to have been first given by Nordström.
I have here followed the solution as given by G. B. Jeffery*.

The effect of the term 4πϵ2/r2 is that the effective mass
decreases as r decreases. This is what we should naturally
expect because the mass or energy is spread throughout space.

*Proc. Roy. Soc. vol. 99A, p. 123.
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We cannot put the constant m equal to zero, because that
would leave a repulsive force on an uncharged particle varying
as the inverse cube of the distance; by (55.8) the approximate
Newtonian potential is m/r − 2πϵ2/r2.

The constant m can be identified with the mass and
4πϵ with the electric charge of the particle. The known
experimental values for the negative electron are

m = 7 · 10−56 cm.,
a =

2πϵ2

m
= 1.5 · 10−13 cm.

The quantity a is usually considered to be of the order of
magnitude of the radius of the electron, so that at all points
outside the electron m/r is of order 10−40 or smaller. Since
λ+ ν = 0, (78.4) becomes

F41 = κ′
4 =

ϵ

r2
,

which justifies our identification of 4πϵ with the electric
charge.

This example shows how very slight is the gravitational
effect of the electronic energy. We can discuss most electro-
magnetic problems without taking account of the non-Eu-
clidean character which an electromagnetic field necessarily
imparts to space-time, the deviations from Euclidean geom-
etry being usually so small as to be negligible in the cases we
have to consider.

When r is diminished the value of γ given by (78.6)

decreases to a minimum for r = 2a, and then increases
continually becoming infinite at r = 0. There is no singularity
in the electromagnetic and gravitational fields except at r = 0.
It is thus possible to have an electron which is strictly
a point-singularity, but nevertheless has a finite mass and
charge.

The solution for the gravitational field of an uncharged
particle is quite different in this respect. There is a singularity
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at r = 2m, so that the particle must have a finite perimeter
not less than 4πm. Moreover this singularity is caused by
γ vanishing, whereas for the point-electron the singularity is
due to γ becoming infinite.

This demonstration that a point-electron may have exactly
the properties which electrons are observed to have is a useful
corrective to the general belief that the radius of an electron
is known with certainty. But on the whole, I think that it is
more likely that an electron is a structure of finite size; our
solution will then only be valid until we enter the substance
of the electron, so that the question of a singularity at the
origin does not arise.

Assuming that we do not encounter the substance of
the electron outside the sphere r = a, the total energy of
the electromagnetic field beyond this radius would be equal
to the mass of the electron determined by observation.
For this reason a is usually taken as the radius of the
electron. If it is admitted that the electromagnetic field
continues undisturbed within this limit, an excess of energy
accumulates, and it is therefore necessary to suppose that
there exists negative energy in the inner portion, or that the
effect of the singularity is equivalent to a negative energy. The
conception of negative energy is not very welcome according
to the usual outlook.

Another reason for believing that the charge of an electron
is distributed through a volume of radius roughly equal to a

will be found in the investigation of § 80. Accordingly I
am of opinion that the point-electron is no more than a
mathematical curiosity, and that the solution (78.6) should be
limited to values of r greater than a.
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79. Electromagnetic action.

The invariant integral

A = 1
4

∫
F µνFµν

√
−g dτ (79.1)

is called the action of the electromagnetic field. In Galilean
coordinates it becomes by (77.3)∫

dt

∫∫∫
1
2
(α2 + β2 + γ2 −X2 − Y 2 − Z2) dx dy dz. (79.2)

Regarding the magnetic energy as kinetic (T ) and the electric
energy as potential (V ) this is of the form∫

(T − V ) dt,

i.e. the time-integral of the Lagrangian function*. The
derivation of the electromagnetic equations by the stationary
variation of this integral has been investigated in the classical
researches of Larmor†.

We shall now show that the two most important electro-
magnetic tensors, viz. the energy-tensor Eµν and the charge-
and-current vector Jµ, are the Hamiltonian derivatives of the
action, the formulae being

h

hgµν
( 1
4
F µνFµν) =

1
2
Eµν , (79.31)

h

hκµ
( 1
4
F µνFµν) = −Jµ. (79.32)

*In dynamics there are two integrals which have the stationary
property under proper restrictions, viz.

∫
T dt and

∫
(T − V ) dt. The

first of these is the action as originally defined. In the general theory
the term has been applied to both integrals somewhat indiscriminately,
since there is no clear indication of energy which must be reckoned as
potential.

†Aether and Matter, Chapter VI.
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First consider small variations δgµν, the κµ remaining con-

stant. The Fµν (but not the F µν) will accordingly remain
unvaried. We have then

δ(F µνFµν
√
−g)

= F µνFµν δ(
√
−g) + FαβFµν

√
−g · δ(gµαgνβ)

= F στFστ
√
−g · 1

2

δg

g
+ FαβFµν

√
−g(gµα δgνβ + gνβ δgµα)

=
√
−g{− 1

2
F στFστgνβ δg

νβ + 2FαβFµνg
µα δgνβ}

= 2
√
−g · δgνβ{− 1

4
gνβF

στFστ + F µ
βFµν}

= −2Eνβ
√
−g · δgνβ by (77.2)

= 2Eνβ
√
−g · δgνβ by (35.2).

From this (79.31) follows immediately.
Next consider variations δκµ, the gµν remaining constant.

We have

δ(F µνFµν
√
−g) = 2F µν

√
−g · δFµν

= 2F µν
√
−g

(
∂(δκµ)

∂xν
− ∂(δκν)

∂xµ

)
= 4F µν

√
−g · ∂(δκµ)

∂xν

owing to the antisymmetry of F µν

= −4
∂

∂xν
(F µν

√
−g) δκµ + 4

∂

∂xν
(F µν

√
−g · δκµ).

The second term can be omitted since it is a complete
differential, and yields a surface-integral over the boundary
where the variations have to vanish. Hence

δ

∫
F µνFµν

√
−g dτ = −4

∫
∂

∂xν
(F µν

√
−g) · δκµ dτ

= −4

∫
Jµ δκµ ·

√
−g dτ

by (73.75). This demonstrates (79.32).
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In a region free from electrons

T µν − Eµν = 0.

Hence by (60.43) and (79.31)

h

hgµν
(G− 4πF µνFµν) = 0. (79.4)

In the mechanical theory, neglecting electromagnetic
fields, we found that the action G was stationary in regions
containing no matter. We now see that when electromag-
netic fields are included, the quantity which is stationary is
G − 4πF µνFµν. Moreover it is stationary for variations δκµ as
well as δgµν, since when there are no electrons present Jµ must
be zero.

The quantity G− 4πF µνFµν thus appears to be highly signif-
icant from the physical point of view, in the discrimination
between matter (electrons) and electromagnetic fields. But
this significance fails to appear in the analytical expression.
Analytically the combination of the two invariants G and
F µνFµν—the one a spur, and the other a square of a length—
appears to be quite nonsensical. We can only regard the
present form of the expression as a stepping-stone to some-
thing simpler. It will appear later that G− 4πF µνFµν is perhaps
not the exact expression for the significant physical quantity;
it may be an approximation to a form which is analyti-
cally simpler, in which the gravitational and electromagnetic
variables appear in a more intelligible combination.

Whereas material and gravitational actions are two aspects
of the same thing, electromagnetic action stands entirely
apart. There is no gravitational action associated with an
electromagnetic field, owing to the identity E = 0. Thus any
material or gravitational action is additional to electromag-
netic action—if “addition” is appropriate in connection with
quantities which are apparently of dissimilar nature.
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80. Explanation of the mechanical force.

Why does a charged particle move when it is placed in
an electromagnetic field? We may be tempted to reply that
the reason is obvious; there is an electric force lying in wait,
and it is the nature of a force to make bodies move. But
this is a confusion of terminology; electric force is not a
force in the mechanical sense of the term; it has nothing
to do with pushing and pulling. Electric force describes a
world-condition essentially different from that described by a
mechanical force or stress-system; and the discussion in § 76
was based on empirical laws without theoretical explanation.

If we wish for a representation of the state of the aether
in terms of mechanical forces, we must employ the stress-
system (77.41, 77.42). In fact the pulling and pushing property
is described by the tensor Eµν not by Fµν. Our problem
is to explain why a somewhat arbitrary combination of the
electromagnetic variables Fµν should have the properties of a
mechanical stress-system.

To reduce the problem to its simplest form we consider an
isolated electron. In an electromagnetic field its world-line
does not follow a geodesic, but deviates according to laws
which have been determined experimentally. It is worth
noticing that the behaviour of an isolated electron has been
directly determined by experiment, this being one of the
few cases in which microscopic laws have been found im-
mediately and not inferred hypothetically from macroscopic
experiments. We want to know what the electron is trying to
accomplish by deviating from the geodesic—what condition
of existence is fulfilled, which makes the four-dimensional
structure of an accelerated electron a possible one, whereas a
similar structure ranged along a geodesic track would be an
impossible one.
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The law which has to be explained is*

−m
{
d2xµ
ds2

+ {αβ, µ} dxα
ds

dxβ
ds

}
= hµ = F µ

νJ
ν , (80.1)

which is the tensor equation corresponding to the law of
elementary electrostatics

m
dx2

dt2
= Xe.

Let Aµ be the velocity-vector of the electron (Aµ = dxµ/ds),
and ρ0 the proper-density of the charge, then by (73.82)

Jµ = ρ0A
µ, (80.21)

and
d2xµ
ds2

+ {αβ, µ} dxα
ds

dxβ
ds

= Aν(Aµ)ν , (80.22)

as in (33.4).
Considering the verification of (80.1) by experiment we

remark that X or Fµν refers to the applied external field, no
attention being paid to the possible disturbance of this field
caused by the accelerated electron itself. To distinguish this
we denote the external field by F ′

µν. The equation to be
explained accordingly becomes

mAν(Aµ)ν = −F µ
ν(ρ0A

ν),

or, lowering the suffix µ,

mAνAµν = −F ′µ
νeA

ν . (80.3)

We have replaced the density ρ0 by the quantity e for the
reason explained in the footnote.

*In this and a succeeding equation I have a quantity on the left-
hand side and a density on the right-hand side. I trust to the reader to
amend this mentally. It would, I think, only make the equations more
confusing if I attempted to indicate the amendment symbolically.
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Consider now the field due to the electron itself in its

own neighbourhood. This is determined by (74.41)

□Fµν = Jµν − Jνµ −Gϵ
µFϵν +Gϵ

νFϵµ + 2BµναϵF
ϵα.

The discussion of § 78 shows that we may safely neglect the
gravitational field caused by the energy of the electron or of
the external field. Hence approximately

□Fµν = Jµν − Jνµ.

The solution is as in (74.72)

Fµν =

∫
de (Aµν −Aνµ)

4πβr

=
1

4πβ
(Aµν −Aνµ)

∫
de

r
, (80.4)

if all parts of the electron have the same velocity Aµ. This
result is obtained primarily for Galilean coordinates; but
it is a tensor equation applying to all coordinate-systems
provided that ∫

de/r is treated as an invariant and calculated
in natural measure. We shall reckon it in proper-measure
and accordingly drop the factor β.

Now suppose that the electron moves in such a way that its
own field on the average just neutralises the applied external
field F ′

µν in the region occupied by the electron. The value
of Fµν averaged for all the elements of charge constituting the
electron is given by

eFµν =
1

4π
(Aµν −Aνµ)

∫∫
de1 de2
r12

=
1

4π
(Aµν −Aνµ)

e2

a
,

where 1/a is an average value of 1/r12 for every pair of points
in the electron. We may leave indeterminate the exact
weighting of the pairs of points in taking the average, merely
noting that a will be a length comparable with the radius of
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the sphere throughout which the charge (or the greater part
of it) is spread.

If this value of Fµν is equal and opposite to F ′
µν, we have

−eAνF ′
µν =

1

4π
Aν(Aµν −Aνµ)

e2

a

= AνAµν ·
e2

4πa
, (80.5)

because
AνAνµ = Aν(A

ν)µ = 1
2
(AνA

ν)µ = 1
2
(1)µ = 0,

the square of the length of a velocity-vector being necessarily
unity.

The result (80.5) will agree with (80.3) if the mass of the
electron is

m =
e2

4πa
. (80.6)

The observed law of motion of the electron thus corre-
sponds to the condition that it can be under no resultant
electromagnetic field. We must not imagine that a resultant
electromagnetic force has anything of a tugging nature that
can deflect an electron. It never gets the chance of doing
anything to the electron, because if the resultant field ex-
isted the electron could not exist—it would be an impossible
structure.

The interest of this discussion is that it has led us to one
of the conditions for the existence of an electron, which turns
out to be of a simple character—viz. that on the average the
electromagnetic force throughout the electron must be zero*.
This condition is clearly fulfilled for a symmetrical electron
at rest in no field of force; and the same condition applied
generally leads to the law of motion (80.1).

*The exact region of zero force is not determined. The essential
point is that on some critical surface or volume the field has to be
symmetrical enough to give no resultant.
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For the existence of an electron, non-Maxwellian stresses

are necessary, and we are not yet in a position to state the
laws of these additional stresses. The existence of an electron
contradicts the electromagnetic laws with which we have to
work at present, so that from the present standpoint an
electron at rest in no external field of force is a miracle. Our
calculation shows that an electron in an external field of force
having the acceleration given by (80.1) is precisely the same
miracle. That is as far as the explanation goes.

The electromagnetic field within the electron will vanish
on the average if it has sufficient symmetry. There appears to
be an analogy between this and the condition which we found
in § 56 to be necessary for the existence of a particle, viz.
that its gravitational field should have symmetrical properties.
There is further an analogy in the condition determining the
acceleration in the two cases. An uncharged undisturbed
body takes such a course that relative to it there is no
resultant gravitational field; similarly an electron takes such a
course that relative to it there is no resultant electromagnetic
field. We have given a definite reason for the gravitational
symmetry of a particle, viz. because in practical measurement
it is itself the standard of symmetry; I presume that there
is an analogous explanation of the electrical symmetry of an
electron, but it has not yet been formulated. The following
argument (which should be compared with §§ 64, 66) will
show where the difficulty occurs.

The analogue of the interval is the flux Fµν dS
µν. As

the interval between two adjacent points is the fundamental
invariant of mechanics, so the flux through a small surface
is the fundamental invariant of electromagnetism. Two
electrical systems will be alike observationally if, and only
if, all corresponding fluxes are equal. Equality of flux
can thus be tested absolutely; and different fluxes can be
measured (according to a conventional code) by apparatus
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constituted with electrical material. From the flux we can
pass by mathematical processes to the charge-and-current
vector, and this enables us to make the second contact
between mathematical theory and the actual world, viz.
the identification of electricity. We should now complete the
cycle by showing that with electricity so defined apparatus can
be constructed which will measure the original flux. Here,
however, the analogy breaks down, at least temporarily. The
use of electricity for measuring electromagnetic fluxes requires
discontinuity, but this discontinuity is obtained in practice by
complicated conditions such as insulation, constant contact
differences of potential, etc. We do not seem able to reduce
the theory of electrical measurement to direct dependence on
an innate discontinuity of electrical charge in the same way
that geometrical measurement depends on the discontinuity
of matter. For this reason the last chain of the cycle is
incomplete, and it does not seem permissible to deduce
that the discontinuous unit of electric charge must become
the standard of electrical symmetry in the same way that the
discontinuous unit of matter (turned in different orientations)
becomes the standard of geometrical symmetry.

According to (80.6) the mass of the electron is e2/4πa, where
a is a length comparable with the radius of the electron. This
is in conformity with the usual view as to the size of an
electron, and is opposed to the point-electron suggested in
§ 78 as an alternative. But the mass here considered is
a purely electromagnetic constant, which only enters into
equations in which electromagnetic forces are concerned.
When the right-hand side of (80.1) vanishes, the electron
describes a geodesic just as an uncharged particle would;
but m is now merely a constant multiplier which can be
removed. We have still to find the connection between this
electromagnetic mass

me = e2/4πa (80.71)
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and the gravitational (i.e. gravitation-producing) mass mg,
given by

mg ds =
1

8π

∫
G
√
−g dτ. (80.72)

Since we believe that all negative electrons are precisely
alike, mg/me will be a constant for the negative electron;
similarly it will be a constant for the positive electron. But
positive and negative electrons are structures of very different
kinds, and it does not follow that mg/me is the same for both.
As a matter of fact there is no experimental evidence which
suggests that the ratio is the same for both. Any gravita-
tional field perceptible to observation is caused by practically
equal numbers of positive and negative electrons, so that
no opportunity of distinguishing their contributions occurs.
If, however, we admit that the principle of conservation of
energy is universally valid in cases where the positive and
negative electrons are separated to an extent never yet realised
experimentally, it is possible to prove that mg/me is the same
for both kinds.

From the equation (80.1) we deduce the value of the
electromagnetic energy-tensor as in §§ 76, 77; only, Eµν will
not be expressed in the same units as the whole energy-
tensor Gν

µ − 1
2
gνµG, since the mass appearing in (80.1) is me

instead of mg. In consequence, the law for empty space (77.6)

must be written

Gν
µ − 1

2
gνµG = −8π

mg

me

(−F ναFµα +
1
4
gνµF

αβFαβ). (80.8)

We can establish this equation firstly by considering the
motion of a positive electron and secondly by considering
a negative electron. Evidently we shall obtain inconsistent
equations in the two cases unless mg/me for the positive
electron is the same as for the negative electron. Unless
this condition is fulfilled, we should violate the law of
conservation of energy and momentum by first converting



CH. VI ELECTROMAGNETIC VOLUME 344
kinetic energy of a negative electron into free electromagnetic
energy and then reconverting the free energy into kinetic
energy of a positive electron.

Accordingly mg/me is a constant of nature and it may be
absorbed in equation (80.8) by properly choosing the unit
of Fµν.

81. Electromagnetic volume.

If aµν is any tensor, the determinant |aµν | is transformed
according to the law

|aµν | = J2|a′µν |

by (48.8), whence it follows as in (49.3) that∫ √
|aµν | dτ (81.1)

for any four-dimensional region is an invariant.
We have already considered the case a aµν = gµν, and it is

natural now to consider the case aµν = Fµν. Since the tensor gµν
defines the metric of space-time, and the corresponding
invariant is the metrical volume (natural volume) of the
region, it seems appropriate to call the invariant

Ve =

∫ √
|Fµν | dτ (81.2)

the electromagnetic volume of the region. The resemblance
to metrical volume is purely analytical.

Since |Fµν | is a skew-symmetric determinant of even order,
it is a perfect square, and (81.2) is rational. It easily reduces to

Ve =

∫
(F23F14 + F31F24 + F12F34) dτ. (81.31)

In Galilean coordinates this becomes

Ve =

∫
(αX + βY + γZ) dτ. (81.32)
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It is somewhat curious that the scalar-product of the

electric and magnetic forces is of so little importance in
the classical theory, for (81.32) would seem to be the most
fundamental invariant of the field. Apart from the fact that it
vanishes for electromagnetic waves propagated in the absence
of any bound electric field (i.e. remote from electrons), this
invariant seems to have no significant properties. Perhaps it
may turn out to have greater importance when the study of
electron-structure is more advanced.

From (81.31) we have

Ve =

∫ ∑(
∂κ1

∂x4

∂κ2

∂x3

− ∂κ1

∂x3

∂κ2

∂x4

)
dτ

the summation being for all permutations of the suffixes

=

∫ ∑{
∂

∂x4

(
κ1

∂κ2

∂x3

)
− ∂

∂x3

(
κ1

∂κ2

∂x4

)}
dτ.

Hence Ve reduces to a surface-integral over the boundary
of the region, and it is useless to consider its variations by
the Hamiltonian method. The electromagnetic volume of a
region is of the nature of a flux through its three-dimensional
boundary.

82. Macroscopic equations.

For macroscopic treatment the distribution and motion
of the electrons are averaged, and the equivalent continuous
distribution is described by two new quantities

the electric displacement, P , Q, R,
the magnetic induction, a, b, c,

in addition to

the electric force, X, Y , Z,
the magnetic force, α, β, γ.
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These are grouped cross-wise to form the two principal
electromagnetic tensors

Fµν = 0 −c b −X,
c 0 −a −Y

−b a 0 −Z
X Y Z 0

Hµν = 0 −γ β P

γ 0 −α Q

−β α 0 R

−P −Q −R 0

(82.1)

Hµν now plays the part previously taken by F µν; but it is no
longer derived from Fµν by a mere raising of suffixes. The
relation between the two tensors is given by the constitutive
equations of the material; in simple cases it is specified
by two constants, the specific inductive capacity κ and the
permeability µ.

