ON THE MEANING AND VALUE OF MUSIC

Tigran Aivazian <tigran@quantuminfodynamics.com>

21 October 2019

1 Basic Principles

As a result of discussions on the topic of Music and Temperaments with my friend
Boris Rziankin I have formulated in my mind a preliminary understanding of the
meaning and potential value of music which I wish to describe in this paper. Specit-
ically, I understood how the making of a temperament represents (mathematically)
nothing other than the attempt of a “finite to encompass the Infinite” I saw this
clearly enough to write a program which generates what could be called “rational
temperaments’ in accordance with the following three general principles:

o Principle I: Compactification of Infinity. The Infinite (i.c. the entire space of
all possible sounds) should be squeezed into the finite domain of human hear-

ing.
o Principle II: Octave Equivalence. The actual method of squeezing should be
based on the psycho-acoustical fact that humans (and some other mammals)

consider two sounds to be equivalent if their fundamental frequencies are re-
lated as a power of 2.

o Principle III: Harmonic and Harmonically Even Distribution. In the final
stage of the selection of actual sounds from the huge list of candidates generated
by the Principles I and I, one should choose those sounds which are distributed
evenly (in harmonic sense, not arithmetically) and also stand in harmonic rela-
tion to each other (i.c. their frequencies are related as ratios of small incegers).

Mathematically, what this means is that we are secking a mapping from the set of
all natural numbers N to the set of all rational numbers lying between 1 and 2:

f " N—=[1,2]NnQ (1)

To build this map f(n) in accordance with the principles formulated above, we first
need to define the following intermediate map k(n):
n

k(n) = min{k € N|1 < o

<2} (2)

2 ANOTHER DIMENSION OF MUSIC

The map k(n) reflects the Principle of Octave Equivalence. And now the explicit
form of the map f(n) can be given:
n

f(n):: k(n) (3)

Finally, the actual Temperament as a set of frequencies can be constructed using the

map f(n):

T[Nmina chwc] - f({Nmma Nmz'n + 17 cee Nmax}) (4)

Here the natural numbers N,,;,, and N4, serve as parameters that can be varied. It
would seem natural to set N,,;;, = 3 (as the endpoints 1 and 2 are always included)
and vary only the value of N,,,4,, thus obtaining a family of temperaments Ty which,
in a manner of speaking, “encompass greater and greater part of infinity”.

The implementation of the above algorithm in Python is enclosed in the last sec-
tion of this paper. The results of running this program are as follows:

1000 — {

Ts000 = {

179 19 5 21 23 3 25 27 29 15
Thy — (2L 2 22 2 22 22 2 29 20 29 79
2=y 0 1'16'16° 2 16°16°16° 8))
271 575 609 645 683 181 767 813 861 57 967 (6)
2567 5127 5127 5127 5127 1287 5127 5127 5127 327 512
1085 2299 4871 645 1367 181 3069 3251 861 3649 1933} 7)
10247 20487 40967 5127 10247 1287 2048’ 2048 5127 2048’ 1024
__{8679 9195 4871 5161 1367 5793 6137 3251 6889 3649 1933}
1090181927 81927 40967 40967 1024 4096 4096° 2048 4096° 2048 102(4 |
8
Note that it took 11 seconds to generate T'gggp on a Linux machine with a 42GHz
processor. Listening to a sample music played back using ET as well as 7790 and
T5000 shows a subtle difference, especially in the chords. Out of nine people sur-
veyed, ewo could not detect any difference, five (of which one is a professional musi-
cian) showed preference for T5p09 and two preferred ET. Listening to the same music

played in 739 results in a uniform feeling of “mistuned piano” The audio files of this
experiment are available achttp://quantuminfodynamics. com/audio/1

2 Another Dimension of Music

The above three principles shed light on both the old Pythagorean temperamentand
on the modern “12 tone Equal Temperament” However, I believe that we should also
consider the following:

2 ANOTHER DIMENSION OF MUSIC

Principle IV: An Extra Dimension of Music. This dimension can be realised (at
least in the first, rough approximation — later we can refine it) by floating the tem-
perament, i.c. by varying (very slightly!) the set of frequencies within a given fixed
range of human hearing, precisely according to the way the “Infinite” is represented
or modelled mathematically. For example, when I say “infinite number of all pos-
sible sounds” I really mean all possible frequencies, but surely one cannot exhaust
an infinite set on a compucer, so it has to be replaced with some large but finite set
like a thousand or a million or a billion frequencies. And the way we thus “approxi-
mate Infinity” necessarily affects the resulting sequences of temperaments obtained
by applying the three above-mentioned principles.

