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1 Introduction

This article summarises the main equations of Nonlocal Statistical Mechanics in the co-
variant form using Cartan’s method of contact spaces. The three possibilities of gen-
eralisation of the theory are briefly discussed and the urgent need for the construction
of the complete GR-like framework using Finslerian geometry is presented. The reason
for it is due to the relatively recently discovered explosive-type solutions which are in-
tractable in the present model of pseudo-Riemannian differentiable manifold, due to the
non-compactness of the fibre TxM over any point x ∈ M.

2 Derivative According to Cartan

We begin with the cotangent bundle T ∗M over the lorentzian base manifold M, the
latter assumed to be endowed with the symmetric natural (i.e. Levi-Civita) affine con-
nection Γα

βγ , consistent with the metric gαβ :

T ∗M =
∪
x∈M

T ∗
xM (1)

The coordinate transformations onM induce the transformations in the fibre:

xα
′
= φα′

(x0, . . . , xn) (2)

pα′ = pα
∂xα

∂xα′ (3)

The corresponding invariant integration measure on T ∗M has a particularly simple
form:

dµ[T ∗M] = d4x d4p (4)
Ifwe goover from the contangent to the tangent bundleTM, the above formulae change
to:

uα
′
= uα

∂xα
′

∂xα
(5)

dµ[TM] =
√
−g d4x

√
−g d4u (6)



2 DERIVATIVE ACCORDING TOCARTAN

Theaffine connectionΓα
βγ allows one to differentiate tensor fields defined in the neigh-

bourhood of a point x ∈ M, e.g. for the vector field u(x):
Duα = duα + Γα

βγu
β dxγ (7)

However, what if our physical fields depend not only on the point x, but also on the ve-
locity vector from the tangent space at that point u ∈ TxM? For this situation we turn
to the “contact spaces” formalism developed by E. Cartan in [1], defining the covariant
differential, which is also known as “the horizontal lift of the affine connection on the
base manifold to the tangent bundle”, see [2]. According to Cartan we have, e.g. for a
vector field T α(x, u):

D̃T α = dT α + Γα
βγT

β dxγ = T α
.β dxβ + T α

:β D̃uβ (8)
D̃uα = duα + Γα

βγu
β dxγ = uα.β dxβ + uα:β D̃uβ =⇒ uα.β ≡ 0, uα:β ≡ δαβ (9)

where we denoted with the dot .β and two dots :β subscripts the covariant derivative over
the coordinatexβ and the velocityuβ respectively. By expanding the ordinary differential
dT α in terms of dxα and duα in (8) we obtain the covariant derivatives of T α over xβ

and uβ :

T α
.β =

∂T α

∂xβ
+ Γα

γβT
γ − ∂T α

∂uσ
Γσ
γβu

γ (10)

T α
:β =

∂T α

∂uβ
(11)

As we see from the formula (11), the covariant derivative over the velocity coincides with
the ordinary partial derivative. But the formula (10) shows that the covariant deriva-
tive according to Cartan differs from either the partial derivative and from the ordinary
covariant derivative according to Ricci, by the inclusion of the extra (last) term in that
formula.

The formalism of Cartain’s contact spaces and covariant differentiation was first intro-
duced to the statistical physics by A.A. Vlasov (see [3]-[4]).

For a scalar (invariant with respect to the transformations (2-5)) function f (x, u)we
have:

D̃f = df =
∂f

∂xα
dxα +

∂f

∂uα
duα = f.α dxα + f:α D̃uα (12)

which leads immediately to the following covariant derivatives:

f.β =
∂f

∂xβ
− Γα

βγu
β ∂f

∂uα
(13)

f:β =
∂f

∂uβ
(14)
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3 CLASSICALNONLOCAL STATISTICALMECHANICS

We are now fully equipped for writing out the main equation of the theory — Vlasov’s
Equation — in the fully covariant form. However, before we do so, let us take a brief
excursion to the domain of non-covariant nonlocal statistical mechanics.

3 Classical Nonlocal Statistical Mechanics

TheVlasov equation for the distribution functionf (r,v, t)definedon the contact space
of the first degree, i.e. containing only the first derivative of the position, but not the
second of higher derivatives, has the form (see [3]):

∂f

∂t
+ divr(vf ) + divv(⟨v̇⟩f ) = 0 (15)

Here the averaged acceleration ⟨v̇⟩, strictly speaking, has to be defined in terms of the
higher-degree-contact distribution function f̃ (r,v, v̇, t):

⟨v̇⟩ def
=

∫
v̇f̃ (r,v, v̇, t) dv̇∫
f̃ (r,v, v̇, t) dv̇

(16)

f (r,v, t)
def
=

∫
f̃ (r,v, v̇, t) dv̇ (17)

Eliminating f̃ and thus making it possible to solve the equation (15) amounts to postu-
lating (or deriving empirically, or deriving from a different physical theory) the form of
dependence of ⟨v̇⟩ on the known variables:

⟨v̇⟩ = F (r,v, t, {f}) (18)

The equation (18) is nothing other than Newton’s Second Law, only the “force” is per-
mitted to depend (as a functional) on the distribution function, which is denoted as {f}.
With respect to the partial differential equation (15) the ordinary differential equation
(18) serves as the equation of characteristics, i.e. the phase flow of the system (18) (together
with the trivial equation ṙ = v) preserves the following integral of f :

MG(t) =

∫
gt(G)

f (r,v, t) d3r d3v (19)

For example, the complete information about the dynamics of a gravitationally self-
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3 CLASSICALNONLOCAL STATISTICALMECHANICS

interacting nonlocal “cloud-particle” is contained in the following two equations:
∂f

∂t
+ divr(vf )−∇φ

∂f

∂v
= 0 (20)