Equations (73.73) and (73.74) are replaced by

Fµν =
∂κµ
∂xν

− ∂κν
∂xµ

Hµν
ν = Jµ

 (82.2)

These represent the usual equations of the classical theory. It
should be noticed that ∂H/∂y − ∂G/∂z is now a, not α.

In the simple case the constitutive equations are

(P,Q,R) = K(X,Y, Z); (a, b, c) = µ(α, β, γ), (82.3)

so that

H11,H12, . . . , H33 =
1

µ
(F 11, F 12, . . . , F 33);

H14,H24,H34 = K(F 14, F 24, F 34).

These simplified equations are not of tensor form, and refer
only to coordinates with respect to which the material is at
rest. For general coordinates the constitutive equations must
be of the form

Hµν = pµαpνβFαβ,
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where pµν is a tensor.

The law of conservation of electric charge can be deduced
from Hµν

ν = Jµ just as in (73.76).
The macroscopic method is introduced for practical pur-

poses rather than as a contribution to the theory, and there
seems to be no advantage in developing it further here. The
chief theoretical interest lies in the suggestion of a possi-
ble generalisation of Maxwell’s theory by admitting that the
covariant and contravariant electromagnetic tensors may in
certain circumstances be independent tensors, e.g. inside the
electron. This is the basis of a theory of matter developed by
G. Mie.

For a further discussion of the macroscopic electromag-
netic equations when the constitutive equations are not
isotropic, see T. de Donder, Gomptes Rendus, 9 July 1923.
It will be noticed that de Donder introduces quantities (F̄µν)

which appear to be intermediate between Fµν and Hµν as
defined in this section. This is due to a difficulty which
arises in obtaining an action-density and energy-tensor. The
natural form of action-density FµνH

µν can be associated with
an energy-tensor

−FµαHνα + 1
4
gνµFαβH

αβ

analogous to (77.2); but the divergence of this is not equal to
the expected mechanical force FµνH

νσ
σ or FµνJµ. On the other

hand, using the intermediate variable, the action-density
takes the symmetrical form F̄µνF̄

µν, and the derivation of a
mechanical force F̄µνF̄

νσ
σ proceeds without difficulty.

The macroscopically continuous variables are in any case
fictitious, and we have a certain amount of choice in selecting
the “fictions” which shall be regarded as homologous with
the variables originally defined for empty space. In Maxwell’s
original theory the electric displacement is an essentially
distinct quantity from the electric force and the effect of the
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polarisation of the medium is to alter the constants in the
equations connecting them. The more modern view is that
displacement and force are essentially the same quantity, and
the polarisation of the medium increases the average force
and displacement alike. De Donder’s treatment corresponds
to the latter view and it presumably represents a closer
approximation to the actual microscopic processes. The chief
interest in preserving the older notation in this section is in
connection with Mie’s theory which resurrects the antiquated
notion of independence of displacement and force as a
possibly fruitful conception in connection with the structure
of the electron.



CHAPTER VII
WORLD GEOMETRY

PART I. WEYL’S THEORY

83. Natural geometry and world geometry.

GRAPHICAL representation is a device commonly employed
in dealing with all kinds of physical quantities. It

is most often used when we wish to set before ourselves
a mass of information in such a way that the eye can
take it in at a glance; but this is not the only use. We
do not always draw the graphs on a sheet of paper; the
method is also serviceable when the representation is in a
conceptual mathematical space of any number of dimensions
and possibly non-Euclidean geometry. One great advantage
is that when the graphical representation has been made,
an extensive geometrical nomenclature becomes available
for description—straight line, gradient, curvature, etc.—and
a self-explanatory nomenclature is a considerable aid in
discussing an abstruse subject.

It is therefore reasonable to seek enlightenment by giv-
ing a graphical representation to all the physical quantities
with which we have to deal. In this way physics becomes
geometrised. But graphical representation does not assume
any hypothesis as to the ultimate nature of the quantities
represented. The possibility of exhibiting the whole world
of physics in a unified geometrical representation is a test
not of the nature of the world but of the ingenuity of the
mathematician.
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There is no special rule for representing physical quan-

tities such as electric force, potential, temperature, etc.; we
may draw the isotherms as straight lines, ellipses, spheres,
according to convenience of illustration. But there are certain
physical quantities (i.e. results of operations and calculations)
which have a natural graphical representation; we habitually
think of them graphically, and are almost unconscious that
there is anything conventional in the way we represent them.
For example, measured distances and directions are instinc-
tively conceived by us graphically; and the space in which
we represent them is for us actual space. These quantities are
not in their intrinsic nature dissimilar from other physical
quantities which are not habitually represented geometri-
cally. If we eliminated the human element (or should we
not say, the pre-human element?) in natural knowledge the
device of graphical representation of the results of measures
or estimates of distance would appear just as artificial as the
graphical representation of thermometer readings. We can-
not predict that a superhuman intelligence would conceive of
distance in the way we conceive it; he would perhaps admit
that our device of mentally plotting the results of a survey
in a three-dimensional space is ingenious and scientifically
helpful, but it would not occur to him that this space was
more actual than the pv space of an indicator-diagram.

In our previous work we have studied this unsophisticated
graphical representation of certain physical quantities, under
the name Natural Geometry; we have slightly extended the
idea by the addition of a fourth dimension to include time;
and we have found that not only the quantities ordinarily
regarded as geometrical but also mechanical quantities, such
as force, density, energy, are fully represented in this nat-
ural geometry. For example the energy-tensor was found
to be made up of the Gaussian curvatures of sections of
actual space-time (65.72). But the electromagnetic quantities
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introduced in the preceding chapter have not as yet been
graphically represented; the vector κµ was supposed to exist
in actual space, not to be the measure of any property of
actual space. Thus up to the present the geometrisation of
physics is not complete.

Two possible ways of generalising our geometrical outlook
are open. It may be that the Riemannian geometry assigned
to actual space is not exact; and that the true geometry is
of a broader kind leaving room for the vector κµ to play a
fundamental part and so receive geometrical recognition as
one of the determining characters of actual space. For reasons
which will appear in the course of this chapter, I do not think
that this is the correct solution. The alternative is to give all
our variables, including κµ, a suitable graphical representation
in some new conceptual space—not actual space. With suffi-
cient ingenuity it ought to be possible to accomplish this, for
no hypothesis is implied as to the nature of the quantities so
represented. This generalised graphical scheme may or may
not be helpful to the progress of our knowledge; we attempt
it in the hope that it will render the interconnection of elec-
tromagnetic and gravitational phenomena more intelligible.
I think it will be found that this hope is not disappointed.

In Space, Time and Gravitation, Chapter XI, Weyl’s non-
Riemannian geometry has been regarded throughout as ex-
pressing an amended and exact Natural Geometry. That was
the original intention of his theory*. For the present we shall
continue to develop it on this understanding. But we shall
ultimately come to the second alternative, as Weyl himself

*The original paper (Berlin. Sitzungsberichte, 30 May 1918) is rather
obscure on this point. It states the mathematical development of the
corrected Riemannian geometry—“the physical application is obvious.”
But it is explicitly stated that the absence of an electromagnetic field is
the necessary condition for Einstein’s theory to be valid—an opinion
which, I think, is no longer held.
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has done, and realise that his non-Riemannian geometry is
not to be applied to actual space-time; it refers to a graphical
representation of that relation-structure which is the basis of
all physics, and both electromagnetic and metrical variables
appear in it as interrelated. Having arrived at this stand-
point we pass naturally to the more general geometry of
relation-structure developed in Part II of this chapter.

We have then to distinguish between Natural Geometry,
which is the single true geometry in the sense understood
by the physicist, and World Geometry, which is the pure
geometry applicable to a conceptual graphical representation
of all the quantities concerned in physics. We may perhaps
go so far as to say that the World Geometry is intended to
be closely descriptive of the fundamental relation-structure
which underlies the various manifestations of space, time,
matter and electromagnetism; that statement, however, is
rather vague when we come to analyse it. Since the graphical
representation is in any case conventional we cannot say that
one method rather than another is right. Thus the two
geometries discussed in Parts I and II of this chapter are not
to be regarded as contradictory. My reason for introducing
the second treatment is that I find it to be more illuminating
and far-reaching, not that I reject the first representation as
inadmissible.

In the following account of Weyl’s theory I have not ad-
hered to the author’s order of development, but have adapted
it to the point of view here taken up, which sometimes differs
(though not, I believe, fundamentally) from that which he
adopts. It may be somewhat unfair to present a theory from
the wrong end—as its author might consider; but I trust that
my treatment has not unduly obscured the brilliance of what
is unquestionably the greatest advance in the relativity theory
after Einstein’s work.
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84. Non-integrability of length.

We have found in § 33 that the change δAµ of a vector
taken by parallel displacement round a small circuit is

δAµ = 1
2
(Aµνσ −Aµσν) dS

νσ

= 1
2
Bϵ
µνσAϵ dS

νσ

= 1
2
BµνσϵA

ϵ dSνσ. (84.1)

Hence

Aµ δAµ = 1
2
BµνσϵA

µAϵ dSνσ = 0,

since Bµνσϵ is antisymmetrical in µ and ϵ.
Hence by (26.4) δAµ is perpendicular to Aµ, and the length of

the vector Aµ is unaltered by its parallel displacement round
the circuit. It is only the direction which changes.

We endeavoured to explain how this change of direction
can occur in a curved world by the example of a ship sailing
on a curved ocean (§ 33). Having convinced ourselves that
there is no logical impossibility in the result that the direction
changes, we cannot very well see anything self-contradictory
in the length changing also. It is true that we have just given a
mathematical proof that the length does not change; but that
only means that a change of length is excluded by conditions
which have been introduced, perhaps inadvertently, in the
postulates of Riemannian geometry. We can construct a
geometry in which the change of length occurs, without
landing ourselves in a contradiction.

In the more general geometry, we have in place of (84.1)

δAµ = 1
2

∗BµνσϵA
ϵ dSνσ, (84.21)

where ∗Bµνσϵ is a more general tensor which is not antisym-
metrical in µ and ϵ. It will be antisymmetrical in ν and σ
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since a symmetrical part would be meaningless in (84.21), and
disappear owing to the antisymmetry of dSνσ. Writing

Rµνσϵ =
1
2
(∗Bµνσϵ − ∗Bϵνσµ); Fµνσϵ =

1
2
(∗Bµνσϵ +

∗Bϵνσµ),

δAµ = 1
2
(Rµνσϵ + Fµνσϵ)A

ϵ dSνσ, (84.22)

where R is antisymmetrical, and F symmetrical, in µ and ϵ.
Then the change of length l is given by

δ(l2) = 2Aµ δAµ = FµνσϵA
µAϵ dSνσ, (84.3)

which does not vanish.
To obtain Weyl’s geometry we must impose two restric-

tions on Fµνσϵ:
(a) Fµνσϵ is of the special form gµϵFνσ,
(b) Fνσ is the curl of a vector.

The second restriction is logically necessary. We have
expressed the change of a vector taken round a circuit by a
formula involving a surface bounded by the circuit. We may
choose different surfaces, all bounded by the same circuit;
and these have to give the same result for δAµ. It is easily
seen, as in Stokes’s theorem, that these results will only be
consistent if the co-factor of dSνσ is a curl.

The first restriction is not imperatively demanded, and we
shall discard it in Part II of this chapter. It has the following
effect. Equation (84.3) becomes

δ(l2) = Fνσ · gµϵAµAϵ · dSνσ

= Fνσl
2 dSνσ,

so that
δl

l
= 1

2
Fνσ dS

νσ. (84.4)

The change of length is proportional to the original length
and is independent of the direction of the vector; whereas in
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the more general formula (84.3) the change of length depends
on the direction.

One result of the restriction is that zero-length is still
zero-length after parallel displacement round a circuit. If
we have identified zero-length at one point of the world
we can transfer it without ambiguity to every other point
and so identify zero-length everywhere. Finite lengths can-
not be transferred without ambiguity; a route of parallel
displacement must be specified.

Zero-length is of great importance in optical phenomena,
because in Einstein’s geometry any element of the track of a
light-pulse is a vector of zero-length; so that if there were no
definite zero-length a pulse of light would not know what
track it ought to take. It is because Weyl’s theory makes
no attempt to re-interpret this part of Einstein’s theory that
an absolute zero-length is required, and the restriction (a) is
therefore imposed.

Another result of the restriction is that lengths at the same
point but in different orientations become comparable with-
out ambiguity. The ambiguity is limited to the comparison
of lengths at different places.

85. Transformation of gauge-systems.

According to the foregoing section it is not possible
to compare lengths (except zero-length) at different places,
because the result of the comparison will depend on the route
taken in bringing the two lengths into juxtaposition.

In Riemannian geometry we have taken for granted this
possibility of comparing lengths. The interval at any point
has been assigned a definite value, which implies comparison
with a standard; it did not occur to us to question how
this comparison at a distance could be made. We have now
to define the geometry of the continuum in a way which



CH. VII TRANSFORMATION OF GAUGE-SYSTEMS 356
recognises this difficulty.

We suppose that a definite but arbitrary gauge-system has
been adopted; that is to say, at every point of space-time a
standard of interval-length has been set up, and every interval
is expressed in terms of the standard at the point where it is.
This avoids the ambiguity involved in transferring intervals
from one point to another to compare with a single standard.

Take a displacement at P (coordinates, xµ) and transfer
it by parallel displacement to an infinitely near point P ′

(coordinates, xµ + dxµ). Let its initial length measured by the
gauge at P be l, and its final length measured by the gauge
at P ′ be l + dl. We may express the change of length by the
formula

d(log l) = κµ dxµ, (85.1)

where κµ represents some vector-field. If we alter the gauge-
system we shall, of course, obtain different values of l, and
therefore of κµ.

It is not necessary to specify the route of transfer for the
small distance P to P ′. The difference in the results obtained
by taking different routes is by (84.4) proportional to the
area enclosed by the routes, and is thus of the second order
in dxµ. As PP ′ is taken infinitely small this ambiguity becomes
negligible compared with the first-order expression κµ dxµ.

Our system of reference can now be varied in two ways—
by change of coordinates and by change of gauge-system.
The behaviour of gµν and κµ for transformation of coordinates
has been fully studied; we have to examine how they will be
transformed by a transformation of gauge.

A new gauge-system will be obtained by altering the
length of the standard at each point in the ratio λ, where λ is
an arbitrary function of the coordinates. If the standard is
decreased in the ratio λ, the length of a displacement will be
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increased in the ratio λ. If accents refer to the new system

ds′ = λ ds. (85.2)

The components dxµ of a displacement will not be changed,
since we are not altering the coordinate-system, thus

dxµ = dx′
µ. (85.3)

Hence

g′µν dx
′
µ dx

′
ν = ds′2 = λ2 ds2 = λ2gµν dxµ dxν = λ2gµν dx

′
µ dx

′
ν ,

so that
g′µν = λ2gµν . (85.41)

It follows at once that

g′ = λ8g, (85.42)

g′
µν

= λ−2gµν , (85.43)√
−g′ · dτ ′ = λ4

√
−g · dτ. (85.44)

Again, by (85.1)

κ′
µ dxµ = d(log l′) = d{log(λl)}

= d(log l) + d(logλ)

= κµ dxµ +
∂(logλ)
∂xµ

dxµ.

Or, writing
ϕ = logλ, (85.51)

then
κ′
µ = κµ +

∂ϕ

∂xµ
. (85.52)

The curl of κµ has an important property; if

Fµν =
∂κµ
∂xν

− ∂κν
∂xµ

,
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we see by (85.52) that

F ′
µν = Fµν , (85.6)

so that Fµν is independent of the gauge-system. This is only
true of the covariant tensor; if we raise one or both suffixes
the function λ is introduced by (85.43).

It will be seen that the geometry of the continuum now
involves 14 functions which vary from point to point, viz.
ten gµν and four κµ. These may be subjected to transforma-
tions, viz. the transformations of gauge discussed above, and
the transformations of coordinates discussed in Chapter II.
Such transformations will not alter any intrinsic properties
of the world; but any changes in the gµν and κµ other than
gauge or coordinate transformations will alter the intrinsic
state of the world and may reasonably be expected to change
its physical manifestations.

The question then arises, How will the change manifest
itself physically if we alter the κµ? All the phenomena of
mechanics have been traced to the gµν, so that presumably the
change is not shown in mechanics, or at least the primary
effect is not mechanical. We are left with the domain
of electromagnetism which is not expressible in terms of
gµν alone; and the suggestion arises that an alteration of κµ

may appear physically as an alteration of the electromagnetic
field.

We have seen that the electromagnetic field is described by
a vector already called κµ, and it is an obvious step to identify
this with the κµ introduced in Weyl’s geometry. According
to observation the physical condition of the world is not
completely defined by the gµν and an additional vector must
be specified; according to theoretical geometry the nature
of a continuum is not completely indicated by the gµν and
an additional vector must be specified. The conclusion is
irresistible that the two vectors are to be identified.

Moreover according to (85.52) we can change κµ to κµ +
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∂ϕ/∂xµ by a change of gauge without altering the intrinsic
state of the world. It was explained at the beginning of § 74
that we can make the same change of the electromagnetic
potential without altering the resulting electromagnetic field.

We accordingly accept this identification. The κµ and Fµν

of the present geometrical theory will be the electromagnetic
potential and force of Chapter VI. It will be best to suspend
the convention κµµ = 0 (74.1) for the present, since that would
commit us prematurely to a particular gauge-system.

It must be borne in mind that by this identification the
electromagnetic force becomes expressed in some natural unit
whose relation to the C.G.S. system is at present unknown.
For example the constant of proportionality in (77.7) may be
altered. Fµν is not altered by any change of gauge-system (85.6)

so that its value is a pure number. The question then arises,
How many volts per centimetre correspond to Fµν = 1 in any
given coordinate-system? The problem is a difficult one, but
we shall give a rough and rather dubious estimate in § 102.

I do not think that our subsequent discussion will add
anything material to the present argument in favour of the
electromagnetic interpretation of κµ. The case rests entirely on
the apparently significant fact, that on removing an artificial
restriction in Riemannian geometry, we have just the right
number of variables at our disposal which are necessary for a
physical description of the world.

86. Gauge-invariance.

It will be useful to discover tensors and invariants which,
besides possessing their characteristic properties with regard
to transformations of coordinates, are unaltered by any trans-
formation of gauge-system. These will be called in-tensors
and in-invariants.

There are other tensors or invariants which merely become
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multiplied by a power of λ, when the gauge is altered. These
will be called co-tensors and co-invariants.

Change of gauge is a generalisation of change of unit in
physical equations, the unit being no longer a constant but
an arbitrary function of position. We have only one unit
to consider—the unit of interval. Coordinates are merely
identification-numbers and have no reference to our unit, so
that a displacement dxµ is an in-vector. It should be noticed
that if we change the unit-mesh of a rectangular coordinate-
system from one mile to one kilometre, we make a change of
coordinates not a change of gauge. The distinction is more
obvious when coordinates other than Cartesian are used. The
most confusing case is that of Galilean coordinates, for then
the special values of the gµν fix the length of side of unit
mesh as equal to the unit of interval; and it is not easy to
keep in mind that the displacement between two corners of
the mesh is the number 1, whilst the interval between them
is 1 kilometre.

According to (85.6) the electromagnetic force Fµν is an
in-tensor. Fµν is only a co-tensor, and FµνF

µν a co-invariant.
Transforming the 3-index symbol [µν, σ] by an alteration of

gauge we have by (85.41)

[µν, σ]′ =
1

2

(
∂(λ2gµσ)

∂xν
+
∂(λ2gνσ)

∂xµ
− ∂(λ2gµν)

∂xσ

)
= λ2[µν, σ] + 1

2
gµσ

∂λ2

∂xν
+ 1

2
gνσ

∂λ2

∂xµ
− 1

2
gµν

∂λ2

∂xσ

= λ2[µν, σ] + λ2(gµσϕν + gνσϕµ − gµνϕσ)

by (85.51). We have written

ϕµ ≡ ∂ϕ

∂xµ
.

Multiply through by g′σα = λ−2gσα; we obtain

{µν, α}′ = {µν, α}+ gαµϕν + gαν ϕµ − gµνϕ
α. (86.1)
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Let

∗{µν, α} ≡ {µν, α} − gαµκν − gαν κµ + gµνκ
α. (86.2)

Then by (86.1) and (85.52)

∗{µν, α}′ = ∗{µν, α}. (86.3)

The “generalised 3-index symbol” ∗{µν, α} has the “in-”
property, being unaltered by any gauge-transformation. It is,
of course, not a tensor.