The above elucidates the meaning, but hardly reveals anything concerning the po-
tential value, mentioned in the beginning. This, I believe, consists in the mysterious
power of musical form of expression over our ordinary language as a means of bring-
ing out our inner emotional and intellectual processes, bordering on the spiritual, i.c.
our personal “holy of holies” and doing so in a non-vulgar and proper way. And if
the entire human being is consumed with but one single desire — to seck God and
to do his will, to be more like God — then, perforce, the musical expression of his
being should become a reflection of this. And if, in addition, this reflection is skil-
fully and artistically constructed, then, as the sages say, “it has power a whole world
to transform.”

3 THEPYTHON PROGRAM

3 The Python Program

#!/usr/bin/env python3.7
scales.py --- Generate Rational Temperaments,
as described in my paper "On the Meaning and Value of Music" (2019).

Author: Tigran Aivazian <tigran@quantuminfodynamics.com>
License: GNU General Public License v3.0

HOH KRR R R R

import sys
from fractions import Fraction

def equivalentk(n):

"""Keep dividing the number n by 2,3,4,... until it is <= Nmin"""
i=2
x = Fraction(n,i)
while x>=octmul:
i+=1
x /=1

return x

def equivalent2(n):
"""Keep dividing the number n by 2 until it is <= Nmin"""
x = Fraction(n,2)
while x>=2: x /= 2
return x

def harmonize (i, slist):
mnamnn
Look in the vicinity of i-th element in sound 1list slist and
return the 'most consonant' one.
mmnn
slen = len(slist)
dist 20 # maximum distance to deviate from the element closest to ET
if i > dist:
mini = i - dist
else:
mini = O
if i < slen - dist:
maxi = i + dist
else:

maxi = slen
#print ("Checking for i=Yd" % i, slist[mini:maxi], end='\n')
s = min(slist[mini:maxi],key=lambda x: x.numerator + x.denominator)
#print (" returning ", s)
return s

Noct = 12 # the number of notes per octave (12 for ET)

octaves = 1 # the number of the instrument's octaves
octmul = 2 # the octave multiplier (2 for ET)
Nmin = octmul + 1 # the starting number to fit into the octave

Nmax = int(sys.argv[1]) if len(sys.argv) > 1 else 2000 # the last number to fit

et = [octmul**(n/Noct) for n in range(Noct)] # Equal Temperament (ET) of Noct notes

sounds = [1] # candidate sounds
for n in range (Nmin,Nmax):
x = equivalentk(n) # call equivalent2(n) for strict 'octave equivalence'

4

3 THEPYTHON PROGRAM

if x > 1 and x not in sounds: sounds.append(x)
soundslen = len(sounds)

build the matrix of distances between et and sounds
dist = [[abs(sounds[i]-et[j]) for i in range(soundslen)] for j in range(Noct)]

temp = [1] # list of frequency ratios for the first octave

choose those which are close to ET and consonant
for i in range(Noct):
idx = dist[i].index(min(dist[i])) # index of the sound closest to ET
sound = harmonize(idx, sounds)
#sound = sounds[idx]
if sound not in temp: temp.append(sound) # append if not a duplicate

templen = len(temp)
if templen != Noct: # Incomplete temperament
print ("WARNING: Built only ’%d notes instead of %d" % (templen, Noct))

instr = temp.copy()
if octaves > 1: print("Extending %d notes to %d octaves" ¥ (templen, octaves))
for i in range(octaves-1):

#print (")d notes, instr=" Y len(instr), instr, end='\n\n')

instr += [octmul*x for x in instr[-len(temp):]]

Sort and convert to Yoshimi (and human) readable form
instr.sort ()

count = 1
for i in instr:
if i.denominator == 1:
print (str(i.numerator), end=', ')
else:
print (str(i.numerator) + '/' + str(i.denominator), end=', ')

count += 1

if count > Noct:
count = 1
print('")

	Basic Principles
	Another Dimension of Music
	The Python Program

