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1 Basic Principles

As a result of discussions on the topic of Music and Temperaments with my friend
Boris Rziankin I have formulated in my mind a preliminary understanding of the
meaning and potential value of music which I wish to describe in this paper. Specit-
ically, I understood how the making of a temperament represents (mathematically)
nothing other than the attempt of a “finite to encompass the Infinite” I saw this
clearly enough to write a program which generates what could be called “rational
temperaments’ in accordance with the following three general principles:

o Principle I: Compactification of Infinity. The Infinite (i.c. the entire space of
all possible sounds) should be squeezed into the finite domain of human hear-

ing.
o Principle II: Octave Equivalence. The actual method of squeezing should be
based on the psycho-acoustical fact that humans (and some other mammals)

consider two sounds to be equivalent if their fundamental frequencies are re-
lated as a power of 2.

o Principle III: Harmonic and Harmonically Even Distribution. In the final
stage of the selection of actual sounds from the huge list of candidates generated
by the Principles I and I, one should choose those sounds which are distributed
evenly (in harmonic sense, not arithmetically) and also stand in harmonic rela-
tion to each other (i.c. their frequencies are related as ratios of small incegers).

Mathematically, what this means is that we are secking a mapping from the set of
all natural numbers N to the set of all rational numbers lying between 1 and 2:

f " N—=[1,2]NnQ (1)

To build this map f(n) in accordance with the principles formulated above, we first
need to define the following intermediate map k(n):
n

k(n) = min{k € N|1 < o

<2} (2)
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The map k(n) reflects the Principle of Octave Equivalence. And now the explicit
form of the map f(n) can be given:
n

f(n):: k(n) (3)

Finally, the actual Temperament as a set of frequencies can be constructed using the

map f(n):

T[Nmina chwc] - f({Nmma Nmz'n + 17 cee Nmax}) (4)

Here the natural numbers N,,;,, and N4, serve as parameters that can be varied. It
would seem natural to set N,,;;, = 3 (as the endpoints 1 and 2 are always included)
and vary only the value of N,,,4,, thus obtaining a family of temperaments Ty which,
in a manner of speaking, “encompass greater and greater part of infinity”.

The implementation of the above algorithm in Python is enclosed in the last sec-
tion of this paper. The results of running this program are as follows:
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Note that it took 11 seconds to generate T'gggp on a Linux machine with a 42GHz
processor. Listening to a sample music played back using ET as well as 7790 and
T5000 shows a subtle difference, especially in the chords. Out of nine people sur-
veyed, ewo could not detect any difference, five (of which one is a professional musi-
cian) showed preference for T5p09 and two preferred ET. Listening to the same music

played in 739 results in a uniform feeling of “mistuned piano” The audio files of this
experiment are available achttp://quantuminfodynamics. com/audio/1

2 Another Dimension of Music

The above three principles shed light on both the old Pythagorean temperamentand
on the modern “12 tone Equal Temperament” However, I believe that we should also
consider the following:
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Principle IV: An Extra Dimension of Music. This dimension can be realised (at
least in the first, rough approximation — later we can refine it) by floating the tem-
perament, i.c. by varying (very slightly!) the set of frequencies within a given fixed
range of human hearing, precisely according to the way the “Infinite” is represented
or modelled mathematically. For example, when I say “infinite number of all pos-
sible sounds” I really mean all possible frequencies, but surely one cannot exhaust
an infinite set on a compucer, so it has to be replaced with some large but finite set
like a thousand or a million or a billion frequencies. And the way we thus “approxi-
mate Infinity” necessarily affects the resulting sequences of temperaments obtained
by applying the three above-mentioned principles.

The above elucidates the meaning, but hardly reveals anything concerning the po-
tential value, mentioned in the beginning. This, I believe, consists in the mysterious
power of musical form of expression over our ordinary language as a means of bring-
ing out our inner emotional and intellectual processes, bordering on the spiritual, i.c.
our personal “holy of holies” and doing so in a non-vulgar and proper way. And if
the entire human being is consumed with but one single desire — to seck God and
to do his will, to be more like God — then, perforce, the musical expression of his
being should become a reflection of this. And if, in addition, this reflection is skil-
fully and artistically constructed, then, as the sages say, “it has power a whole world
to transform.”
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3 The Python Program

#!/usr/bin/env python3.7
scales.py --- Generate Rational Temperaments,
as described in my paper "On the Meaning and Value of Music" (2019).

Author: Tigran Aivazian <tigran@quantuminfodynamics.com>
License: GNU General Public License v3.0
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import sys
from fractions import Fraction

def equivalentk(n):

"""Keep dividing the number n by 2,3,4,... until it is <= Nmin"""
i=2
x = Fraction(n,i)
while x>=octmul:
i+=1
x /=1

return x

def equivalent2(n):
"""Keep dividing the number n by 2 until it is <= Nmin"""
x = Fraction(n,2)
while x>=2: x /= 2
return x

def harmonize (i, slist):
mnamnn
Look in the vicinity of i-th element in sound 1list slist and
return the 'most consonant' one.
mmnn
slen = len(slist)
dist 20 # maximum distance to deviate from the element closest to ET
if i > dist:
mini = i - dist
else:
mini = O
if i < slen - dist:
maxi = i + dist
else:

maxi = slen
#print ("Checking for i=Yd" % i, slist[mini:maxi], end='\n')
s = min(slist[mini:maxi],key=lambda x: x.numerator + x.denominator)
#print (" returning ", s)
return s

Noct = 12 # the number of notes per octave (12 for ET)

octaves = 1 # the number of the instrument's octaves
octmul = 2 # the octave multiplier (2 for ET)
Nmin = octmul + 1 # the starting number to fit into the octave

Nmax = int(sys.argv[1]) if len(sys.argv) > 1 else 2000 # the last number to fit

et = [octmul**(n/Noct) for n in range(Noct)] # Equal Temperament (ET) of Noct notes

sounds = [1] # candidate sounds
for n in range (Nmin,Nmax):
x = equivalentk(n) # call equivalent2(n) for strict 'octave equivalence'
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if x > 1 and x not in sounds: sounds.append(x)
soundslen = len(sounds)

# build the matrix of distances between et and sounds
dist = [[abs(sounds[i]-et[j]) for i in range(soundslen)] for j in range(Noct)]

temp = [1] # list of frequency ratios for the first octave

# choose those which are close to ET and consonant
for i in range(Noct):
idx = dist[i].index(min(dist[i])) # index of the sound closest to ET
sound = harmonize(idx, sounds)
#sound = sounds[idx]
if sound not in temp: temp.append(sound) # append if not a duplicate

templen = len(temp)
if templen != Noct: # Incomplete temperament
print ("WARNING: Built only ’%d notes instead of %d" % (templen, Noct))

instr = temp.copy()
if octaves > 1: print("Extending %d notes to %d octaves" ¥ (templen, octaves))
for i in range(octaves-1):

#print (")d notes, instr=" Y len(instr), instr, end='\n\n')

instr += [octmul*x for x in instr[-len(temp):]]

# Sort and convert to Yoshimi (and human) readable form
instr.sort ()

count = 1
for i in instr:
if i.denominator == 1:
print (str(i.numerator), end=', ')
else:
print (str(i.numerator) + '/' + str(i.denominator), end=', ')

count += 1

if count > Noct:
count = 1
print('")
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