We shall generally indicate by a star (∗) quantities gener-
alised from corresponding expressions in Riemannian geom-
etry in order to be independent of (or covariant with) the
gauge-system. The following illustrates the general method
of procedure.

Let Aνµ be a symmetrical in-tensor; its divergence (51.31)

becomes on gauge-transformation
A′ν

µν =
1

λ4
√
−g

∂

∂xν
(Aνµλ

4
√
−g)− 1

2
(λ−2Aαβ)

∂

∂xµ
(λ2gαβ)

=
1√
−g

∂

∂xν
(Aνµ

√
−g)− 1

2
Aαβ

∂gαβ
∂xµ

+Aνµ ·
1

λ4

∂λ4

∂xν

− 1
2
Aαβgαβ ·

1

λ2

∂λ2

∂xµ

= Aνµν + 4Aνµϕν −Aϕµ.

Hence by (85.52) the quantity
∗Aνµν = Aνµν − 4Aνµκν +Aκµ (86.4)

is unaltered by any gauge-transformation, and is accordingly
an in-vector.

This operation may be called in-covariant differentiation,
and the result is the in-divergence.

The result is modified if Aµν is the in-tensor, so that Aνµ is
a co-tensor. The different associated tensors are not equally
fundamental in Weyl’s geometry, since only one of them can
be an in-tensor.

Unless expressly stated a final suffix will indicate ordinary
covariant (not in-covariant) differentiation.
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87. The generalised Riemann-Christoffel tensor.

Corresponding to (34.4) we write

∗Bϵ
µνσ=− ∂

∂xσ
∗{µν, ϵ}+ ∗{µσ, α}∗{αν, ϵ}+ ∂

∂xν
∗{µσ, ϵ} − ∗{µν, α}∗{ασ, ϵ}.

(87.1)

This will be an in-tensor since the starred symbols are
all independent of the gauge; and it will be evident when
we reach (87.4) that the generalisation has not destroyed the
ordinary tensor properties.

We consider the first two terms; the complete expression
can then be obtained at any stage by interchanging ν and σ

and subtracting. The additional terms introduced by the stars
are by (86.2)

− ∂

∂xσ
(−gϵµκν − gϵνκµ + gµνκ

ϵ) + (−gαµκσ − gασκµ + gµσκ
α){αν, ϵ}

+ (−gϵακν − gϵνκα + gανκ
ϵ){µσ, α}

+ (−gαµκσ − gασκµ + gµσκ
α)(−gϵακν − gϵνκα + gανκ

ϵ)

= gϵµ
∂κν
∂xσ

+ gϵν
∂κµ
∂xσ

− gµν
∂κϵ

∂xσ
− ∂gµν
∂xσ

κϵ

− κσ{µν, ϵ} − κµ{σν, ϵ}+ gµσ{αν, ϵ}κα

− κν{µσ, ϵ} − gϵν{µσ, α}κα + κϵ[µσ, ν] + gϵµκσκν + gϵνκσκµ − gµνκσκ
ϵ

+ gϵσκµκν + gϵνκµκσ − gσνκµκ
ϵ − gµσκ

ϵκν − gµσg
ϵ
νκ

ακα + gµσκνκ
ϵ, (87.2)

which is equivalent to

gϵµ
∂κν
∂xσ

+ gϵν(κµ)σ − gµν(κ
ϵ)σ + gϵνκµκσ − gϵνgµσκακ

α + gµσκνκ
ϵ. (87.3)

[To follow this reduction let the terms in (87.2) be num-
bered in order from 1 to 19. It will be found that the
following terms or pairs of terms are symmetrical in ν and σ,
and therefore disappear when the expression is completed,
viz. 5 and 8, 6, 11, 12 and 14, 13 and 17, 16. Further 4 and
10 together give −[νσ, µ]κϵ, which is rejected for the same
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reason. We combine 2 and 9 to give gϵν(κµ)σ. We exchange 7

for its counterpart −gµν{ασ, ϵ}κα in the remaining half of the
expression, and combine it with 3 to give −gµν(κϵ)σ.]

Hence interchanging ν and σ, and subtracting, the com-
plete expression is

∗Bϵ
µνσ = Bϵ

µνσ + gϵµ

(
∂κν
∂xσ

− ∂κσ
∂xν

)
+ (gϵνκµσ − gϵσκµν) + (gµσκ

ϵ
ν − gµνκ

ϵ
σ)

+ (gϵνκµκσ − gϵσκµκν) + (gϵσgµν − gϵνgµσ)κακ
α + (gµσκν − gµνκσ)κ

ϵ. (87.4)

Next set ϵ = σ. We obtain the contracted in-tensor
∗Gµν = Gµν − Fµν + (κµν − 4κµν) + (κµν − gµνκ

α
α) + (κµκν − 4κµκν)

+ (4gµν − gµν)κακ
α + (κµκν − gµνκακ

α)

= Gµν − 2Fµν − (κµν + κνµ)− gµνκ
α
α − 2κµκν + 2gµνκ

α
α.* (87.5)

Finally multiply by gµν. We obtain the co-invariant
∗G = G− 6καα + 6κακ

α. (87.6)

The multiplication by gµν reintroduces the unit of gauge,
so that ∗G becomes multiplied by λ−2 when the gauge is
transformed.

If the suffix ϵ is lowered in (87.4) the only part of ∗Bµνσϵ

which is symmetrical in µ and ϵ is gµν(∂κν/∂xσ−∂κσ/∂xν) = gµϵFνσ,
which agrees with the condition (a) of Weyl’s geometry
(§ 84).

88. The in-invariants of a region.

There are no functions of the gµν and κµ at a point which are
in-invariants; but functions which are in-invariant-densities
may be found as follows—

*The unit of κµ is arbitrary; and in the generalised theory in
Part II the κµ there employed corresponds to twice the κµ of these
formulae. This must be borne in mind in comparing, for example,
(87.5) and (94.3).
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Since √

−g becomes multiplied by λ4 on gauge-transforma-
tion we must combine it with co-invariants which become
multiplied by λ−4. The following are easily seen to be in-in-
variant-densities:

(∗G)2
√
−g; ∗Gµν

∗Gµν
√
−g; ∗Bϵ

µνσ
∗Bµνσ

ϵ

√
−g, (88.1)

FµνF
µν
√
−g. (88.2)

We can also form in-invariant-densities from the fun-
damental tensor of the sixth rank. Let ∗(∗Bµνσρ)αβ be the
second co-covariant derivative of the co-tensor ∗Bµνσρ; the
spur formed by raising three suffixes and contracting will
vary as λ−4 and give an in-invariant-density on multiplication
by √

−g. There are three different spurs, according to the
pairing of the suffixes, but I believe that there are rela-
tions between them so that they give only one independent
expression. The simplest of them is

gµνgσρgαβ ∗(∗Bµνσρ)αβ
√
−g = ∗□ ∗G ·

√
−g. (88.3)

If A stands for any in-invariant-density,∫
A dτ

taken over a four-dimensional region is a pure number
independent of coordinate-system and gauge-system. Such a
number denotes a property of the region which is absolute
in the widest sense of the word; and it seems likely that
one or more of these numerical invariants of the region
must stand in a simple relation to all the physical quantities
which measure the more general properties of the world.
The simplest operation which we can perform on a regional
invariant appears to be that of Hamiltonian differentiation,
and a particular importance will therefore be attached to the
tensors hA/hgµν, hA/hκµ.
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It has been pointed out by Weyl that it is only in a four-

dimensional world that a simple set of regional in-invariants
of this kind exists. In an odd number of dimensions there are
none; in two dimensions there is one, ∗G

√
−g; in six or eight

dimensions the in-invariants are all very complex involving
derivatives of at least the fourth order or else obviously
artificial. This may give some sort of reason for the four
dimensions of the world. The argument appears to be that
a world with an odd number of dimensions could contain
nothing absolute, which would be unthinkable.

These conclusions are somewhat modified by the existence
of a particularly simple regional in-invariant, which seems to
have been generally overlooked because it is not of the type
which investigators have generally studied. The quantity∫ √

−|∗Gµν | dτ (88.4)

is an invariant by (81.1) and it contains nothing which depends
on the gauge. It is not more irrational than the other in-
invariants since these contain √

−g. We shall find later
that it is closely analogous to the metrical volume and the
electromagnetic volume (§ 81) of the region. It will be called
the generalised volume. This in-invariant would still exist if
the world had an odd number of dimensions.

It may be remarked that F µν
√
−g, or Fµν, is an in-tensor-

density. Thus the factor √
−g should always be associated with

the contravariant tensor, if the formulae are to have their
full physical significance. The electromagnetic action-density
should be written

FµνF
µν ,

and the energy-density

−FµνFνα + 1
4
gνµFαβF

αβ.

The field is thus characterised by an intensity Fµν or a quantity
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of density Fµν; both descriptions are then independent of the
gauge-system used.

89. The natural gauge.

For the most part the laws of mechanics investigated in
Chapters III–V have been expressed by tensor equations but
not in-tensor equations. Hence they can only hold when a
particular gauge-system is used, and will cease to be true if a
transformation of gauge-system is made. The gauge-system
for which our previous work is valid (if it is valid) is called
the natural gauge; it stands in somewhat the same position
with respect to a general gauge as Galilean coordinates stand
with respect to general coordinates.

Just as we have generalised the equations of physics origi-
nally found for Galilean coordinates, so we could generalise
the equations for the natural gauge by substituting the cor-
responding in-tensor equations applicable to any gauge. But
before doing so, we stop to ask whether anything would
be gained by this generalisation. There is not much object
in generalising the Galilean formulae, so long as Galilean
coordinates are available; we required the general formulae
because we discovered that there are regions of the world
where no Galilean coordinates exist. Similarly we shall only
need the in-tensor equations of mechanics if there are re-
gions where no natural gauge exists; that is to say, if no
gauge-system can be found for which Einstein’s formulae are
accurately true. It was, I think, the original idea of Weyl’s
theory that electromagnetic fields were such regions, where
accordingly in-tensor equations would be essential.

There is in any case a significant difference between
Einstein’s generalisation of Galilean geometry and Weyl’s
generalisation of Riemannian geometry. We have proved di-
rectly that the condition which renders Galilean coordinates
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impossible must manifest itself to us as a gravitational field
of force. That is the meaning of a field of force according
to the definition of force. But we cannot prove that the
break-down of the natural gauge would manifest itself as
an electromagnetic field; we have merely speculated that the
world-condition measured by the vector κµ which appears in
the in-tensor equations may be the origin of electrical man-
ifestations in addition to causing the failure of Riemannian
geometry.

Accepting the original view of Weyl’s theory, the ambi-
guity in the comparison of lengths at a distance has hitherto
only shown itself in practical experiments by the electromag-
netic phenomena supposed to be dependent on it but not (so
far as we can see) immediately implied by it. This is not
surprising when we attempt to estimate the order of magni-
tude of the ambiguity. Taking formula (84.4), dl/l = 1

2
Fνσ dS

νσ,
we might perhaps expect that dl/l would be comparable with
unity, if the electromagnetic force Fνσ were comparable with
that at the surface of an electron, 4 · 1018 volts per cm., and
the side of the circuit were comparable with the radius of
curvature of space. Thus for ordinary experiments dl/l would
be far below the limits of experimental detection. Accord-
ingly we can have a gauge-system specified by the transfer of
material standards which is for all practical purposes unam-
biguous, and yet contains that minute theoretical ambiguity
which is only of practical consequence on account of its
side-manifestation as the cause of electrical phenomena. The
gauge-system employed in practice is the natural gauge-sys-
tem to which our previous mechanical formulae apply—or
rather, since the practical gauge-system is slightly ambiguous
and the theoretical formulae are presumably exact, the natural
gauge is an exact gauge with which all practical gauges agree
to an approximation sufficient for all observable mechanical
and metrical phenomena.
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According to Weyl the natural gauge is determined by the

condition
∗G = 4λ, (89.1)

where λ is a constant everywhere.
This attempt to reconcile a theoretical ambiguity of our

system of measurement with its well-known practical effi-
ciency seems to be tenable, though perhaps a little over-
strained. But an alternative view is possible. This states
that—

Comparison of lengths at different places is an unambiguous
procedure having nothing to do with parallel displacement of a
vector.

The practical operation of transferring a measuring-scale
from one place to another is not to be confounded with the
transfer by parallel displacement of the vector representing
the displacement between its two extremities. If this is correct
Einstein’s Riemannian geometry, in which each interval has
a unique length, must be accepted as exact; the ambiguity of
transfer by parallel displacement does not affect his work. No
attempt is to be made to apply Weyl’s geometry as a Natural
Geometry; it refers to a different subject of discussion.

Prof. Weyl himself has come to prefer the second alter-
native. He draws a useful distinction between magnitudes
which are determined by persistence (Beharrung) and by ad-
justment (Einstellung); and concludes that the dimensions of
material objects are determined by adjustment. The size of
an electron is determined by adjustment in proportion to the
radius of curvature of the world, and not by persistence of
anything in its past history. This is the view taken in § 66,
and we have seen that it has great value in affording an
explanation of Einstein’s law of gravitation.

The generalised theory of Part II leads almost inevitably to
the second alternative. The first form of the theory has died
rather from inanition than by direct disproof; it ceases to offer
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temptation when the problem is approached from a broader
point of view. It now seems an unnecessary speculation to
introduce small ambiguities of length-comparisons too small
to be practically detected, merely to afford the satisfaction
of geometrising the vector κµ which has more important
manifestations.

The new view entirely alters the status of Weyl’s theory.
Indeed it is no longer a hypothesis, but a graphical represen-
tation of the facts, and its value lies in the insight suggested
by this graphical representation. We need not now hesitate
for a moment over the identification of the electromagnetic
potential with the geometrical vector κµ; the geometrical
vector is the potential because that is the way in which we
choose to represent the potential graphically. We take a
conceptual space obeying Weyl’s geometry and represent in
it the gravitational potential by the gµν for that space and the
electromagnetic potential by the κµ for that space. We find
that all other quantities concerned in physics are now repre-
sented by more or less simple geometrical magnitudes in that
space, and the whole picture enables us to grasp in a com-
prehensive way the relations of physical quantities, and more
particularly those reactions in which both electromagnetic
and mechanical variables are involved. Parallel displacement
of a vector in this space is a definite operation, and may in
certain cases have an immediate physical interpretation; thus
when an uncharged particle moves freely in a geodesic its
velocity-vector is carried along by parallel displacement (33.4);
but when a material measuring-rod is moved the operation
is not one of parallel displacement, and must be described
in different geometrical terms, which have reference to the
natural gauging-equation (89.1).

When in Part II we substitute a conceptual space with
still more general geometry, we shall not need to regard it as
in opposition to the present discussion. We may learn more
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from a different graphical picture of what is going on; but we
shall not have to abandon anything which we can perceive
clearly in the first picture.

We consider now the gauging-equation ∗G = 4λ assumed by
Weyl. It is probably the one which most naturally suggests
itself. Suppose that we have adopted initially some other
gauge in which ∗G is not constant. ∗G is a co-invariant such
that when the measure of interval is changed in the ratio µ,
∗G changes in the ratio µ−2. Hence we can obtain a new gauge
in which ∗G becomes constant by transforming the measure
of the interval in the ratio ∗G− 1

2 .
By (87.6) the gauging-equation is equivalent to

G− 6καα + 6κακ
α = 4λ. (89.2)

But by (54.72) the proper-density of matter is

ρ0 =
1

8π
(G− 4λ)

=
3

4π
(καα − κακ

α). (89.3)

For empty space, or for space containing free electromagnetic
fields without electrons, ρ0 = 0, so that

καα = κακ
α, (89.4)

except within an electron. This condition should replace the
equation καα = 0 which was formerly introduced in order to
make the electromagnetic potential determinate (74.1).

We cannot conceive of any kind of measurement with
clocks, scales, moving particles or light-waves being made
inside an electron, so that any gauge employed in such a
region must be purely theoretical having no significance in
terms of practical measurement. For the sake of continuity we
define the natural gauge in this region by the same equation
∗G = 4λ; it is as suitable as any other. Inside the electron
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καα will not be equal to κακ

α and the difference will determine
the mass of the electron in accordance with (89.3). But it
will be understood that this application of (89.3) is merely
conventional; although it appears to refer to experimental
quantities, the conditions are such that it ceases to be
possible for the experiments to be made by any conceivable
device.

90. Weyl’s action-principle.

Weyl adopts an action-density

A
√
−g = (∗G2 − αFµνF

µν)
√
−g, (90.1)

the constant α being a pure number. He makes the hy-
pothesis that it obeys the principle of stationary action for
all variations δgµν, δκµ which vanish at the boundary of the
region considered. Accordingly

hA

hgµν
= 0,

hA

hκµ
= 0. (90.2)

Weyl himself states that his action-principle is probably
not realised in nature exactly in this form. But the procedure
is instructive as showing the kind of unifying principle which
is aimed at according to one school of thought.

The variation of ∗G2
√
−g is

2 ∗Gδ(∗G
√
−g)− ∗G2 δ(

√
−g),

which in the natural gauge becomes by (89.1)

8λ δ(∗G
√
−g)− 16λ2 δ(

√
−g).

Hence by (87.6)

1

8λ
δ(A

√
−g) = δ

{
(G− 6καα + 6κακ

α − 2λ− βFµνF
µν)

√
−g

}
, (90.3)

where β = α/8λ.
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The term καα

√
−g can be dropped, because by (51.11)

καα
√
−g =

∂

∂xα
(κα

√
−g).

This can be integrated, and yields a surface-integral over
the boundary of the region considered. Its Hamiltonian
derivatives accordingly vanish.

Again

δ(κακ
α
√
−g) = κακβ δ(g

αβ
√
−g) + gαβ

√
−g(κα δκβ + κβ δκα)

= κακβ
√
−g(δgαβ + 1

2
gαβgµν δgµν) + 2gαβ

√
−g κβ δκα)

= κακβ
√
−g(−gµαgνβ + 1

2
gαβgµν) δgµν + 2κα

√
−g δκα

=
√
−g(−κµκν + 1

2
gµνκακ

α) δgµν + 2κα
√
−g δκα.

Hence
h

hgµν
(κακ

α) = (−κµκν + 1
2
gµνκακ

α), (90.41)

h

hκα
(κακ

α) = 2κα. (90.42)

Hamiltonian derivatives of the other terms in (90.3) have
already been found in (60.43), (79.31) and (79.32). Collecting
these results we have

1

8λ

hA

hgµν
= −(Gµν − 1

2
gµνG)− 6(κµκν − 1

2
gµνκακ

α)− λgµν − 2βEµν

= 8πT µν − 2βEµν − 6(κµκν − 1
2
gµνκακ

α) (90.51)

by (54.71); and
1

8λ

hA

hκµ
= 12κµ + 4βJµ. (90.52)

If the hypothesis (90.2) is correct, these must vanish.
The vanishing of (90.51) shows that the whole energy-tensor
consists of the electromagnetic energy-tensor together with
another term, which must presumably be identified with
the material energy-tensor attributable to the binding forces
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of the electrons*. The constant 2β/8π correlates the natural
gravitational and electromagnetic units. The material energy-
tensor, being the difference between the whole tensor and
the electromagnetic part, is accordingly

Mµν =
3

4π
(κµκν − 1

2
gµνκακ

α). (90.61)

Hence, multiplying by gµν,

ρ0 =M = − 3

4π
κακ

α. (90.62)

The vanishing of (90.52) gives the remarkable equation

κµ = − 1
3
βJµ. (90.71)

And since Jµµ = 0 (73.77), we must have

κµµ = 0, (90.72)

agreeing with the original limitation of κµ in (74.1).
We see that the formula for ρ0 (90.62) agrees with that

previously found (89.3) having regard to the limitation κµµ = 0.
The result (90.62) becomes by (90.71)

ρ0 = − β2

12π
JµJ

µ.

This shows that matter cannot be constituted without electric
charge and current. But since the density of matter is always
positive, the electric charge-and-current inside an electron
must be a spacelike vector, the square of its length being
negative. It would seem to follow that the electron cannot be
built up of elementary electrostatic charges but resolves itself
into something more akin to magnetic charges.

