
ONTHEMEANINGANDVALUEOFMUSIC
Tigran Aivazian <tigran@quantuminfodynamics.com>

21October 2019

1 Basic Principles

As a result of discussions on the topic of Music and Temperaments with my friend
Boris Rziankin I have formulated in my mind a preliminary understanding of the
meaning and potential value of music which I wish to describe in this paper. Specif-
ically, I understood how the making of a temperament represents (mathematically)
nothing other than the attempt of a “finite to encompass the Infinite”. I saw this
clearly enough to write a program which generates what could be called “rational
temperaments” in accordance with the following three general principles:

• Principle I: Compactification of Infinity. The Infinite (i.e. the entire space of
all possible sounds) should be squeezed into the finite domain of human hear-
ing.

• Principle II: Octave Equivalence. The actual method of squeezing should be
based on the psycho-acoustical fact that humans (and some other mammals)
consider two sounds to be equivalent if their fundamental frequencies are re-
lated as a power of 2.

• Principle III: Harmonic and Harmonically Even Distribution. In the final
stage of the selection of actual sounds from the huge list of candidates generated
by the Principles I and II, one should choose those sounds which are distributed
evenly (in harmonic sense, not arithmetically) and also stand in harmonic rela-
tion to each other (i.e. their frequencies are related as ratios of small integers).

Mathematically, what this means is that we are seeking a mapping from the set of
all natural numbersN to the set of all rational numbers lying between 1 and 2:

f : N → [1, 2] ∩Q (1)

To build this map f (n) in accordance with the principles formulated above, we first
need to define the following intermediate map k(n):

k(n) = min{k ∈ N|1 < n

2k
< 2} (2)

2 ANOTHERDIMENSIONOFMUSIC

Themap k(n) reflects the Principle of Octave Equivalence. And now the explicit
form of the map f (n) can be given:

f (n) =
n

2k(n)
(3)

Finally, the actual Temperament as a set of frequencies can be constructed using the
map f (n):

T [Nmin, Nmax] = f ({Nmin, Nmin + 1, . . . , Nmax}) (4)

Here the natural numbersNmin andNmax serve as parameters that can be varied. It
would seem natural to setNmin = 3 (as the endpoints 1 and 2 are always included)
and vary only the value ofNmax, thus obtaining a family of temperamentsTN which,
in a manner of speaking, “encompass greater and greater part of infinity”.
The implementation of the above algorithm in Python is enclosed in the last sec-

tion of this paper. The results of running this program are as follows:

T32 = {17
16
,
9

8
,
19

16
,
5

4
,
21

16
,
23

16
,
3

2
,
25

16
,
27

16
,
29

16
,
15

8
} (5)

T1000 = {271
256

,
575

512
,
609

512
,
645

512
,
683

512
,
181

128
,
767

512
,
813

512
,
861

512
,
57

32
,
967

512
} (6)

T5000 = {1085
1024

,
2299

2048
,
4871

4096
,
645

512
,
1367

1024
,
181

128
,
3069

2048
,
3251

2048
,
861

512
,
3649

2048
,
1933

1024
} (7)

T10000 = {8679
8192

,
9195

8192
,
4871

4096
,
5161

4096
,
1367

1024
,
5793

4096
,
6137

4096
,
3251

2048
,
6889

4096
,
3649

2048
,
1933

1024
}

(8)
Note that it took 11 seconds to generate T10000 on a Linux machine with a 4.2GHz
processor. Listening to a sample music played back using ET as well as T1000 and
T5000 shows a subtle difference, especially in the chords. Out of nine people sur-
veyed, two could not detect any difference, five (of which one is a professional musi-
cian) showed preference forT5000 and two preferred ET. Listening to the samemusic
played in T32 results in a uniform feeling of “mistuned piano”. The audio files of this
experiment are available at http://quantuminfodynamics.com/audio/1

2 Another Dimension ofMusic

Theabove three principles shed light on both the old Pythagorean temperament and
on themodern “12 toneEqualTemperament”. However, I believe thatwe should also
consider the following:

2

2 ANOTHERDIMENSIONOFMUSIC

Principle IV: An ExtraDimension ofMusic. This dimension can be realised (at
least in the first, rough approximation — later we can refine it) by floating the tem-
perament, i.e. by varying (very slightly!) the set of frequencies within a given fixed
range of human hearing, precisely according to the way the “Infinite” is represented
or modelled mathematically. For example, when I say “infinite number of all pos-
sible sounds” I really mean all possible frequencies, but surely one cannot exhaust
an infinite set on a computer, so it has to be replaced with some large but finite set
like a thousand or a million or a billion frequencies. And the way we thus “approxi-
mate Infinity” necessarily affects the resulting sequences of temperaments obtained
by applying the three above-mentioned principles.
The above elucidates themeaning, but hardly reveals anything concerning the po-

tential value, mentioned in the beginning. This, I believe, consists in the mysterious
power ofmusical form of expression over our ordinary language as ameans of bring-
ing out our inner emotional and intellectual processes, bordering on the spiritual, i.e.
our personal “holy of holies” and doing so in a non-vulgar and proper way. And if
the entire human being is consumed with but one single desire — to seek God and
to do his will, to be more like God — then, perforce, the musical expression of his
being should become a reflection of this. And if, in addition, this reflection is skil-
fully and artistically constructed, then, as the sages say, “it has power a whole world
to transform.”

3

3 THE PYTHON PROGRAM

3 The Python Program

#!/usr/bin/env python3.7

#
scales.py --- Generate Rational Temperaments ,
as described in my paper "On the Meaning and Value of Music" (2019).
#
Author: Tigran Aivazian <tigran@quantuminfodynamics.com>
License: GNU General Public License v3.0
#

import sys
from fractions import Fraction

def equivalentk(n):
"""Keep dividing the number n by 2,3,4,... until it is <= Nmin"""
i = 2
x = Fraction(n,i)
while x>=octmul:

i += 1
x /= i

return x

def equivalent2(n):
"""Keep dividing the number n by 2 until it is <= Nmin"""
x = Fraction(n,2)
while x>=2: x /= 2
return x

def harmonize(i, slist):
"""

Look in the vicinity of i-th element in sound list slist and
return the 'most consonant' one.

"""
slen = len(slist)
dist = 20 # maximum distance to deviate from the element closest to ET
if i > dist:

mini = i - dist
else:

mini = 0
if i < slen - dist:

maxi = i + dist
else:

maxi = slen
#print("Checking for i=%d" % i, slist[mini:maxi], end='\n')
s = min(slist[mini:maxi],key=lambda x: x.numerator + x.denominator)
#print(" returning ", s)
return s

Noct = 12 # the number of notes per octave (12 for ET)
octaves = 1 # the number of the instrument's octaves
octmul = 2 # the octave multiplier (2 for ET)
Nmin = octmul + 1 # the starting number to fit into the octave
Nmax = int(sys.argv[1]) if len(sys.argv) > 1 else 2000 # the last number to fit

et = [octmul**(n/Noct) for n in range(Noct)] # Equal Temperament (ET) of Noct notes

sounds = [1] # candidate sounds
for n in range(Nmin,Nmax):

x = equivalentk(n) # call equivalent2(n) for strict 'octave equivalence'

4

3 THE PYTHON PROGRAM

if x > 1 and x not in sounds: sounds.append(x)

soundslen = len(sounds)

build the matrix of distances between et and sounds
dist = [[abs(sounds[i]-et[j]) for i in range(soundslen)] for j in range(Noct)]

temp = [1] # list of frequency ratios for the first octave

choose those which are close to ET and consonant
for i in range(Noct):

idx = dist[i].index(min(dist[i])) # index of the sound closest to ET
sound = harmonize(idx, sounds)
#sound = sounds[idx]
if sound not in temp: temp.append(sound) # append if not a duplicate

templen = len(temp)
if templen != Noct: # Incomplete temperament

print("WARNING: Built only %d notes instead of %d" % (templen, Noct))

instr = temp.copy()
if octaves > 1: print("Extending %d notes to %d octaves" % (templen, octaves))
for i in range(octaves-1):

#print("%d notes , instr=" % len(instr), instr , end='\n\n')
instr += [octmul*x for x in instr[-len(temp):]]

Sort and convert to Yoshimi (and human) readable form
instr.sort()
count = 1
for i in instr:

if i.denominator == 1:
print(str(i.numerator), end=', ')

else:
print(str(i.numerator) + '/' + str(i.denominator), end=', ')

count += 1
if count > Noct:

count = 1
print('')

5

	Basic Principles
	Another Dimension of Music
	The Python Program