It will be noticed that the result (90.72) is inconsistent
with the formula κακ

α = καα which we have found for empty

*I doubt if this is the right interpretation. See the end of § 100.
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space (89.4). The explanation is afforded by (90.71) which
requires that a charge-and-current vector must exist wherever
κµ exists, so that no space is really empty. On Weyl’s hypoth-
esis καα = 0 is the condition which holds in all circumstances;
whilst the additional condition καα = κακ

α holding in empty
space reduces to the condition expressed by Jα = 0. It is
supposed that outside what is ordinarily considered to be the
boundary of the electron there is a small charge and current
3

β
κα extending as far as the electromagnetic potential extends.
For an isolated electron at rest in Galilean coordinates

κ4 = e/r, so that κακ
α = e2/r2. On integrating throughout

infinite space the result is apparently infinite; but taking
account of the finite radius of space, the result is of order e2R.
By (90.62) this represents the part of the (negative) mass of the
electron* which is not concentrated within the nucleus. The
actual mass was found in § 80 to be of order e2/a where a is
the radius of the nucleus. The two masses e2R and e2/a are not
immediately comparable since they are expressed in different
units, the connection being made by Weyl’s constant β whose
value is left undecided. But since they differ in dimensions
of length, they would presumably become comparable if the
natural unit of length were adopted, viz. the radius of the
world; in that case e2/a is at least 1036 times e2R, so that the
portion of the mass outside the nucleus is quite insignificant.

The action-principle here followed out is obviously spec-
ulative. Whether the results are such as to encourage belief
in this or some similar law, or whether they tend to dispose
of it by something like a reductio ad absurdum, I will leave to
the judgment of the reader. There are, however, two points
which seem to call for special notice—

*This must not be confused with mass of the energy of the
electromagnetic field. The present discussion relates to invariant mass
to which the field contributes nothing.
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(1) When we compare the forms of the two principal

energy-tensors

T νµ = − 1

8π

{
Gν
µ − 1

2
gνµ(G− 2λ)

}
,

Eν
µ = −FµσF νσ + 1

4
gνµFαβF

αβ,

it is rather a mystery how the second can be contained in
the first, since they seem to be anything but homologous.
The connection is simplified by observing that the difference
between them occurs in hA/hgµν (90.51) accompanied only by a
term which would presumably be insensible except inside the
electrons.

But the connection though reduced to simpler terms is
not in any way explained by Weyl’s action-principle. It is
obvious that his action as it stands has no deep signifi-
cance; it is a mere stringing together of two in-invariants of
different forms. To subtract FµνF

µν from ∗G2 is a fantastic
procedure which has no more theoretical justification than
subtracting Eν

µ from T νµ . At the most we can only regard the
assumed form of action A as a step towards some more natural
combination of electromagnetic and gravitational variables.

(2) For the first term of the action, ∗G2
√
−g was chosen

instead of the simpler ∗G
√
−g, because the latter is not an in-

invariant-density and cannot be regarded as a measure of any
absolute property of the region. It is interesting to trace
how this improvement leads to the appearance of the term
δ(−2λ

√
−g) in (90.3), so that the cosmical curvature-term in the

expression for the energy-tensor now appears quite naturally
and inevitably. We may contrast this with the variation
of G√−g worked out in § 60, where no such term appears. In
attributing more fundamental importance to the in-invariant
∗G2

√
−g than to the co-invariant ∗G

√
−g, Weyl’s theory makes

an undoubted advance towards the truth.
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PART II. GENERALISED THEORY

91. Parallel displacement.

Let an infinitesimal displacement Aµ at the point P (coor-
dinates, xµ) be carried by parallel displacement to a point P ′

(coordinates, xµ + dxµ) infinitely near to P . The most general
possible continuous formula for the change of Aµ is of the
form

dAµ = −ΓµναA
α dxν , (91.1)

where Γµνα, which is not assumed to be a tensor, represents
64 arbitrary coefficients. Both Aα and dxν are infinitesimals,
so that there is no need to insert any terms of higher order.

We are going to build the theory afresh starting from
this notion of infinitesimal parallel displacement; and by so
doing we arrive at a generalisation even wider than that of
Weyl. Our fundamental axiom is that parallel displacement
has some significance in regard to the ultimate structure of
the world—it does not much matter what significance. The
idea is that out of the whole group of displacements radiating
from P ′, we can select one Aµ + dAµ which has some kind
of equivalence to the displacement Aµ at P . We do not
define the nature of this equivalence, except that it shall have
reference to the part played by Aµ in the relation-structure
which underlies the world of physics. Notice that—

(1) This equivalence is only supposed to exist in the limit
when P and P ′ are infinitely near together. For more distant
points equivalence can in general only be approximate, and
gradually becomes indeterminate as the distance is increased.
It can be made determinate by specifying a particular route
of connection, in which case the equivalence is traced step by
step along the route.

(2) The equivalence is not supposed to exist between any
world-relations other than displacements. Hitherto we have
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applied parallel displacement to any tensor, but in this theory
we only use it for displacements.

(3) It is not assumed that there is any complete obser-
vational test of equivalence. This is rather a difficult point
which will be better appreciated later. The idea is that
the scheme of equivalence need not be determinate obser-
vationally, and may have permissible transformations; just
as the scheme of coordinate-reckoning is not determinate
observationally and is subject to transformations.

Let PP1 represent the displacement Aµ = δxµ which on
parallel displacement to P ′ becomes P ′P ′

1; then by (91.1) the
difference of coordinates of P ′

1 and P1 is

Aµ + dAµ = δxµ − Γµνα δxα dxν ,

so that the coordinates of P ′
1 relative to P are

dxµ + δxµ − Γµνα δxα dxν . (91.2)

Interchanging the two displacements, i.e. displacing PP ′

along PP1 we shall not arrive at the same point P ′
1 unless

Γµνα = Γµαν . (91.3)

When (91.3) is satisfied we have the parallelogram law, that if
a displacement AB is equivalent to CD, then AC is equivalent
to BD.

This is the necessary condition for what is called affine
geometry. It is adopted by Weyl and other writers; but J. A.
Schouten in a purely geometrical investigation has dispensed
with it. I shall adopt it here.

All questions of the fundamental axioms of a science are
difficult. In general we have to start somewhat above the fun-
damental plane and develop the theory backwards towards
fundamentals as well as forwards to results. I shall defer
until § 98 the examination of how far the axiom of parallel
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displacement and the condition of affine geometry are essen-
tial in translating the properties of a relation-structure into
mathematical expression; and I proceed at once to develop
the consequences of the specification here introduced.

By the symmetry condition the number of independent Γµνα

is reduced to 40, variable from point to point of space. They
are descriptive of the relation-structure of the world, and
should contain all that is relevant to physics. Our immediate
problem is to show how the more familiar variables of physics
can be extracted from this crude material.

92. Displacement round an infinitesimal circuit.

Let a displacement Aµ be carried by parallel displace-
ment round a small circuit C. The condition for parallel
displacement is by (91.1)

∂Aµ

∂xν
= −ΓµναA

α. (92.1)

Hence the difference of the initial and final values is

δAµ =

∫
C

∂Aµ

∂xν
dxν

= −
∫
C

ΓµναA
α dxν

=
1

2

∫∫ {
∂

∂xσ
(ΓµναA

α)− ∂

∂xν
(ΓµσαA

α)

}
dSνσ

by Stokes’s theorem (32.3).
The integrand is equal to

Aα
(

∂

∂xσ
Γµνα −

∂

∂xν
Γµσα

)
+ Γµνα

∂Aα

∂xσ
− Γµσα

∂Aα

∂xν

= Aϵ
(

∂

∂xσ
Γµνϵ −

∂

∂xν
Γµσϵ

)
− ΓµναΓ

α
σϵA

ϵ + ΓµσαΓ
α
νϵA

ϵ by (92.1)

= −∗Bµ
ϵνσA

ϵ,
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where

∗Bµ
ϵνσ = − ∂

∂xσ
Γµνϵ +

∂

∂xν
Γµσϵ + ΓµναΓ

α
σϵ − ΓµσαΓ

α
νϵ. (92.2)

Hence
δAµ = −1

2

∫∫
∗Bµ

ϵνσA
ϵ dSνσ. (92.31)

As in § 33 the formula applies only to infinitesimal cir-
cuits. In evaluating the integrand we assumed that Aα satisfies
the condition of parallel displacement (92.1) not only on the
boundary but at all points within the circuit. No single
value of Aα can satisfy this, since if it holds for one circuit
of displacement it will not hold for a second. But the
discrepancies are of order proportional to dSνσ, and another
factor dSνσ occurs in the integration; hence (92.31) is true when
the square of the area of the circuit can be neglected.

Writing Σνσ =
∫∫

dSνσ for a small circuit, (92.31) approaches
the limit

δAµ = − 1
2

∗Bµ
ϵνσA

ϵΣνσ, (92.32)

which shows that ∗Bµ
ϵνσ is a tensor*. Moreover it is an in-

tensor, since we have not yet introduced any gauge. In fact all
quantities introduced at present must have the “in-” property,
for we have not begun to discuss the conception of length.

We can form an in-tensor of the second rank by contrac-
tion. With the more familiar arrangement of suffixes,

∗Bϵ
µνσ = − ∂

∂xσ
Γϵνµ +

∂

∂xν
Γϵσµ + ΓασµΓ

ϵ
να − ΓανµΓ

ϵ
σα, (92.41)

∗Gµν = − ∂

∂xα
Γανµ +

∂

∂xν
Γααµ + ΓαβµΓ

β
να − ΓανµΓ

β
βα. (92.42)

Another contracted in-tensor is obtained by setting ϵ = µ, viz.

−2Fνσ = − ∂

∂xσ
Γανα +

∂

∂xν
Γασα. (92.43)

*Another independent proof that ∗Bµ
ϵνσ is a tensor is obtained in

equation (94.1); so that if the reader is uneasy about the rigour of the
preceding analysis, he may regard it as merely suggesting consideration
of the expression (92.2) and use the alternative proof that it is a tensor.
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We shall write

Γν ≡ Γανα. (92.5)

Then
2Fνσ =

∂Γν
∂xσ

− ∂Γσ
∂xν

. (92.55)

It will be seen from (92.42) that*
∗Gµν − ∗Gνµ =

∂Γµ
∂xν

− ∂Γν
∂xµ

= 2Fµν , (92.6)

so that Fµν is the antisymmetrical part of ∗Gµν. Thus the
second mode of contraction of ∗Bϵ

µνσ does not add anything
not obtainable by the first mode, and we need not give Fµν

separate consideration.
According to this mode of development the in-tensors

∗Bϵ
µνσ and ∗Gµν are the most fundamental measures of the

intrinsic structure of the world. They take precedence of
the gµν, which are only found at a later stage in our theory.
Notice that we are not yet in a position to raise or lower
a suffix, or to define an invariant such as ∗G, because we
have no gµν. If we wish at this stage to form an invariant
of a four-dimensional region we must take its “generalised
volume” ∫∫∫∫ √

−|∗Gµν | dτ,

which is accordingly more elementary than the other regional
invariants enumerated in § 88.

It may be asked whether there is any other way of obtain-
ing tensors, besides the consideration of parallel displacement
round a closed circuit. I think not; because unless our suc-
cession of displacements takes us back to the starting-point,
we are left with initial and final displacements at a distance,
between which no comparability exists.

*Here for the first time we make use of the symmetrical property
of Γα

µν . If Γα
µν ̸= Γα

νµ the analysis at this point becomes highly
complicated.
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The equation (92.55) does not prove immediately that Fµν is

the curl of a vector, because, notwithstanding the notation,
Γµ is not usually a vector. But since Fµν is a tensor

2F ′
αβ = 2Fµν

∂xµ
∂x′

α

∂xν
∂x′

β

=
∂Γµ
∂xν

∂xν
∂x′

β

∂xµ
∂x′

α

− ∂Γν
∂xµ

∂xµ
∂x′

α

∂xν
∂x′

β

=
∂

∂x′
β

(
Γµ

∂xµ
∂x′

α

)
− ∂

∂x′
α

(
Γν

∂xν
∂x′

β

)
.

Now by (23.12) Γµ ∂xµ/∂x
′
α is a vector. Let us denote it by 2κ′

α.
Then

F ′
αβ =

∂κ′
α

∂x′
β

−
∂κ′

β

∂x′
α

.

Thus F ′
αβ is actually the curl of a vector κ′

α, though that vector
is not necessarily equal to Γ′

α in all systems of coordinates.
The general solution of

1

2

(
∂Γ′

α

∂x′
β

−
∂Γ′

β

∂x′
α

)
=
∂κ′

α

∂x′
β

−
∂κ′

β

∂x′
α

is
Γ′
α = 2κ′

α +
∂Ω

∂x′
α

, (92.7)

and since Ω need not be an invariant, Γ′
α is not a vector.

93. Introduction of a metric.

Up to this point the interval ds between two points has
not appeared in our theory. It will be remembered that the
interval is the length of the corresponding displacement, and
we have to consider how a length (an invariant) is to be
assigned to a displacement dxµ (a contravariant in-vector). In
this section we shall assign it by the convention

ds2 = gµν dxµ dxν . (93.11)
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Here gµν must be a tensor, in order that the interval may be
an invariant; but the tensor is chosen by us arbitrarily.

The adoption of a particular tensor gµν is equivalent to
assigning a particular gauge-system—a system by which a
unique measure is assigned to the interval between every two
points. In Weyl’s theory, a gauge-system is partly physical
and partly conventional; lengths in different directions but at
the same point are supposed to be compared by experimental
(optical) methods; but lengths at different points are not
supposed to be comparable by physical methods (transfer of
clocks and rods) and the unit of length at each point is laid
down by a convention. I think that this hybrid definition
of length is undesirable, and that length should be treated
as a purely conventional or else a purely physical conception.
In the present section we treat it as a purely conventional
invariant whose properties we wish to discuss, so that length
as here defined is not anything which has to be consistent
with ordinary physical tests. Later on we shall consider
how gµν must be chosen in order that conventional length
may obey the recognised physical tests and thereby become
physical length; but at present the tensor gµν is unrestricted.

Without any loss of generality, we may take gµν to be
a symmetrical tensor, since any antisymmetrical part would
drop out on multiplication by dxµ dxν and would be meaning-
less in (93.11).

Let l be the length of a displacement Aµ, so that
l2 = gµνA

µAν . (93.12)

Move Aµ by parallel displacement through dxσ, then

d(l2) =

(
∂gµν
∂xσ

AµAν + gµνA
ν ∂A

µ

∂xσ
+ gµνA

µ ∂A
ν

∂xσ

)
dxσ

=

(
∂gµν
∂xσ

AµAν − gµνA
ν ΓµσαA

α − gµνA
µ ΓνσαA

α

)
dxσ by (91.1)

=

(
∂gµν
∂xσ

− gαν Γ
α
σµ − gµα Γ

α
σν

)
AµAν dxσ
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by interchanging dummy suffixes.

In conformity with the usual rule for lowering suffixes, we
write

Γσµ,ν = gαν Γ
α
σµ,

so that
d(l2) =

(
∂gµν
∂xσ

− Γσµ,ν − Γσν,µ

)
AµAν (dx)σ. (93.2)

But d(l2), the difference of two invariants, is an invariant.
Hence the quantity in the bracket is a covariant tensor of the
third rank which is evidently symmetrical in µ and ν. We
denote it by 2Kµν,σ. Thus

2Kµν,σ =
∂gµν
∂xσ

− Γσµ,ν − Γσν,µ. (93.3)

Similarly

2Kµσ,ν =
∂gµσ
∂xν

− Γνµ,σ − Γνσ,µ,

2Kνσ,µ =
∂gνσ
∂xµ

− Γµν,σ − Γµσ,ν .

Adding these and subtracting (93.3) we have

Kµσ,ν + Kνσ,µ − Kµν,σ =
1

2

(
∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
− Γµν,σ. (93.4)

Let
Sµν,σ = Kµν,σ − Kµσ,ν − Kνσ,µ. (93.5)

Then (93.4) becomes

Γµν,σ = [µν, σ] + Sµν,σ,

so that, raising the suffix,

Γσµν = {µν, σ}+ Sσµν . (93.6)

If Kµν,σ has the particular form gµνκσ,

Sσµν = gµνκ
σ − gσµκν − gσνκµ,
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so that (93.6) reduces to (86.2) with Γσµν =

∗{µν, σ}.
Thus Weyl’s geometry is a particular case of our general

geometry of parallel displacement. His restriction Kµν,σ = gµνκσ

is equivalent to that already explained in § 84.
The formula Γσµν = {µν, σ}+Sσµν enables us to pass easily from

results obtained in metrical geometry to the corresponding
results in affine geometry. For example, corresponding to a
tensor Aµν we know that there is a tensor Aµνσ given by

Aµνσ =
∂Aµν
∂xσ

− {µσ, ϵ}Aϵν − {νσ, ϵ}Aµϵ. (93.7)

It follows at once that corresponding to an in-tensor Aµν

there will be an in-tensor (Aµν)σ given by

(Aµν)σ =
∂Aµν
∂xσ

− ΓϵµσAϵν − ΓϵνσAµϵ, (93.71)

since the difference of (93.7) and (93.71) is seen to be a tensor.
But in developing an affine geometry in which metrical

conceptions play no part, it is not very satisfactory to prove
our theorems by introducing a provisional metric which is
ultimately eliminated. The proofs are valid, but they remind
us of conceptions which we wish to keep out of our heads.

It is therefore desirable to notice that the operation of
affine (or in-covariant) differentiation can be introduced
without reference to any metric, provisional or otherwise. In
a vector-field the difference between the actual vector Aµ+dAµ
at xµ+ dxµ and the vector Aµ+ δAµ at the same point equivalent
to Aµ at xµ, is a vector. Hence by (91.1)

dAµ + ΓµναA
αdxν

is a vector. It follows that
∂Aµ

∂xν
+ ΓµναA

α, (93.8)

is a tensor, which we shall call the affine derivative of Aµ

and denote by (Aµ)ν. Affine derivatives of other kinds of
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tensors are defined by the rules, (a) the affine derivative of
an invariant is its ordinary derivative, (b) the affine derivative
of a product is formed by the usual distributive rule. These
rules secure that the quantities so defined are tensors. E.g.
∂

∂xσ
(AµνB

µCν) = (AµνB
µCν)σ by Rule (a)

= (Aµν)σB
µCν +Aµν(B

µ)σC
ν +AµνB

µ(Cν)σ by Rule (b).
Substituting for (Bµ)σ and (Cν)σ according to (93.8), we find
that (Aµν)σ is the expression (93.71).

It will be found that
((Aµ)ν)σ − ((Aµ)σ)ν) =

∗Bϵ
µνσAϵ, (93.9)

giving an immediate proof that ∗Bϵ
µνσ is an in-tensor (cf. (34.3)).

Although there is no constant relation between tensors
and corresponding tensor-densities when the metrical quan-
tity √

−g does not exist, nevertheless tensor-densities appear in
the affine calculus indepenfiently of any metrical conceptions.
This is because there exists a purely numerical tensor-den-
sity Eαβγδ = ϵαβγδ (49.51) which obviously has no reference to a
particular metric.

Affine derivatives of tensor-densities may be formed, thus

(Aµν)σ =
∂Aµν

∂xσ
+ ΓµϵσA

ϵν + ΓνϵσA
µϵ − ΓϵϵσA

µν , (93.91)

corresponding to

Aµνσ =
∂Aµν

∂xσ
+ {ϵσ, µ}Aϵν + {ϵσ, ν}Aµϵ − {ϵσ, ϵ}Aµν , (93.92)

in the metrical calculus.
It is not difficult to verify that there exists a cyclic relation

between the affine derivatives of the generalised Riemann-
Christoffel tensor, which corresponds to (52.6), viz.

(∗Bϵ
µνσ)τ + (∗Bϵ

µστ )ν + (∗Bϵ
µτν)σ = 0 (93.93)

The tensor 2Kµν,σ introduced in (93.3) has now a simple
geometrical interpretation as the affine derivative of gµν.
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94. Evaluation of the fundamental in-tensors.

In (92.41) ∗Bϵ
µνσ is expressed in terms of the non-tensor

quantities Γσµν. By means of (93.6) it can now be expressed
in terms of tensors gµν and Sσµν. Making the substitution the
result is

∗Bϵ
µνσ = − ∂

∂xσ
{µν, ϵ}+ ∂

∂xν
{µσ, ϵ}+ {µσ, α}{να, ϵ} − {µν, α}{σα, ϵ}

− ∂

∂xσ
Sϵµν +

∂

∂xν
Sϵµσ + Sαµσ{να, ϵ}+ Sϵνα{µσ, α} − Sαµν{σα, ϵ} − Sϵσα{µν, α}

+ SαµσS
ϵ
να − SαµνS

ϵ
σα.

The first four terms give the ordinary Riemann-Christoffel
tensor (34.4). The next six terms reduce to

−(Sϵµν)σ + (Sϵµσ)ν ,

where the final suffix represents ordinary covariant differen-
tiation (not in-covariant differentiation), viz. by (30.4),

(Sϵµν)σ =
∂

∂xσ
Sϵµν − {µσ, α}Sϵαν − {νσ, α}Sϵµα + {ασ, ϵ}Sαµν .

Hence
∗Bϵ

µνσ = Bϵ
µνσ − (Sϵµν)σ + (Sϵµσ)ν + SανσS

ϵ
να − SαµνS

ϵ
σα. (94.1)

This form makes its tensor-property obvious, whereas the
form (92.41) made its “in-” property obvious.

We next contract by setting ϵ = σ and write

Sαµα = 2κµ, (94.2)

obtaining
∗Gµν = Gµν − (Sαµν)α + 2κµν + SαµβS

β
να − 2καS

α
µν . (94.3)

Again, multiplying by gµν,
∗G = G+ 2λαα + 2καα + 4καλ

α + Sαβγ Sγα,β, (94.4)
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where we have set

Sαα,µ = −2λµ. (94.5)

The difference between (94.5) and (94.2) is that λµ is formed
by equating the two symmetrical suffixes, and κµ by equating
one of the symmetrical suffixes with the third suffix in the
S-tensor. κµ and λµ are, of course, entirely different vectors.

The only term on the right of (94.3) which is not symmet-
rical in µ and ν is 2κµν. We write

Rµν = Gµν + (κµν + κνµ)− (Sαµν)α − 2καS
α
µν + SαµβS

β
να, (94.61)

Fµν = κµν − κνµ, (94.62)

so that
∗Gµν = Rµν + Fµν , (94.63)

and Rµν and Fµν are respectively its symmetrical and antisym-
metrical parts. Evidently Rµν and Fµν will both be in-tensors.

We can also set
∗Bµνσϵ = Rµνσϵ + Fµνσϵ,

where R is antisymmetrical and F is symmetrical in µ and ϵ.
We find that

Fµνσϵ = (Kµϵ,ν)σ − (Kµϵ,σ)ν ,

a result which is of interest in connection with the discussion
of § 84. But Rµνσϵ and Fµνσϵ are not in-tensors, since the gµν

are needed to lower the suffix ϵ.
By (92.5) and (93.6)

Γµ = Γαµα = {µα, α}+ Sαµα

=
∂

∂xµ
(log

√
−g) + 2κµ. (94.7)

By comparison with (92.7) we see that the indeterminate
function Ω is log

√
−g, which is not an invariant.
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95. The natural gauge of the world.

We now introduce the natural gauge of the world. The
tensor gµν, which has hitherto been arbitrary, must be chosen
so that the lengths of displacements agree with the lengths
determined by measurements made with material and optical
appliances. Any apparatus used to measure the world is itself
part of the world, so that the natural gauge represents the
world as self-gauging. This can only mean that the tensor gµν
which defines the natural gauge is not extraneous, but is a
tensor already contained in the world-geometry. Only one
such tensor of the second rank has been found, viz. ∗Gµν.
Hence natural length is given by

l2 = ∗GµνA
µAν .

The antisymmetrical part drops out, giving

l2 = RµνA
µAν .

Accordingly by (93.12) we must take

λgµν = Rµν , (95.1)

introducing a universal constant λ, in order to remain free
to use the centimetre instead of the natural unit of length
whose ratio to familiar standards is unknown.

The manner in which the tensor Rµν is transferred via
material structure to the measurements made with material
structure, has been discussed in § 66. We have to replace the
tensor Gµν used in that section by its more general form Rµν,
since Gµν is not an in-tensor and has no definite value until
after the gauging-equation (95.1) has been laid down. The gist
of the argument is as follows—

First adopt any arbitrary conventional gauge which has
no relation to physical measures. Let the displacement Aµ

represent the radius in a given direction of some specified unit



CH. VII THE NATURAL GAUGE OF THE WORLD 389
of material structure—e.g. an average electron, an average
oxygen atom, a drop of water containing 1020 molecules at
temperature of maximum density. Aµ is determined by laws
which are in the main unknown to us. But just as we can
often determine the results of unknown physical laws by the
method of dimensions, after surveying the physical constants
which can enter into the results, so we can determine the
condition satisfied by Aµ by surveying the world-tensors at
our disposal. This method indicates that the condition is

RµνA
µAν = constant. (95.11)

If now we begin to make measures of the world, using the
radius of such a material structure as unit, we are thereby
adopting a gauge-system in which the length l of the radius
is unity, i.e.

1 = l2 = gµνA
µAν . (95.12)

By comparing (95.11) and (95.12) it follows that gµν must be a
constant multiple of Rµν; accordingly we obtain (95.1)*.

Besides making comparisons with material units, we can
also compare the lengths of displacements by optical devices.
We must show that these comparisons will also fit into the
gauge-system (95.1). The light-pulse diverging from a point of
space-time occupies a unique conical locus. This locus exists
independently of gauge and coordinate systems, and there
must therefore be an in-tensor equation defining it. The only
in-tensor equation giving a cone of the second degree is

Rµν dxµ dxν = 0. (95.21)

Comparing this with Einstein’s formula for the light-cone
ds2 = gµν dxµ dxν = 0. (95.22)

*Note that the isotropy of the material unit or of the electron is
not necessarily a symmetry of form but an independence of orien-
tation. Thus a metre-rule has the required isotropy because it has
(conventionally) the same length however it is orientated.
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We see that again

Rµν = λgµν . (95.23)

Note however that the optical comparison is less stringent
than the material comparison; because (95.21) and (95.22)

would be consistent if λ were a function of position, whereas
the material comparisons require that it shall be a universal
constant. That is why Weyl’s theory of gauge-transformation
occupies a position intermediate between pure mathematics
and physics. He admits the physical comparison of length
by optical methods, so that his gauge-transformations are
limited to those which do not infringe (95.23); but he does
not recognise physical comparison of length by material
transfer, and consequently he takes λ to be a function fixed
by arbitrary convention and not necessarily a constant. There
is thus both a physical and a conventional element in his
“length.”

A hybrid gauge, even if illogical, may be useful in some
problems, particularly if we are describing the electromag-
netic field without reference to matter, or preparatory to the
introduction of matter. Even without matter the electromag-
netic field is self-gauging to the extent of (95.23), λ being a
function of position; so that we can gauge our tensors to
this extent without tackling the problem of matter. Many
of Weyl’s in-tensors and in-invariants are not invariant for
the unlimited gauge-transformations of the generalised the-
ory, but they become determinate if optical gauging alone is
employed; whereas the ordinary invariant or tensor is only
determinate in virtue of relations to material standards. In
particular Fµν is not a complete in-tensor-density, but it has
a self-contained absolute meaning, because it measures the
electromagnetic field and at the same time electromagnetic
fields (light-waves) suffice to gauge it. It may be contrasted
with F µν which can only be gauged by material standards;
F µν has an absolute meaning, but the meaning is not self-con-
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tained. For this reason problems will arise for which Weyl’s
more limited gauge-transformations are specially appropri-
ate; and we regard the generalised theory as supplementing
without superseding his theory.

Adopting the natural gauge of the world, we describe its
condition by two tensors gµν and Kσ

µν. If the latter vanishes
we recognise nothing but gµν, i.e. pure metric. Now metric
is the one characteristic of space. I refer, of course, to
the conception of space in physics and in everyday life—the
mathematician can attribute to his space whatever properties
he wishes. If Kσ

µν does not vanish, then there is something
else present not recognised as a property of pure space; it
must therefore be attributed to a “thing*.” Thus if there is
no “thing” present, i.e. if space is quite empty, Kσ

µν = 0, and
by (94.61) Rµν reduces to Gµν. In empty space the gauging-
equation becomes accordingly

Gµν = λgµν , (95.3)

which is the law of gravitation (37.4). The gauging-equation
is an alias of the law of gravitation.

We see by (66.2) that the natural unit of length (λ = 1)
is 1/

√
3 times the radius of curvature of the world in any

direction in empty space. We do not know its value, but it
must obviously be very large.

One reservation must be made with regard to the defini-
tion of empty space by the condition Kσ

µν = 0. It is possible
that we do not recognise Kσ

µν by any physical experiment, but
only certain combinations of its components. In that case
definite values of Kσ

µν would not be recognised as constituting
a “thing,” if the recognisable combinations of its components
vanished; just as finite values of κµ do not constitute an

*An electromagnetic field is a “thing”; a gravitational field is not,
Einstein’s theory having shown that it is nothing more than the
manifestation of the metric.
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electromagnetic field, if the curl vanishes. This does not
affect the validity of (95.3), because any breach of this equa-
tion is capable of being recognised by physical experiment,
and therefore would be brought about by a combination of
components of Kσ

µν which had a physical significance.

96. The principle of identification.

In §§ 91–93 we have developed a pure geometry, which
is intended to be descriptive of the relation-structure of the
world. The relation-structure presents itself in our experience
as a physical world consisting of space, time and things. The
transition from the geometrical description to the physical
description can only be made by identifying the tensors
which measure physical quantities with tensors occurring in
the pure geometry; and we must proceed by inquiring first
what experimental properties the physical tensor possesses,
and then seeking a geometrical tensor which possesses these
properties by virtue of mathematical identities.

If we can do this completely, we shall have constructed
out of the primitive relation-structure a world of entities
which behave in the same way and obey the same laws as
the quantities recognised in physical experiments. Physical
theory can scarcely go further than this. How the mind has
cognisance of these quantities, and how it has woven them
into its vivid picture of a perceptual world, is a problem of
psychology rather than of physics.

The first step in our transition from mathematics to
physics is the identification of the geometrical tensor Rµν

with the physical tensor gµν giving the metric of physical
space and time. Since the metric is the only property of
space and time recognised in physics, we may be said to have
identified space and time in terms of relation-structure. We
have next to identify “things,” and the physical description of
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“things” falls under three heads.

(1) The energy-tensor T νµ comprises the energy momentum
and stress in unit volume. This has the property of conserva-
tion (T νµ )ν = 0, which enables us to make the identification

−8πT νµ = Gν
µ − 1

2
gνµ(G− 2λ), (96.1)

satisfying the condition of conservation identically. Here
λ might be any constant; but if we add the usual convention
that the zero-condition from which energy, momentum and
stress are to be reckoned is that of empty space (not con-
taining electromagnetic fields), we obtain the condition for
empty space by equating (96.1) to zero, viz.

Gµν = λgµν ,

so that λ must be the same constant as in (95.3).
(2) The electromagnetic force-tensor Fµν has the property

that it fulfils the first half of Maxwell’s equations
∂Fµν
∂xσ

+
∂Fνσ
∂xµ

+
∂Fσµ
∂xν

= 0. (96.2)

This will be an identity if Fµν is the curl of any covariant
vector; we accordingly identify it with the in-tensor already
called Fµν in anticipation, which we have seen is the curl of a
vector κµ (94.62).

(3) The electric charge-and-current vector Jµ has the
property of conservation of electric charge, viz.

Jµµ = 0.

The divergence of Jµ will vanish identically if Jµ is itself
the divergence of any antisymmetrical contravariant tensor.
Accordingly we make the identification

Jµ = F µν
ν , (96.3)
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a formula which satisfies the remaining half of Maxwell’s
equations.

The correctness of these identifications should be checked
by examining whether the physical tensors thus defined have
all the properties which experiment requires us to attribute
to them. There is, however, only one further general physical
law, which is not implicit in these definitions, viz. the law of
mechanical force of an electromagnetic field. We can only
show in an imperfect way that our tensors will conform to this
law, because a complete proof would require more knowledge
as to the structure of an electron; but the discussion of § 80
shows that the law follows in a very plausible way.

In identifying “things” we have not limited ourselves to
in-tensors, because the “things” discussed in physics are in
physical space and time and therefore presuppose the natural
gauge-system. The laws of conservation and Maxwell’s
equations, which we have used for identifying “things,”
would not hold true in an arbitrary gauge-system.

No doubt alternative identifications would be conceivable.
For example, Fµν might be identified with the curl of λµ*
instead of the curl of κµ. That would leave the fundamental
in-tensor apparently doing nothing to justify its existence.
We have chosen the most obvious identifications, and it
seems reasonable to adhere to them, unless a crucial test
can be devised which shows them to be untenable. In any
case, with the material at our disposal the number of possible
identifications is very limited.

*The curl of λµ is not an in-tensor, but there is no obvious reason
why as in-tensor should be required. If magnetic flux were measured
in practice by comparison with that of a magneton transferred from
point to point, as a length is measured by transfer of a scale, then an
in-tensor would be needed. But that is not the actual procedure.
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97. The bifurcation of geometry and electrodynamics.

The fundamental in-tensor ∗Gµν breaks up into a symmet-
rical part Rµν and an antisymmetrical part Fµν. The former
is λgµν, or if the natural unit of length (λ = 1) is used, it is
simply gµν. We have then

∗Gµν = gµν + Fµν ,

showing at once how the field or aether contains two
characteristics, the gravitational potential (or the metric)
and the electromagnetic force. These are connected in
the most simple possible way in the tensor descriptive
of underlying relation-structure; and we see in a general
way the reason for this inevitable bifurcation into sym-
metrical and antisymmetrical—geometrical-mechanical and
electromagnetic—characteristics.

Einstein approaches these two tensors from the physical
side, having recognised their existence in observational phe-
nomena. We here approach them from the deductive side
endeavouring to show as completely as possible that they
must exist for almost any kind of underlying structure. We
confirm his assumption that the interval ds2 is an absolute
quantity, for it is our in-invariant Rµν dxµ dxν; we further con-
firm the well-known property of Fµν that it is the curl of a
vector.

We not only justify the assumption that natural geometry
is Riemannian geometry and not the ultra-Riemannian ge-
ometry of Weyl, but we can show a reason why the quadratic
formula for the interval is necessary. The only simple absolute
quantity relating to two points is

∗Gµν dxµ dxν .

To obtain another in-invariant we should have to proceed to
an expression like

∗Bρ
µνσ

∗Bσ
λτρ dxµ dxν dxλ dxτ .
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Although the latter quartic expression does theoretically ex-
press some absolute property associated with the two points,
it can scarcely be expected that we shall come across it
in physical exploration of the world so immediately as the
former quadratic expression.

It is the new insight gained on these points which is the
chief advantage of the generalised theory.

98. General relation-structure.

We proceed to examine more minutely the conceptions on
which the fundamental axioms of parallel displacement and
affine geometry depend.

The fundamental basis of all things must presumably have
structure and substance. We cannot describe substance; we
can only give a name to it. Any attempt to do more than
give a name leads at once to an attribution of structure.
But structure can be described to some extent; and when
reduced to ultimate terms it appears to resolve itself into a
complex of relations. And further these relations cannot be
entirely devoid of comparability; for if nothing in the world
is comparable with anything else, all parts of it are alike in
their unlikeness, and there cannot be even the rudiments of
a structure.

The axiom of parallel displacement is the expression of
this comparability, and the comparability postulated seems
to be almost the minimum conceivable. Only relations
which are close together, i.e. interlocked in the relation-
structure, are supposed to be comparable, and the conception
of equivalence is applied only to one type of relation. This
comparable relation is called displacement. By representing
this relation graphically we obtain the idea of location in
space; the reason why it is natural for us to represent this
particular relation graphically does not fall within the scope
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of physics.

Thus our axiom of parallel displacement is the geometrical
garb of a principle which may be called “the comparability of
proximate relations.”

There is a certain hiatus in the arguments of the relativity
theory which has never been thoroughly explored. We refer
all phenomena to a system of coordinates; but do not explain
how a system of coordinates (a method of numbering events
for identification) is to be found in the first instance. It may
be asked, What does it matter how it is found, since the
coordinate-system fortunately is entirely arbitrary in the rel-
ativity theory? But the arbitrariness of the coordinate-system
is limited. We may apply any continuous transformation;
but our theory does not contemplate a discontinuous trans-
formation of coordinates, such as would correspond to a
re-shuffling of the points of the continuum. There is some-
thing corresponding to an order of enumeration of the points
which we desire to preserve, when we limit the changes of
coordinates to continuous transformations.

It seems clear that this order which we feel it necessary
to preserve must be a structural order of the points, i.e. an
order determined by their mutual relations in the world-
structure. Otherwise the tensors which represent structural
features, and have therefore a possible physical significance,
will become discontinuous with respect to the coordinate
description of the world. So far as I know the only attempt
to derive a coordinate order from a postulated structural
relation is that of Robb*; this appears to be successful in the
case of the “special” theory of relativity, but the investigation
is very laborious. In the general theory it is difficult to discern
any method of attacking the problem. It is by no means
obvious that the interlocking of relations would necessarily be

*The Absolute Relations of Time and Space (Camb. Univ. Press). He
uses the relation of “before and after.”
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such as to determine an order reducible to the kind of order
presumed in coordinate enumeration. I can throw no light on
this question. It is necessary to admit that there is something
of a jump from the recognition of a comparable relation
called displacement to the assumption that the ordering of
points by this relation is homologous with the ordering
postulated when the displacement is represented graphically
by a coordinate difference dxµ.

The hiatus probably indicates something more than a
temporary weakness of the rigorous deduction. It means
that space and time are only approximate conceptions, which
must ultimately give way to a more general conception of
the ordering of events in nature not expressible in terms of a
four-fold coordinate-system. It is in this direction that some
physicists hope to find a solution of the contradictions of the
quantum theory. It is a fallacy to think that the conception of
location in space-time based on the observation of large-scale
phenomena can be applied unmodified to the happenings
which involve only a small number of quanta. Assuming that
this is the right solution it is useless to look for any means
of introducing quantum phenomena into the later formulae
of our theory; these phenomena have been excluded at the
outset by the adoption of a coordinate frame of reference.

The relation of displacement between point-events and the
relation of “equivalence” between displacements form parts
of one idea, which are only separated for convenience of
mathematical manipulation. That the relation of displace-
ment between A and B amounts to such-and-such a quantity
conveys no absolute meaning; but that the relation of dis-
placement between A and B is “equivalent” to the relation
of displacement between C and D is (or at any rate may
be) an absolute assertion. Thus four points is the minimum
number for which an assertion of absolute structural relation
can be made. The ultimate elements of structure are thus
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four-point elements. By adopting the condition of affine
geometry (91.3), I have limited the possible assertion with
regard to a four-point element to the statement that the four
points do, or do not, form a parallelogram. The defence of
affine geometry thus rests on the not unplausible view that
four-point elements are recognised to be differentiated from
one another by a single character, viz. that they are or are
not of a particular kind which is conventionally named paral-
lelogramical. Then the analysis of the parallelogram property
into a double equivalence of AB to CD and AC to BD, is
merely a definition of what is meant by the equivalence of
displacements.

I do not lay overmuch stress on this justification of affine
geometry. It may well happen that four-point elements are
differentiated by what might be called trapezoidal characters
in which the pairs of sides are not commutable; so that we
could distinguish an element ABCD trapezoidal with respect
to AB, CD from one trapezoidal with respect to AC, BD. I
am quite prepared to believe that the affine condition may
not always be fulfilled—giving rise to new phenomena not
included in this theory. But it is probably best in aiming at
the widest generality to make the generalisation in successive
steps, and explore each step before ascending to the next.

In reference to the difficulties encountered in the most
general description of relation-structure, the possibility may
be borne in mind that in physics we have not to deal with
individual relations but with statistical averages; and the
simplifications adopted may have become possible because of
the averaging.

99. The tensor B.

Besides furnishing the two tensors gµν and Fµν of which
Einstein has made good use, our investigation has dragged
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up from below a certain amount of apparently useless lumber.
We have obtained the full tensor ∗Bϵ

µνσ which has not been
used except in the contracted form—that is to say certain
components have been ignored entirely, and others have not
been considered individually but as sums. Until the problem
of electron-structure is more advanced it is premature to reject
finally any material which could conceivably be relevant;
although at present there is no special reason for anticipating
that the full tensor will be helpful in constructing electrons.

Accordingly in the present state of knowledge the ten-
sor ∗Bϵ

µνσ cannot be considered to be a physical quantity; it
contains a physical quantity ∗Gµν. Two states of the world
which are described by different ∗Bϵ

µνσ but the same ∗Gµν are
so far as we know identical states; just as two configurations
of events described by different coordinates but the same
intervals are identical configurations. If this is so, the Γµνα

must be capable of other transformations besides coordinate
transformations without altering anything in the physical
condition of the world.

Correspondingly the tensor Kσ
µν can take any one of an

infinite series of values without altering the physical state
of the world. It would perhaps be possible to show that
among these values is gµνκ

σ, which gives Weyl’s geometry;
but I am not sure that it necessarily follows. It has been
suggested that the occurrence of non-physical quantities in
the present theory is a drawback, and that Weyl’s geometry
which contains precisely the observed number of “degrees of
freedom” of the world has the advantage. For some purposes
that may be so, but not for the problems which we are
now considering. In order to discuss why the structure of
the world is such that the observed phenomena appear, we
must necessarily compare it with other structures of a more
general type; that involves the consideration of “non-physical”
quantities which exist in the hypothetical comparison-worlds,
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but are not of a physical nature because they do not exist
in the actual world. If we refuse to consider any condition
which is conceivable but not actual, we cannot account for
the actual; we can only prescribe it dogmatically.

As an illustration of what is gained by the broader stand-
point, we may consider the question why the field is described
by exactly 14 potentials. Our former explanation attributed
this to the occurrence of 14 variables in the most general
type of geometry. We now see that this is fallacious and
that a natural generalisation of Riemannian geometry admits
40 variables; and no doubt the number could be extended.
The real reason for the 14 potentials is because, even admit-
ting a geometry with 40 variables, the fundamental in-tensor
of the second rank has 14 variables; and it is the in-tensor (a
measure of the physical state of the world) not the world-
geometry (an arbitrary graphical representation of it) which
determines the phenomena.

The “lumber” which we have found can do no harm, If
it does not affect the structure of electrons or quanta, then
we cannot be aware of it because we are unprovided with
appliances for detecting it, if it does affect their structure then
it is just as well to have discovered it. The important thing
is to keep it out of problems to which it is irrelevant, and
this is easy since ∗Gµν extracts the gold from the dross. It is
quite unnecessary to specialise the possible relation-structure
of the world in such a way that the useless variables have the
fixed value zero; that loses sight of the interesting result that
the world will go on just the same if they are not zero.

We see that two points of view may be taken—
(1) Only those things exist (in the physical meaning of the

word) which could be detected by conceivable experiments.
(2) We are only aware of a selection of the things which

exist (in an extended meaning of the word), the selection
being determined by the nature of the apparatus available for
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exploring nature.

Both principles are valuable in their respective spheres. In
the earlier part of this book the first has been specially useful
in purging physics from metaphysical conceptions. But when
we are inquiring why the structure of the world is such that
just gµν and κµ appear and nothing else, we cannot ignore the
fact that no structure of the world could make anything else
appear if we had no cognizance of the appliances necessary
for detecting it. Therefore there is no need to insert, and
puzzle over the cause of, special limitations on the world-
structure, intended to eliminate everything which physics is
unable to determine. The world-structure is clearly not the
place in which the limitations arise.

100. Dynamical consequences of the general prop-
erties of world-invariants.

We shall apply the method of § 61 to world-invariants
containing the electromagnetic variables. Let K be a scalar-
density which is a function of gµν, Fµν, κµ, and their derivatives
up to any order, so that for a given region∫

K dτ is an invariant.

It would have been possible to express Fµν in terms of the
derivatives of κµ; but in this investigation we keep it separate,
because special attention will be directed to the case in which
K does not contain the κµ themselves but only their curl, so
that it depends on gµν and Fµν only.

By partial integration we obtain as in § 61

δ

∫
K dτ =

∫
(Pµν δgµν − Hµν δFµν +Qµ δκµ) dτ, (100.1)

for variations which vanish at the boundary of the region.
Here

P µν =
hK
hgµν

, Hµν = − hK
hFµν

, Qµ =
hK
hκµ

, (100.2)
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and P µν is a symmetrical tensor, Hµν an antisymmetrical
tensor.

We have

Hµν δFµν = Hµν
(
∂(δκµ)

∂xν
− ∂(δκν)

∂xµ

)
= 2Hµν

∂(δκµ)

∂xν

= −2 ∂Hµν

∂xν
δκµ

rejecting a complete differential,

= −2Hµνν δκµ by (51.52).

Hence

δ

∫
K dτ =

∫ {
Pµν δgµν + (2Hµνν +Qµ) δκµ

}
dτ. (100.3)

Now suppose that the δgµν and δκµ arise solely from
arbitrary variations δxα of the coordinate-system in accordance
with the laws of transformation of tensors and vectors. The
invariant will not be affected, so that its variation vanishes.
By the same process as in obtaining (61.3) we find that the
change of δκµ, for a comparison of points having the same
coordinates xα in both the original and varied systems, is

−δκµ = κα
∂(δxα)

∂xµ
+
∂κµ
∂xα

δxα.

Hence

−(Qµ + 2Hµνν ) δκµ =

{
∂κµ
∂xα

(Qµ + 2Hµνν )− ∂

∂xµ

{
κα(Q

µ + 2Hµνν )
}}

δxα

rejecting a complete differential. Since ∂Hµνν /∂xµ ≡ 0 (73.76),
this becomes {

Fµα(Q
µ + 2Hµνν )− καQ

µ
µ

}
.
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Using the previous reduction for δgµν (61.4), our equation (100.3)

reduces to
0 =

∫ {
2Pν

αν − Fµα(Q
µ + 2Hµνν ) + καQ

µ
µ

}
δxα dτ (100.41)

for all arbitrary variations δxα which vanish at the boundary
of the region. Accordingly we must have identically

Pν
αν = FµαH

µν
ν + 1

2
FµαQ

µ − 1
2
καQ

µ
µ

or, dividing by √
−g, and changing dummy suffixes,
P ν
µν = −FµνHνσ

σ − 1
2
(FµνQ

ν + κµQ
ν
ν). (100.42)

First consider the case when K is a function of gµν and Fµν

only, so that Qµ = 0. The equation
P ν
µν = −FµνHνσ

σ (100.43)

at once suggests the equations of the mechanical force of an
electromagnetic field

Mν
µν = −hµ = −FµνJν = −FµνF νσ

σ .

It has already become plain that anything recognised in
physics as an energy-tensor must be of the nature of a
Hamiltonian derivative of some invariant with respect to gµν;
and the property of conservation has been shown to depend
on this fact. We now see that the general theory of invariants
also predicts the type of the reaction of any such derived tensor to
the electromagnetic field, viz. that its conservation is disturbed
by a ponderomotive force of the type FµνH

νσ
σ .

If we identify P ν
µ with the material energy-tensor, Hµν

ν must
be identified with the charge-and-current vector*, so that

Jµ = Hµν
ν , (100.44)

*This definition of electric charge through the mechanical effects
experienced by charged bodies corresponds exactly to the definition
employed in practice. Our previous definition of it as Fµν

ν corresponded
to a measure of the strength of the singularity in the electromagnetic
field.
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which is the general equation given in (82.2). It follows
without any further specialisation that electric charge must
be conserved (Jµµ = 0).

The foregoing investigation shows that the antisymmetric
part of the principal world-tensor will manifest itself in
our experience by producing the effects of a force. This
force will act on a certain stream-vector (in the manner that
electromagnetic force acts on a charge and current); and
further this stream-vector represents the flow of something
permanently conserved. The existence of electricity and the
qualitative nature of electrical phenomena are thus predicted.

In considering the results of substituting a particular func-
tion for K, it has to be remembered that the equation (100.42)

is an identity. We shall not obtain from it any fresh law
connecting gµν and κµ. The final result after making the
substitutions will probably be quite puerile and unworthy of
the powerful general method employed. The interest lies
not in the identity itself but in the general process of which
it is the result. We have seen reason to believe that the
process of Hamiltonian differentiation is actually the process
of creation of the perceptual world around us, so that in
this investigation we are discovering the laws of physics by
examining the mode in which the physical world is created.
The identities expressing these laws may be trivial from the
mathematical point of view when separated from the context;
but the present mode of derivation gives the clue to their
significance in our experience as fundamental laws of nature*.

To agree with Maxwell’s theory it is necessary to have
Hµν = F µν. Accordingly by (100.2) the invariant K should
contain the term − 1

2
F µνFµν. The only natural way in which this

*The definitive development of the theory ends at this point. From
here to the end of § 102 we discuss certain possibilities which may be
on the track of further progress; but there is no certain guidance, and
it may be suspected that the right clue is still lacking.
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can be combined linearly with other terms not containing Fµν

is in one of the invariants 1
2

∗Gµν
∗Gνµ or − 1

2
∗Gµν

∗Gµν. We take

K = 1
2

∗Gµν
∗Gνµ

= 1
2
(Rµν + Fµν)(R

νµ + F νµ)

= 1
2
(RµνR

µν − FµνF
µν) (100.5)

by the antisymmetric properties of Fµν.
The quantity Rµν can be expressed as a function of the

variables in two ways, either by the gauging-equation

Rµν = λgµν

or by the general expressions (87.5) and (94.61). If the first
form is adopted we obtain an identity, which, however, is
clearly not the desired relation of energy.

If we adopt the more general expression some care is
required. Presumably K should be an in-invariant-density if
it has the fundamental importance supposed. As written it is
not formally in-invariant in our generalised theory though it
is in Weyl’s theory. We can make it in-invariant by writing
RµνR

µν
√
−g in the form

gµαgνβRµνRαβ
√
−g,

where the gµν are to have the values for the natural gauge,
but in the in-tensor Rµν the general values for any gauge may
be used. The general theory becomes highly complicated,
and we shall content ourselves with the partially generalised
expression in Weyl’s theory, which will sufficiently illustrate
the procedure. In this case Rµν = λgµν, but λ is a variable
function of position. Accordingly RµνR

µν = 4λ2 = 1
4

∗G2, so that

K = 1
8
(∗G2 − 4FµνF

µν)
√
−g. (100.6)

Comparing with (90.1) we see that K is equivalent to the
action adopted by Weyl.
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This appears to throw light on the meaning of the combi-

nation of ∗G2 with FµνF
µν which we have recognised in (90.1) as

having an important significance. It is the degenerate form
in Weyl’s gauge of the natural combination ∗Gµν

∗Gνµ. The
alternation of the suffixes is primarily adopted as a trick to
obtain the required sign, but is perhaps justifiable.

If this view of the origin of (90.1) is correct, the constant α
must be equal to 4. Accordingly β = 1/2λ, and by (90.51) the
whole energy-tensor and the electromagnetic energy-tensor
are reduced to the same units in the expressions

Eµν , 8πλT µν . (100.7)

The numerical results obtainable from this conclusion will be
discussed in § 102.

In the discussion of § 90 it was assumed that P µν (=
hK/hgµν) vanished. I do not think there is any good reason
for introducing an arbitrary action-principle of this kind,
and it seems more likely that P µν will be a non-vanishing
energy-tensor.

This seems to leave a superfluity of energy-tensors, because
owing to the non-vanishing coefficient Qµ we have the term
(κµκν − 1

2
gµνκακ

α) in (90.51) which has to play some rôle. In
§ 90 this was supposed to be the material energy-tensor, but
I am inclined to think that it has another interpretation. In
order to liberate material energy we must relax the binding
forces of the electrons, allowing them to expand. Suppose
that we make a small virtual change of this kind. In addition
to the material energy liberated by the process there will be
another consequential change in the energy of the region.
The electron furnishes the standard of length, so that all
the gravitational energy will now have to be re-gauged. It
seems likely that the function of the term (κµκν − 1

2
gµνκακ

α) is
to provide for this change. If so, nothing hinders us from
identifying P µν with the true material energy-tensor.
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An attractive development of the theory has recently been

published by Einstein (Berlin. Sitzungsberichte, 1923, pp. 32,
76, 137). This development may be regarded as a substitute
for Weyl’s action-theory discussed in § 90, which aims at
relating the field-laws and field-tensors to a single regional
invariant. The theory is intensely formal as indeed all such
action-theories must be, and I cannot avoid the suspicion
that the mathematical elegance is obtained by a short cut
which does not lead along the direct route of real physical
progress. From a recent conversation with Einstein I learn
that he is of much the same opinion. Nevertheless, where the
path of progress is uncertain, it would be unwise to ignore
advance along any open route, and we shall give an account
of Einstein’s results, which appeal very strongly to those who
take a view of the problem before us slightly different from
that adopted by the author.

Let K be an invariant-density which is a function only of
the ∗Gµν, and let Pµν = ∂K/∂∗Gµν, so that

δK = Pµνδ∗Gµν . (100.8)

Einstein supposes that there exists an action K dτ which
has the stationary property for all variations of the affine
connection described by the coefficients Γαµν. Writing*

δ

∫
K dτ =

∫
hK

hΓαµν
δΓαµν dτ, (100.9)

*In a non-metrical geometry there is no fixed association of K
and K, and we have to introduce directly the Hamiltonian derivative
of an invariant-density, which was not provided for in the original
definition (60.43). Equation (100.9) gives the definition; to remove
ambiguity it should also be explicitly stated as part of the definition
that the Hamiltonian derivative with respect to a symmetrical quantity
is symmetrical and with respect to an antisymmetrical quantity is
antisymmetrical. I find that Prof. de Donder had already introduced
the name “Hamiltonian of K” for what I have called the Hamiltonian
derivative.
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the stationary condition is

hK

hΓαµν
= 0.

Inserting (92.42) in (100.8) and rejecting the complete dif-
ferential after the usual partial integration

δK =
∂Pµν

∂xα
δΓαµν −

∂Pµν

∂xν
δΓααµ+

Pµν(ΓαβµδΓ
β
αν + ΓβανδΓ

α
βµ − ΓαµνδΓ

β
βα − ΓββαδΓ

α
µν)

= δΓαµν

(
∂Pµν

∂xα
− δνα

∂Pµσ

∂xσ
+ ΓµαϵP

ϵν + ΓναϵP
µϵ − ΓββαP

µν − δναΓ
µ
στP

στ

)
,

by changing the dummy suffixes. This may be written

δK = δΓαµν{(Pµν)α − δνα(P
µσ)σ}, (100.10)

where (Pµν)α is the affine derivative, viz.

(Pµν)α = ∂Pµν/∂xα + ΓµαϵP
ϵν + ΓναϵP

µϵ − ΓββαP
µν . (100.11)

Since Γαµν ≡ δΓανµ, we must not make the coefficients of
these vanish independently but must set the sum of the
two coefficients equal to zero. The stationary property is
accordingly expressed by

(Pµν +Pνµ)α − δνα(P
µτ )σ − δµα(P

νσ)σ = 0. (100.12)

Einstein identifies Pµν with the sum of the tensor-densities
of the metrical and electromagnetic fields, these constituting
respectively its symmetrical and antisymmetrical parts; that
is to say,

Pµν = gµν + Fµν . (100.13a)

It will be seen that this is a departure from the author’s
identification of ∗Gµν with gµν+Fµν, although closely analogous.
Since Fµν is now identified through (100.13a) we must use
another symbol for the antisymmetrical part of ∗Gµν, viz.

∗Gµν = Rµν +Φµν . (100.13b)
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By (100.11) we see that for an antisymmetrical tensor

(Fµσ)σ = ∂Fµσ/∂xσ = Jµ.

Hence (100.12) becomes

2(gµν)α − δνα(g
µσ)σ − δµα(g

νσ)σ − δναJ
µ − δµαJ

ν = 0. (100.14)

Contract by setting ν = α; we obtain

−3(gµα)α − 3Jµ = 0,

so that (100.14) simplifies to

(gµν)α +
1
3
δναJ

µ + 1
3
δµαJ

ν = 0. (100.15)

From the comparison of covariant and affine derivatives
in (93.91) and (93.92), we have

(gµν)α − gµνα = Sµαϵg
ϵν + Sναϵg

µϵ − Sϵαϵg
µν , (100.16)

where
Sαµν = Γαµν − {µν, α}, (100.17)

as in (93.6). Since the covariant derivative of gµν vanishes
we have from (100.15) and (100.16), by lowering suffixes and
removing the density factor,

Sαν,µ + Sαµ,ν − gµνS
ϵ
αϵ +

1
3
gανJµ +

1
3
gαµJν = 0,

whence multiplying by gµν

Sϵαϵ =
1
3
Jα.

Accordingly

Sαν,µ + Sαµ,ν − 1
3
gµνJα +

1
3
gανJµ +

1
3
gαµJν = 0.

Solving these equations for the S-tensor

Sµν,α = 1
6
gανJµ +

1
6
gαµJν − 1

2
gµνJα.
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By (100.17) we now determine the coefficients of affine con-
nection in terms of familiar physical quantities

Γαµν = {µν, α}+ 1
6
gαν Jµ +

1
6
gαµJν − 1

2
gµνJ

α. (100.18)

Using this value in (92.42) or (94.3) we find after a little
reduction

Rµν = Gµν +
1
6
JµJν

Φµν =
1

6

(
∂Jµ
∂xν

− ∂Jν
∂xµ

)
.

 (100.19)

This solves the problem of determining ∗Gµν in terms of
ordinary physical variables identified by (100.13a).

Further progress will depend on assuming a special form
of K. It will be remembered that Weyl’s action-principle
led to two laws of nature expressed by (90.61) and (90.71). If
we think it probable that these are the actual laws of the
world we shall seek to identify K in such a manner that the
same laws will result from the present theory. The first step
is to connect Weyl’s laws with the symbols here employed.
Setting β = 4π as indicated by (90.71), the laws are

kµ = −4π

3
Jµ. (100.20)

Mµν =
3

4π
(kµkν − 1

2
gµνkαk

α) =
4π

3
(JµJν − 1

2
gµνJαJ

α). (100.21)

Hence

Tµν −Mµν = −8π{(Gµν − 1
2
gµν(G− 2λ)) + 1

6
(JµJν − 1

2
gµνJαJ

α)}

= −8π(Rµν − 1
2
gµν(R− 2λ)) by (100.19).

This difference between the whole energy-tensor and the
electronic energy-tensor must represent the Maxwellian en-
ergy-tensor Eµν. Hence Eµν = −8π(Rµν− 1

2
gµν(R−2λ)). Since E = 0,

we obtain by contraction R = 4λ. Again by (100.19) and (100.20)

Φµν = − 1

8π

(
∂kµ
∂xν

− ∂kν
∂xµ

)
= − 1

8π
Fµν .
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Hence Weyl’s laws correspond to the equations

Eµν = −8π(Rµν − λgµν)

Fµν = −8πΦµν .

 (100.22)

Now

δ(FµνF
µν) = (gµαgνβ/

√
−g)δ(FµνFαβ) + FµνFαβδ(gµαgνβ/

√
−g)

= FµνδF
µν + FαβδF

αβ

+ FµνFαβ(−gµαgνσgβτδgστ − gνβgµσgατδg
στ + 1

2
gµαgνβgστδg

στ )/
√
−g,

by (35.12) and (35.3)

= 2(FµνδF
µν + Eστδg

στ ) by (77.2).

But Eστδg
στ = Eστ

√
−gδgστ + Eστg

στδ(
√
−g) = Eστδg

στ , since E = 0.
Hence

− 1

16π
δ(FµνF

µν) = − 1

8π
(FµνδF

µν + Eµνδg
µν)

= (Rµνδg
µν +ΦµνδF

µν)− λgµνδg
µν .

Since gµνδg
µν = 2δ

√
−g this becomes (writing α = 32πλ)

− 1

16π
δ(−α

√
−g + FµνF

µν) = ∗GµνδP
µν . (100.23)

Einstein notes that associated with any density K there
will be another density K′ given by

K′ = K− ∗Gµν

∂K

∂∗Gµν

= K− ∗GµνP
µν . (100.24)

This “modified” density is scarcely less fundamental than the
original density. We have by (100.8) and (100.24)

δK = Pµνδ∗Gµν

−δK′ = ∗GµνδPµν

 (100.25)
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Comparing (100.23) and (100.25) it follows that

K′ =
1

16π
(−α

√
−g + FµνF

µν).

This is Einstein’s conclusion.
The α-term in K′, which seenis to be a rather unnatural

complication of the expression, arises from the cosmical λ-
term in the energy. It would be simpler if we could
dispense with the cosmical term, reverting to Einstein’s
original unclosed space. Since λ = 1

4
R, this would involve R =

0.
Hamiltonian derivatives with respect to Γαµν may be ex-

pected to represent quantities of fundamental significance in
regard to the structure of the world; derivatives with respect
to gµν and kµ should rather yield quantities which spring into
prominence in our perception of the world as the activity of
an electromagnetic process kµ working in a passive metric gµν.
Einstein has used the variation appropriate to his object—
the formulation of a controlling law of world-structure; the
author used the other variation since his aim was to discover
quantities conspicuous in current physics.

It is difficult to regard any invariant-density other than
the generalised volume (101.13) as ideally simple. We may
therefore inquire what would be the result if K is taken to
be √

−|∗Gµν |*.
Since K is then a homogeneous quadratic (but irrational)

function of the ∗Gµν we have by (100.24)

K′ = K− 2K = −K. (100.26)

Also writing ∆ = |∗Gµν |

Pµν = − 1

2
√
−∆

× (minor of ∗Gµν).

*Einstein originally started with the generalised volume and reached
equations (100.19); but in his third paper he proved the same equations
independently of the form of K. Thus the generalised volume is not
actually used in his discussion.
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By the properties of determinants the determinant of the
minors is equal to ∆3. Hence

|Pµν | = ∆3

16∆2
=

1

16
∆.

Hence

1
4
K =

√
−|Pµν | =

√
−|gµν + Fµν |

=
√

−|gµν + Fµν |.

The last step follows as in (49.11). Thus notwithstanding the
different identifications of the physical tensors by Einstein
and the author the generalised volume has the same identi-
fication in both discussions (except for the numerical factor)
and its evaluation in § 101 is still applicable. We shall insert
the factor λ in order that current units of length may be used
instead of the unknown natural unit; then if fourth powers
of Fµν are neglected, we have by (101.31)

1
4
K = (λ2 + 1

4
FµνF

µν)
√
−g,

or − K′ = 4λ2
√
−g + FµνF

µν . (100.27)

This differs from the previous identification of K′ only in the
coefficient of √

−g; and we have thus obtained quite naturally
a term of the right form to supply the cosmical term of the
energy. But it is joined with the wrong sign*.

The following is perhaps a permissible way of remedying
this difficulty of sign. The generalised volume is based on the
determinant

(4!)∆ = EαβγδEϵζηθ∗Gαϵ
∗Gβζ

∗Gγη
∗Gδθ

Let (4!)∆′ = EαβγδEϵζηθ∗Gαϵ
∗Gζβ

∗Gγη
∗Gθδ.

 (100.28)

*The difference of magnitude is of no consequence since it is
absorbed in the choice of unit of Fµν .
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which is also the square of an invariant-density, but is not a
determinant*.

The alternating expression ∆′ seems to be a no less natural
combination than ∆. To form a term which is quadratic in
the Fµν we must pick out 2 of the 4 factors ∗Gαϵ, etc., to
provide the Fµν. Clearly out of the 6 possible selections, 2
will have the same sign in ∆ and ∆′ and 4 will have opposite
signs. Thus in the sum the quadratic term is joined with
opposite signs in ∆ and ∆′, so that by substituting ∆′ for ∆

we obtain the sign which we require. We conclude that—
Provided the natural metrical and electromagnetic units

are such that fourth powers of the electromagnetic force
are beyond the range of observation, the present system of
field-laws (other than equations of definition) is summed up
in the condition that

δ

∫ √
−∆′ dτ = 0, (100.29)

for all small variations of the affine connection which vanish
at the bouridary of the region.

But, so far as I can see, the natural units do not satisfy the
proviso (§ 102), and the neglected fourth powers may cause
further trouble.

101. The generalised volume.

Admitting that ∗Gµν is the building-material with which
we have to construct the physical world, let us examine what
are the simplest invariants that can be formed from it. The
meaning of “simple” is ambiguous, and depends to some
extent on our outlook. I take the order of simplicity to
be the order in which the quantities appear in building the
physical world from the material ∗Gµν. Before introducing the

*My attention was called to this expression by Prof. B. Weitzen-
böck.
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process of gauging by which we obtain the gµν, and later (by
a rather intricate use of determinants) the gµν, we can form
in-invariants belonging respectively to a one-dimensional, a
two-dimensional and a four-dimensional domain.

(1) For a line-element (dx)µ, the simplest in-invariant is
∗Gµν (dx)

µ (dx)ν , (101.11)

which appears physically as the square of the length.
(2) For a surface-element dSµν, the simplest in-invariant is

∗Gµν dS
µν , (101.12)

which appears physically as the flux of electromagnetic force.
It may be remarked that this invariant, although formally
pertaining to the surface-element, is actually a property of
the bounding circuit only.

(3) For a volume-element dτ , the simplest in-invariant is

V =
√

−|∗Gµν | dτ, (101.13)

which has been called the generalised volume, but has not
yet received a physical interpretation.

We shall first calculate |∗Gµν | for Galilean coordinates.
Since

∗Gµν = λgµν + Fµν

we have on inserting the Galilean values

|∗Gµν | =

∣∣∣∣∣∣∣∣∣∣
−λ −γ β −X
γ −λ −α −Y

−β α −λ −Z
X Y Z λ

∣∣∣∣∣∣∣∣∣∣
= −

{
λ4 + λ2(α2 + β2 + γ2 −X2 − Y 2 − Z2)− (αX + βY + γZ)2

}
. (101.2)

The relation of the absolute unit of electromagnetic force
(which is here being used) to the practical unit is not yet
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known, but it seems likely that the fields used in laboratory
experiments correspond to small values of Fµν*. If this is
so we may neglect the fourth powers of Fµν and obtain
approximately

V =
√

−|∗Gµν | dτ =
{
λ2 + 1

2
(α2 + β2 + γ2 −X2 − Y 2 − Z2)

}
dτ

= (λ2 + 1
4
FµνF

µν) dτ by (77.3).

Since V is an invariant we can at once write down the result
for any other coordinate-system, viz.

V = (λ2 + 1
4
FµνF

µν)
√
−g dτ, (101.31)

or in the natural gauge Rµν = λgµν, this can be written

V = 1
4
(RµνR

µν + FµνF
µν)

√
−g dτ

= 1
4

∗Gµν
∗Gµν

√
−g dτ. (101.32)

Thus if the generalised volume is the fundamental in-invari-
ant from which the dynamical laws arise, we may expect
that our approximate experimental laws will pertain to the
invariant ∗Gµν

∗Gµν
√
−g dτ , which is a close approximation to it

except in very intense electromagnetic fields.
In (100.5) we took K = ∗Gµν

∗Gνµ. The alternation of the
suffixes seems to be essential if hK/hgµν is to represent the
material energy (or to be zero according to Weyl’s action-
principle). If we do not alternate the suffixes the Hamiltonian
derivative contains the whole energy-tensor plus the electro-
magnetic energy-tensor, whereas we must naturally attach
more significance to the difference of these two tensors. It
may, however, be noted that

∗Gµν
∗Gνµ = ∗Gµν

∗Gµν − κµν
h

hκµν
(∗Gµν

∗Gµν) (101.33)

*This is doubtful, since the calculations in the next section do not
bear it out.
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(variations of κµ being ignored except in so far as they
affect Fµν). It would seem therefore that the invariant K
previously discussed arises from V by the process of ignoration
of the coordinates κµ. Equation (101.33) represents exactly
the usual procedure for obtaining the modified Lagrangian
function in dynamics.

If this view is correct, that the invariants which give the
ordinary equations adopted in physics are really approxima-
tions to more accurate expressions based on the generalised
volume, it becomes possible to predict the second-order terms
which are needed to complete the equations currently used.
It will sufficiently illustrate this if we consider the corrections
to Maxwell’s equations suggested by this method.

Whereas in (79.32) we found that Jµ was the Hamiltonian
derivative of 1

4
F µνFµν ·

√
−g dτ , we now suppose that it is more

exactly the Hamiltonian derivative of √
−|∗Gµν | dτ with respect

to κµ*. We use Galilean (or natural) coordinates; and it is
convenient to use the notation of § 82 in which (a, b, c) takes
the place of (α, β, γ).

Let
∆ = −|∗Gµν | = λ4 + λ2(a2 + b2 + c2 −X2 − Y 2 − Z2)− S2,

where
S = aX + bY + cZ.

Then
δ(
√
∆) =

1√
∆
λ2

{(
a− SX

λ2

)
δa+ · · · −

(
X +

Sa

λ2

)
δX − · · ·

}
.

Take a permeability and specific inductive capacity given by

µ =
1

K =

√
∆

λ2
, (101.41)

so that
α = λ2a/

√
∆, P = λ2X/

√
∆,

*We consider only the variations of κµ as affecting Fµν .



CH. VII THE GENERALISED VOLUME 419
and let

S′ = S/
√
∆ = (αX + βY + γZ)/λ2. (101.42)

Then

δ(
√
∆) = (α−XS′) δ

(
∂H

∂y
− ∂G

∂z

)
+ · · ·

− (P + aS′) δ

(
−∂F
∂t

− ∂Φ

∂x

)
− · · ·

=

{
− ∂

∂t
(P + aS′)− ∂

∂z
(β − Y S′) +

∂

∂y
(γ − ZS′)

}
δF + · · ·

+

{
∂

∂x
(P + aS′) +

∂

∂y
(Q+ bS′) +

∂

∂z
(R+ cS′)

}
δ(−Φ),

rejecting a complete differential. Equating the coefficients to
the charge-and-current vector (σx, σy, σz, ρ) we have

σx +
∂

∂t
(P + aS′) =

∂

∂y
(γ − ZS′)− ∂

∂z
(β − Y S′),

ρ =
∂

∂x
(P + aS′) +

∂

∂y
(Q+ bS′) +

∂

∂z
(R+ cS′).

These reduce to the classical form
∂γ

∂y
− ∂β

∂z
=
∂P

∂t
+ σ′

∂P

∂x
+
∂Q

∂y
+
∂R

∂z
= ρ′

 (101.5)

provided that

σ′
x = σx +

∂(aS′)

∂t
+
∂(ZS′)

∂y
− ∂(Y S′)

∂z

ρ′ = ρ− ∂(aS′)

∂x
− ∂(bS′)

∂y
− ∂(cS′)

∂z

 (101.6)

These at once reduce to

σ′
x = σx + a

∂S′

∂t
+ Z

∂S′

∂y
− Y

∂S′

∂z

ρ′ = ρ− a
∂S′

∂x
− b

∂S′

∂y
− c

∂S′

∂z

 (101.7)
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The effect of the second-order terms is thus to make the
aether appear to have a specific inductive capacity and per-
meability given by (101.41) and also to introduce a spurious
charge and current given by (101.7).

This revision makes no difference whatever to the prop-
agation of light. Since √

µK is always unity, the velocity of
propagation is unaltered; and no spurious charge or current is
produced because S′ vanishes when the magnetic and electric
forces are at right angles.

It would be interesting if all electric charges could be
produced in this way by the second-order terms of the pure
field equations, so that there would be no need to introduce
the extraneous charge and current (σx, σy, σz, ρ). I think,
however, that this is scarcely possible. The total spurious
charge in a three-dimensional region is equal to∫∫∫

(ρ′ − ρ) dx dy dz = −
∫∫

BnS
′ dS by (101.6),

where Bn is the normal magnetic induction across the bound-
ary. This requires that BnS

′ in the field of an electron falls
off only as the inverse square. It is scarcely likely that the
electron has the distant magnetic effects that are implied.

It is readily verified that the spurious charge is conserved
independently of the true charge.

It has seemed worth while to show in some detail the
kind of amendment to Maxwell’s laws which may result from
further progress of theory. Perhaps the chief interest lies in
the way in which the propagation of electromagnetic waves
is preserved entirely unchanged. But the present proposals
are not intended to be definitive.

102. Numerical values.

Our electromagnetic quantities have been expressed in
terms of some absolute unit whose relation to the C.G.S. sys-
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tem has hitherto been unknown. It seems probable that we
are now in a position to make this unit more definite because
we have found expressions believed to be physically signifi-
cant in which the whole energy-tensor and electromagnetic
energy-tensor occur in unforced combination. Thus accord-
ing to (100.6) Weyl’s constant α in § 90 is 4, so that β = 1/2λ.
Accordingly in (90.51) we have the combination

8πT µν − 1

λ
Eµν ,

which can scarcely be significant unless it represents the
difference of the two tensors reduced to a common unit. It
appears therefore that in an electromagnetic field we must
have

Eµν = 8πλT µν = −λ
{
Gµν − 1

2
gµν(G− 2λ)

}
,

where Eµν is expressed in terms of the natural unit involved
in Fµν. The underlying hypothesis is that in ∗Gµν the metrical
and electrical variables occur in their natural combination.

The constant λ, which determines the radius of curvature
of the world, is unknown; but since our knowledge of the
stellar universe extends nearly to 1025 cm., we shall adopt

λ = 10−50 cm.−2.

It may be much smaller.
Consider an electrostatic field of 1500 volts per cm., or

5 electrostatic units. The density of the energy is 52/8π

or practically 1 erg per cubic cm. The mass is obtained by
dividing by the square of the velocity of light, viz. 1.1·10−21 gm.
We transform this into gravitational units by remembering
that the sun’s mass, 1.99 · 1033 gm., is equivalent to 1.47 · 105 cm.
Hence we find—

The gravitational mass-density T 4
4 of an electric field of

1500 volts per cm. is 8.4 · 10−50 cm. per c.c.
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According to the equation Eµν = 8πλT µν we shall have

E4
4 = 2.1 · 10−98 cm.−4.

For an electrostatic field along the axis of x in Galilean
coordinates we have

E4
4 = 1

2
F 2

14,

so that
F14 = 2 · 10−49

in terms of the centimetre. The centimetre is not directly
concerned as a gauge since F14 is an in-tensor; but the
coordinates have been taken as Galilean, and accordingly the
centimetre is also the width of the unit mesh.

Hence an electric force of 1500 volts per cm. is expressed in
natural measure by the number 2 · 10−49 referred to a Galilean
coordinate-system with a centimetre mesh.

Let us take two rods of length l at a distance δx1 cm.
apart and maintain them at a difference of potential δκ4

for a time δx4 (centimetres). Compare their lengths at the
beginning and end of the experiment. If they are all the
time subject to parallel displacement in space and time there
should be a discrepancy δl between the two comparisons,
given by (84.4)

δl

l
= 1

2
Fµν dS

µν

= F41 δx1 δx4

=
∂κ4

∂x1

δx1 δx4 = δκ4 δx4.

For example if our rods are of metre-length and maintained
for a year (1 light-year = 1018 cm.) at a potential difference of
1 1
2
million volts, the discrepancy is

δl = 102 · 2 · 10−49 · 103 · 1018 cm.
= 2 · 10−26 cm.
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We have already concluded that the length of a rod is not
determined by parallel displacement; but it would clearly be
impossible to detect the discrepancy experimentally if it were
so determined.

The value of F14 depends on the unit mesh of the co-
ordinate-system. If we take a mesh of width 1025 cm. and
therefore comparable with the assumed radius of the world
the value must be multiplied by 1050 in accordance with the
law of transformation of a covariant tensor. Hence referred
to this natural mesh-system the natural unit of electric force
is about 75 volts per cm. The result rests on our adopted
radius of space, and the unit may well be less than 75 volts
per cm. but can scarcely be larger. It is puzzling to find
that the natural unit is of the size encountered in laboratory
experiments; we should have expected it to be of the order of
the intensity at the boundary of an electron. This difficulty
raises some doubt as to whether we are quite on the right
track.

The result may be put in another form which is less
open to doubt. Imagine the whole spherical world filled
with an electric field of about 75 volts per cm. for the time
during which a ray of light travels round the world. The
electromagnetic action is expressed by an invariant which is a
pure number independent of gauge and coordinate systems;
and the total amount of action for this case is of the order
of magnitude of the number 1. The natural unit of action is
evidently considerably larger than the quantum. With the
radius of the world here used I find that it is 10115 quanta.

103. Conclusion.

We may now review the general physical results which
have been established or rendered plausible in the course of
our work. The numbers in brackets refer to the sections in
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which the points are discussed.

We offer no explanation of the occurrence of electrons or
of quanta; but in other respects the theory appears to cover
fairly adequately the phenomena of physics. The excluded
domain forms a large part of modern physics, but it is one
in which all explanation has apparently been baffled hitherto.
The domain here surveyed covers a system of natural laws
fairly complete in itself and detachable from the excluded
phenomena, although at one point difficulties arise since it
comes into close contact with the problem of the nature of
the electron.

We have been engaged in world-building—the construc-
tion of a world which shall operate under the same laws as
the natural world around us. The most fundamental part of
the problem falls under two heads, the building-material and
the process of building.

The building-material. There is little satisfaction to the
builder in the mere assemblage of selected material already
possessing the properties which will appear in the finished
structure. Our desire is to achieve the purpose with uns-
elected material. In the game of world-building we lose a
point whenever we have to ask for extraordinary material
specially prepared for the end in view. Considering the most
general kind of relation-structure which we have been able
to imagine—provided always that it is a structure—we have
found that there will always exist as building-material an
in-tensor ∗Gµν consisting of symmetrical and antisymmetrical
parts Rµν and Fµν, the latter being the curl of a vector (97,
98). This is all that we shall require for the domain of physics
not excluded above.

The process of building. Here from the nature of the case it
is impossible to avoid trespassing for a moment beyond the
bounds of physics. The world which we have to build from
the crude material is the world of perception, and the process
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of building must depend on the nature of the percipient.
Many things may be built out of ∗Gµν, but they will only
appear in the perceptual world if the percipient is interested
in them. We cannot exclude the consideration of what kind
of things are likely to appeal to the percipient. The building
process of the mathematical theory must keep step with that
process by which the mind of the percipient endows with
vivid qualities certain selected structural properties of the
world. We have found reason to believe that this creative
action of the mind follows closely the mathematical process
of Hamiltonian differentiation of an invariant (64).

In one sense deductive theory is the enemy of experimental
physics. The latter is always striving to settle by crucial tests
the nature of the fundamental things; the former strives to
minimise the successes obtained by showing how wide a
nature of things is compatible with all experimental results.
We have called on all the evidence available in an attempt
to discover what is the exact invariant whose Hamiltonian
differentiation provides the principal quantities recognised in
physics. It is of great importance to determine it, since on
it depend the formulae for the law of gravitation, the mass,
energy, and momentum and other important quantities. It
seems impossible to decide this question without appeal to a
perhaps dubious principle of simplicity; and it has seemed a
flaw in the argument that we have not been able to exclude
more definitely the complex alternatives (62). But is it not
rather an unhoped for success for the deductive theory that
all the observed consequences follow without requiring an
arbitrary selection of a particular invariant?

We have shown that the physical things created by Hamil-
tonian differentiation must in virtue of mathematical identi-
ties have certain properties. When the antisymmetric part Fµν
of the in-tensor is not taken into account, they have the prop-
erty of conservation or permanence; and it is thus that mass,
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energy and momentum arise (61). When Fµν is included,
its modifying effect on these mechanical phenomena shows
that it will manifest itself after the manner of electric and
magnetic force acting respectively on the charge-component
and current-components of a stream-vector (100). Thus the
part played by Fµν in the phenomena becomes assigned.

All relations of space and time are comprised in the in-
invariant ∗Gµν dxµ dxν, which expresses an absolute relation (the
interval) between two points with coordinate differences dxµ

(97). To understand why this expresses space and time, we
have to examine the principles of measurement of space and
time by material or optical apparatus (95). It is shown that
the conventions of measurement introduce an isotropy and
homogeneity into measured space which need not originally
have any counterpart in the relation-structure which is being
surveyed. This isotropy and homogeneity is exactly expressed
by Einstein’s law of gravitation (66).

The transition from the spatio-temporal relation of inter-
val to space and time as a framework of location is made
by choosing a coordinate-frame such that the quadratic form
∗Gµν dxµ dxν breaks up into the sum of four squares (4). It
is a property of the world, which we have had to leave
unexplained, that the sign of one of these squares is opposite
to that of the other three (9); the coordinate so distinguished
is called time. Since the resolution into four squares can
be made in many ways, the space-time frame is necessarily
indeterminate, and the Lorentz transformation connecting
the spaces and times of different observers is immediately
obtained (5). This gives rise to the special theory of rel-
ativity. It is a further consequence that there will exist a
definite speed which is absolute (6); and disturbances of the
tensor Fµν (electromagnetic waves) are propagated in vacuum
with this speed (74). The resolution into four squares is
usually only possible in an infinitesimal region so that a



CH. VII CONCLUSION 427
world-wide frame of space and time as strictly defined does
not exist. Latitude is, however, given by the concession that
a space-time frame may be used which does not fulfil the
strict definition, observed discrepancies being then attributed
to a field of force (16). Owing to this latitude the space-time
frame becomes entirely indeterminate; any system of coordi-
nates may be described as a frame of space and time, and no
one system can be considered superior since all alike require a
field of force to justify them. Hence arises the general theory
of relativity.

The law of gravitation in continuous matter is most directly
obtained from the identification of the energy-tensor of
matter (54), and this gives again the law for empty space as
a particular case. This mode of approach is closely connected
with the previous deduction of the law in empty space
from the isotropic properties introduced by the processes of
measurement, since the components of the energy-tensor are
identified with coefficients of the quadric of curvature (65).
To deduce the field of a particle (38) or the motion of a
particle in the field (56), we have to postulate symmetrical
properties of the particle (or average particle); but these
arise not from the particle itself but because it provides the
standard of symmetry in measurement (66). It is then shown
that the Newtonian attraction is accounted for (39); as well
as the refinements introduced by Einstein in calculating the
perihelion of Mercury (40) and the deflection of light (41).

It is possible to discuss mechanics without electrodynamics
but scarcely possible to discuss electrodynamics without me-
chanics. Hence a certain difficulty arises in our treatment of
electricity, because the natural linking of the two subjects is
through the excluded domain of electron-structure. In prac-
tice electric and magnetic forces are defined through their
mechanical effects on charges and currents, and these me-
chanical effects have been investigated in general terms (100)
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and with particular reference to the electron (80). One half
of Maxwell’s equations is satisfied because Fµν is the curl of a
vector (92), and the other half amounts to the identification
of F µν

ν with the charge-and-current vector (73). The elec-
tromagnetic energy-tensor as deduced is found to agree in
Galilean coordinates with the classical formulae (77).

Since a field of force is relative to the frame of space-time
which is used, potential energy can no longer be treated on
the same footing with kinetic energy. It is not represented by
a tensor (59) and becomes reduced to an artificial expression
appearing in a mathematical mode of treatment which is no
longer regarded as the simplest. Although the importance
of “action” is enhanced on account of its invariance, the
principle of least action loses in status since it is incapable of
sufficiently wide generalisation (60, 63).

In order that material bodies may be on a definite scale of
size there must be a curvature of the world in empty space.
Whereas the differential equations governing the form of
the world are plainly indicated, the integrated form is not
definitely known since it depends on the unknown density
of distribution of matter. Two forms have been given (67),
Einstein’s involving a large quantity of matter and de Sitter’s
a small quantity (69); but whereas in the latter the quantity
of matter is regarded as accidental, in the former it is fixed
in accordance with a definite law (71). This law at present
seems mysterious, but it is perhaps not out of keeping with
natural anticipations of future developments of the theory.
On the other hand the evidence of the spiral nebulae possibly
favours de Sitter’s form which dispenses with the mysterious
law (70).

Can the theory of relativity ultimately be extended to
account in the same manner for the phenomena of the
excluded domain of physics, to which the laws of atomicity
at present bar the entrance? On the one hand it would



CH. VII CONCLUSION 429
seem an idle exaggeration to claim that the magnificent
conception of Einstein is necessarily the key to all the riddles
of the universe; on the other hand we have no reason
to think that all the consequences of this conception have
become apparent in a few short years. It may be that
the laws of atomicity arise only in the presentation of the
world to us, according to some extension of the principles
of identification and of measurement. But it is perhaps as
likely that, after the relativity theory has cleared away to
the utmost the superadded laws which arise solely in our
mode of apprehension of the world about us, there will be
left an external world developing under specialised laws of
behaviour.

The physicist who explores nature conducts experiments.
He handles material structures, sends rays of light from point
to point, marks coincidences, and performs mathematical
operations on the numbers which he obtains. His result is
a physical quantity, which, he believes, stands for something
in the condition of the world. In a sense this is true,
for whatever is actually occurring in the outside world is
only accessible to our knowledge in so far as it helps to
determine the results of these experimental operations. But
we must not suppose that a law obeyed by the physical
quantity necessarily has its seat in the world-condition which
that quantity “stands for”; its origin may be disclosed by
unravelling the series of operations of which the physical
quantity is the result. Results of measurement are the
subject-matter of physics; and the moral of the theory of
relativity is that we can only comprehend what the physical
quantities stand for if we first comprehend what they are.

If we could write down exactly the whole system of
equations holding in the physical world, these equations
would themselves contain the definitions of all the quantities
occurring in them. For any definition—any statement as
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to the mode in which such a quantity is to be recognised
and measured—is itself capable of expression as one of the
equations of physics. If the number of independent equations
is not greater than the number of quantities to be defined,
no governing law will be imposed on the substratum of the
world, and those laws of nature which we discover must be
implicit in the definition of the quantities which obey them.
Such truisms appear remarkable because in actual experience
we deal with mental images associated with the physical
quantities by processes which physics is unable to explore.
We shall assume, however, that the number of independent
equations n exceeds the number of definitions m. In that case
we can divide the equations into m equations of definition
and n−m equations of control.

It is generally admitted that we are not in a position to
formulate the real equations of control which belong to the
domain of electron structure and quantum activity, and that a
radical alteration of our methods is needed to deal with these
successfully. The field-theory (which we have seen in § 76
to be essentially macroscopic) skirts round the excluded
domain without however entirely avoiding it. We find that
the number of field-equations exceeds the required number
of definitions by one, so that one equation of control is
needed which (however disguised by macroscopic averaging)
must arise in the forbidden territory. This equation of
control in the present development is taken bo be the law
of ponderomotive force of the electromagnetic field. (The
choice of a particular equation is arbitrary, e.g. in elementary
electrostatics the law of ponderomotive force is the definition
of electric charge, and some other equation then becomes the
equation of control.)

Having satisfied ourselves that we have rightly discovered
the m equations of definition and the single equation of
control it would appear that our task is at an end—until the
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excluded domain can be entered. The task is left in an untidy
state, but that is perhaps inevitable since it is admittedly
unfinished. Nevertheless a certain amount of preliminary
tidying up is possible. We can, of course, define anything
we like; but in practice we define only certain things which
have a particular prominence—an importance from a certain
aspect. It is certainly a step forward to recognise that there is
a uniformity in the aspect here referred to—that “prominence
in our survey of the world” is a definite character capable
of mathematical specification. This introduces an orderliness
into our equations of definition. Probably the secret of this
prominence lies in the excluded domain with its unknown
equations of control; or we may connect it with our faculties
of perception, which perhaps comes ultimately to the same
thing. In the field-theory we must be content with discover-
ing the formal principle (of Hamiltonian differentiation) and
noting its unifying effect on our equations of definition.

We have divided physics into two parts, one of which we
are competent to deal with by our methods of continuous
analysis and the other we are not competent to deal with. We
do not pretend to predict a priori how nature will behave, but
it is not impossible to set limits to the behaviour of that part
of nature with which we are competent to deal, if we know
the limits of that competence. So that provided that there
exists a domain or structure (viz. the macroscopic field) which
satisfies this condition, provided also that we have a criterion
of “prominence” for selecting the quantities important to
study, we may be able to predict the field properties. That
is what the affine theory in Chapter VII, Part II attempts
to do, and it is I think partially successful. The idea is that
the affine connection is the most general structure coming
within the scope of continuous analysis (a contention not
fully demonstrated) and may therefore be used as a basis of
prediction.
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The single law of control cannot be predicted a priori,

since it arises in the excluded region and is not limited by the
competence of particular mathematical analysis. We might
find that, without attempting to trace its microscopic origin,
we could give it a simple formal expression in macroscopic
terms; and it is the object of the action-theories of Weyl
(§ 90) and Einstein (§ 100) to reduce this expression to the
simplest form. One difficulty is that any law of stationary
action seems to lead necessarily to two equations of control,
corresponding to symmetrical and antisymmetrical compo-
nents and the superfluous equation (90.71) has to be explained
away as outside practical observation. It appears to the author
more profitable, instead of seeking a purely formal expres-
sion of the law of control, to make a slight inroad into the
excluded domain; then the law is seen to arise from a simple
limitation of electron structure, viz. that, a certain integral
property, known to hold in the absence of an external field,
is preserved in all cases (§ 80). The action-principle is no
doubt attractive in that it makes the field-theory formally
complete in itself without reference to an excluded domain,
but the attraction is somewhat dimmed by our knowledge
that the completeness cannot be more than formal.
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contravariant, 111
Composition of velocities, 50, 53
Condition of the world, 22, 95
Configuration of events, 33
Conservation

of electric charge, 308
of energy, 71
of matter, 72
of momentum and mass, 67

Conservation, formal law of, 245
Constitutive equations, 74, 346
Continuity, equation of, 210

in electric flow, 308
Continuous matter, gravitation in, 181,

212
Contracted derivative (divergence), 203

second derivative (□), 122
Contraction of tensors, 103
Contraction, FitzGerald, 60



INDEX 439
Contravariant vectors, 88, 89

derivatives, 118
tensors, 102

Coordinate-systems
canonical, 147
Galilean, 81
isotropic, 169
natural, 149
proper, 149
rectangular, 38
statical, 149

Coordinates, 31
difficulty in the introduction of, 397
general transformation of, 75, 88
representation of displacement, 97

Covariant derivative of vector, 117
of invariant, 120
of tensor, 118, 123
significance of, 128
utility of, 120

Covariant vector, 89
tensor, 102

Creation of the physical world, 265,
405, 425

Curl, 127
Current, electric, 306
Curvature

Gaussian, 152
of 4-dimensional manifold, 268
quadric of, 272
radius of spherical, 271

Curvature of light-tracks, 166
Cylindrical world, 279

de Sitter’s spherical world, 279, 287
Deductive theory and experiment, 188
Deflection of light, 164
Density

definitions of proper-, 216
in-invariant-, 364
Lorentz transformation of, 73
scalar- and tensor-, 197

Derivative

contravariant, 118
covariant, 117, 118, 123
in-covariant, 360
significance of, 128

Determinants, manipulation of, 192
Differentiation, see also Derivative

covariant, rules for, 123
Differentiation of summed expression,

139
Dimensions, principle of, 95, 105
Dimensions, world of 3 + 1, 60

reason for four, 365
Displacement, 97

parallel, 131, 376
Displacement of spectral lines to red,

in sun, 166
in nebulae, 281, 289

Distance, see Length
Divergence

of energy-tensor, 205, 212
of Hamiltonian derivative of an

invariant, 256
of a tensor, 203

Dummy suffixes, 100
Dynamical velocity, 214, 222
Dynamics of a particle, 222

Eµν (electromagnetic energy-tensor),
322

Eclipse results, 165
Einstein’s cylindrical world, 279, 296
Einstein’s law of gravitation, 150

alternatives to, 259
equivalent to the gauging-equation,

391
in continuous matter, 181, 212
interpretation of, 277

Electric charge
conservation of, 308
invariance of, 309

Electromagnetic action, 334
energy-tensor, 326
force, 305
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potential, 305
signals, 63
volume, 344
waves, propagation of, 311

Electron
acceleration in electromagnetic field,

337
gravitational field of, 330
magnetic constitution of, 373
non-Maxwellian stresses in, 327
size of, 341

Elements of inner planets, 163
Elliptical space, 282
Empty space, 391
Energy, identified with mass, 70
Energy, potential, 246
Energy-tensor of matter, 209, 256

of electromagnetic field, 326
obtained by Hamiltonian

differentiation, 265, 404
Entropy, 74
Equivalence of displacements, 376, 398
Equivalence, Principle of, 85
Experiment and deductive theory, 188
Explanation of phenomena, ideal, 190
Extension and location, 32

Fµν (electromagnetic force), 305, 387
Fields of force, 79
Finiteness of space, 279
FitzGerald contraction, 60
Fizeau’s experiment, 51
Flat space-time, 44

condition for, 142
Flux, 126

electromagnetic, 341, 416
gravitational, 260

Force
electromagnetic, 305
Lorentz transformation of, 320
mechanical force due to, 320, 337,

404

Force, covariant and contravariant
components, 99

expressed by 3-index symbols, 218
Foucault’s pendulum, 178
Four dimensions of world, 365
Fraunhofer lines, displacement of, 166
Fresnel’s convection-coefficient, 51
Fundamental theorem of mechanics,

205
Fundamental velocity, 47

invariants, 256
tensors, 108, 147

Gµν (Einstein tensor), 150
Galilean coordinates, 81
Gauge-system, 356, 382
Gauging-equation, 388
Gaussian curvature, 152, 272
Generalisation of Weyl’s theory, 376
Generalised volume, 365, 415
Geodesic curvature, 166
Geodesic, equations of, 116

produced by parallel displacement,
132

Geometry, Riemannian, 35
abstract and natural, 78
affine geometry, 377
world geometry, 352

German letters, denoting
tensor-densities, 197

Graphical representation, 349
Gravitation, see also Einstein’s law, 81
Gravitation, Newtonian constant of,

227
Gravitational field of a particle, 153

of an electron, 330
Gravitational flux, 260
Gravitational mass of sun, 160

equality with inertial mass, 231, 262
Group, 94
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h (Hamiltonian operator), 253
hµ (ponderomotive force), 322
Hamiltonian derivative, 253

creative aspect of, 265, 404, 425
of electromagnetic action, 334
of fundamental invariants, 256
of general world-invariants, 402

Homogeneous sphere, problem of, 300
Horizon of world, 181, 281, 295
Hydrodynamics, equations of, 210, 211
Hydrostatic pressure, 217

Identification, Principle of, 213, 392
Identities satisfied by Gµν , 172, 205
Ignoration of coordinates, 418
Imaginary intervals, 37
In- (prefix), 359
In-covariant derivative, 360
In-invariants, 363, 416
In-tensors, 359

fundamental, 380
Incompressibility, 201, 217
Indicatrix, 270
Inductive theory, 188
Inertia

electromagnetic origin of, 328
elementary treatment, 66

Inertial frame, precession of, 178
Inertial mass, 227

equal to gravitational mass, 231, 262
Inner multiplication, 103
Integrability of parallel displacement,

136
of length and direction, 353

Intensity and quantity, 198
Interval, 33
Invariant, 67

formation of, 113
Invariant density (proper-density), 216
Invariant mass, 67, 328
Invariant-density (scalar-density), 197
Isotropic coordinates, 169

Jµ (charge-and-current vector), 306
Jacobian, 192

Kepler’s third law, 162
Kinematical velocity, 214, 222

Lagrange’s equations, 243
Lagrangian function, 242, 418
Length

definition of, 19, 382
measurement of, 35
non-integrability of, 353

Length of a vector, 112
Light

deflection in gravitational field, 164
propagation of, 311
velocity of, 47, 53

Light-pulse
equation of track, 78
in curved world, 292

Light-pulse
in-invariant equation, 389

Location and extension, 32
Longitudinal mass, 70
Lorentz transformation, 44, 60

for electromagnetic force, 320

Mµν (material energy-tensor), 322
Macroscopic electromagnetic

equations, 345
Magnetic constitution of electron, 373
Manufacture of physical quantities, 20
Mass

electromagnetic, 342
gravitational and inertial, 227, 231,

262
identified with energy, 70
invariant and relative, 67, 327
of electromagnetic field, 327
variation with velocity, 67

Mass of the world, total, 295
Mass-horizon of world, 295
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Mathematics contrasted with physics,

19
Matter

conservation of, 72
identification of, 213, 264

Maxwell’s equations, 307
second order corrections to, 420

Measure of interval, 35
Measure-code, 21, 95
Measurement, principle of, 388, 425
Mechanical force of electromagnetic

field, 320
explanation of, 337
general theory of, 404

Mercury, perihelion of, 163
Mesh-system, 31
Metric

introduction of, 381
sole character of space and time, 391

Michelson-Morley experiment, 48
Mixed tensors, 102
Momentum

conservation of, 211
electromagnetic, 327
elementary treatment, 66

Moon, motion of, 172
Multiplication, inner and outer, 103

Natural coordinates, 148
gauge, 366, 388
geometry, 80, 349
measure, 148

Nebulae, velocities of, 289
Non-integrability of length and

direction, 353
Non-Maxwellian stresses, 324, 328
Non-Riemannian geometry, 352
Normal, 6-dimensional, 272
Null-cone, 53
Number of electrons in the world, 298
Numerical value of quantum, 423

Operators
h, 253
□, 122

Orbits of planets, 157
Order, coordinate agreeing with

structural, 397

Parallel displacement, 131, 376
Parallelogram-law, 378
Parallelogramical property, 399
Particle

dynamics of, 222
gravitational field of, 153, 180
motion of, 77
symmetry of, 222, 278

Percipient, determines natural laws by
selection, 425

Perigee, advance of, 178
Perihelion

advance of, 160
in curved world, 180

Permanence, 205
Permeability, magnetic, 346, 418
Perpendicularity of vectors, 112
Persistence and adjustment, 368
Physical quantities, 19

definition of, 22
Planetary orbits, 157
Point-electron, 333
Ponderomotive force, see Mechanical

force
Postulates, list of, 187
Potential

electromagnetic, 305, 310, 357
gravitational, 115, 220

Potential energy, 246, 266
Poynting’s vector, 327
Precession of inertial frame, 178
Pressure

hydrostatic, 217
in homogeneous sphere, 301

Principle
of dimensions, 95, 105



INDEX 443
of equivalence, 85
of identification, 213, 392
of least action, 253, 265, 371
of measurement, 388, 425

Problem
of homogeneous sphere, 300
of rotating disc, 201
of two bodies, 172

Product, inner and outer, 103
Propagation

of electromagnetic waves, 311
of gravitational waves, 231

Propagation with unit velocity, 121
solution of equation, 315

Proper-, see Invariant mass and Density
Proper-(prefix), 74
Proper-coordinates, 149
Proper-time, 159
Proper-volume, 196
Pseudo-energy-tensor, 247
Pseudo-vector, 318

Quadratic formula for interval, 34
justification of, 396

Quadric of curvature, 274
Quantity and intensity, 198
Quantum

excluded from coordinate
calculations, 398

numerical value of, 423
Quotient law, 105

Rµν (gauging-tensor), 388
Rapidity, 53
Recession of spiral nebulae, 281, 287
Rectangular coordinates and time, 38
Red-shift

in nebulae, 281, 287
of spectral lines in sun, 166

Relation-structure, 395
Relativity of physical quantities, 25
Retardation of moving clocks, 42, 61
Retarded potential, 317

Riemann-Christoffel tensor, 134
generalisation of, 362, 379
importance of, 146
vanishing of, 136, 142

Riemannian geometry, 35
Rotating axes, quadratic form for, 75
Rotating disc, 201
Rotation, absolute, 178

Scalar, 103
Scalar-density, 197
Self-perpendicular vector, 112
Simultaneity at different places, 63
de Sitter’s spherical world, 279, 287
Space, a network of intervals, 283
Spacelike intervals, 52
Special theory of relativity, 44
Spectral lines, displacement

in nebulae, 281, 287
in sun, 166

Sphere, problem of homogeneous, 300
Spherical curvature, radius of, 271
Spherical world, 279, 287
Spiral nebulae, velocities of, 289
Spur, 113
Static coordinates, 149
Stationary action, principle of, 253,

265, 371
Stokes’s theorem, 127

application of, 378
Stress-system, 210

electromagnetic, 327
gravitational field due to, 186
non-Maxwellian, 328

Structure, represented by relations, 396
Substitution-operator, 101, 109
Suffixes, raising and lowering of, 110
Summation convention, 99
Sun, gravitational mass of, 160
Surface-element, 126

in-invariant pertaining to, 416
Symmetry

a relative attribute, 278
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of a particle, 223, 278
of an electron, 341

Tµν (energy-tensor), 184, 209
Temperature, 74
Tensor, 101
Tensor equations, 98
Tensor-density, 197
Things, 391
Three-index symbol, 114
Three-index symbol

contracted, 138
generalised, 360, 383

Time
convention in reckoning, 41, 65
definition of, 39
extended meaning, 81
immediate consciousness of, 54

Timelike intervals, 52
Track of moving particle and

light-pulse, 77
Transformation of coordinates

general, 75, 88
Lorentz, 44

Transport of clocks, 42, 63
Two bodies, problem of, 172

Uniform
mesh-system, 143
vector-field, 137

Unit

change of, 95
of action, 423

Vector, 88
mathematical notion of, 89
physical notion of, 94

Velocity of light, 48
in moving matter, 50
in sun’s gravitational field, 170

Velocity, fundamental, 47
Velocity-vector, 132
Volume

electromagnetic, 344
generalised, 365, 415
physical and geometrical, 195

Volume-element, 195

Wave-equation, solution of, 315
Waves

electromagnetic, 311
gravitational, 231

Weyl’s theory, 352
modified view of, 369

World
mass of, 286, 295
shape of, 279

World geometry, 352
World-line, 222
World-invariants, dynamical properties

of, 402

Zero-length of light tracks, 355
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