φ(r, t, {f}) = −G

∫
f (r′,v′, t)

|r − r′|
d3r′ d3v (21)

In principle, we could attempt to describe the dynamics of matter in the ordinary
three-dimensional space, whichwould formally correspond to the “0th degree of contact”,
i.e. with the ordinary spatial density ρ(r, t) serving as a “distribution function” and obey-
ing the continuity equation:

∂ρ

∂t
+ divr(⟨v⟩ρ) = 0 (22)

⟨v⟩ def
=

∫
vf (r,v, t) dv∫
f (r,v, t) dv

(23)

ρ(r, t)
def
=

∫
f (r,v, t) dv (24)

In order to eliminate the higher-order distribution function f (r,v, t)we would have to
postulate the law of motion of the following kind:

⟨v⟩ = F Aristotle(r, t, {f}) (25)

It is well known that the idea of force being the cause of motion (as opposed to the cause
of acceleration) belongs to Aristotle [5]. Thus, we see that the 1st degree of contact cor-
responds to the Newtonian dynamics and the 0th degree of contact corresponds to the
Aristotelean motion. What does the 2nd degree of contact correspond to, if anything?
Let us now consider the distribution function f̃ (r,v, v̇, t), obeying the conservation
law:

∂f̃

∂t
+ divr(vf̃ ) + divv(v̇f̃ ) + divv̇(⟨v̈⟩f̃ ) = 0 (26)

⟨v̈⟩ def
=

∫
v̈ ˜̃f (r,v, v̇, v̈, t) dv̈∫ ˜̃f (r,v, v̇, v̈, t) dv̈

(27)

f̃ (r,v, v̇, t)
def
=

∫
˜̃f (r,v, v̇, v̈, t) dv̈ (28)

The law of motion would have the form:

⟨v̈⟩ = F̃ (r,v, v̇, t, {f}) (29)
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4 COVARIANTNONLOCAL STATISTICALMECHANICS

The equation of the form (29) is no stranger to theoretical physics as it was introduced by
Lorentz in connection with the back-reaction of radiation on a charged particle:

...
r − 2e2

3mc2
r̈ =

1

m
F (30)

What is very important to understand here is that in the formalism of nonlocal statis-
tical mechanics the forces play the role of restricting the total kinematical freedom allowed
by the structure of the contact space itself, rather than being considered the causes of motion as
is the case in the Newtonian mechanics of particles. Thus the concept of motion becomes an
inherent property of matterial existence, considered on the same fundamental footing as
the notions of space and time.

4 Covariant Nonlocal Statistical Mechanics

Returning to the covariant treatment inTMwe need to generalise the equation (15) for
the distribution function f (x, u) thus:

D̃ivx(uf ) + divu(⟨
Du

dτ
⟩f ) = 0 (31)

The covariant divergence D̃ivx is easily obtained using the formulas of the first section:

D̃ivx(uf ) = uα
∂f

∂xα
− Γα

βγu
βuγ

∂f

∂uα
(32)

And the law of motion in the presence of electromagnetic field is:

⟨Duα

dτ
⟩ = e

mc
F α
β u

β (33)

Finally, we have the following equations for f (x, u) and the associated gravitational and
electromagnetic fields:

uα
∂f

∂xα
− Γα

βγu
βuγ

∂f

∂uα
+

e

mc
F α
β u

β ∂f

∂uα
= 0 (34)

DF αβ

∂xβ
= 4π

e

mc

∫
uαf (x, u)

√
−g d4u (35)

Rαβ − 1

2
Rgαβ =

8πG

c4

(∫
uαuβf (x, u)

√
−g d4u + T αβ

EM(F )

)
(36)
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5 GENERALISATIONS OF THE THEORY

Here the ration e
mc plays the role of the parameter coupling the electromagnetic fieldF αβ

to the nonlocal matter f (x, u). We have used the fact the tensor of electromagnetic field
does not depend (in the usual Einstein’sGR formulation) on the velocityu and, therefore,
the covariant Cartan’s derivative is reduced the ordinary (Ricci) covariant derivative, here
denoted by D

∂xα .

5 Generalisations of the Theory

The theory as presented so far admits of extensions in the following three directions:

1. Increase the dimension of the base manifold: dimM = 5, i.e. consider Kaluza’s
formalism.

2. Quantise thematter by replacing the classical distribution functionf (x, u)with the
appropriately defined Wigner functionW (x, u) (see [6],[7],[8]).

3. Replace the tangent bundle over base manifold with the Finslerian “spacetime”, ef-
fectively allowing the metric to depend on the velocity u.

The first alternative is certainly the most straightforward and brings the benefit of in-
corporating the electromagnetic field (plus a scalar field, as a “free extra”) into the geo-
metrical framework, thereby removing the necessity to treat the ratio e

mc as a parameter,
corresponding to the “kind of particle” under consideration. Instead, a single distribu-
tion function supported in distinct domains of the 10-dimensional contact space would
correspond to the multiple distinguishable interacting particles (or “cloud-particles” in
general case).

The second alternative is inevitable and isworthpursuing in its ownmerit, even though
its rigorous treatment is, sadly, attended with many rather serious obstacles of purely
mathematical nature. No description of matter which ignores the reality of space (i.e.
the so-called quantum effects) can be considered complete and entirely accurate.

Now, most surprisingly (to the present author), the third approach appears to be most
urgent and important to consider, in a practical sense. The reason is the discovery of cer-
tain solutions of “explosion of metric nature” originally discovered by A.A. Vlasov back
in 1960s (see pp. 208–219 of [3] and pp. 245–259 of [4]). Namely, by raising the tem-
perature (of, say, an electron cloud) beyond a certain critical temperature ( 7.4 × 108 K
for the electrons, 13.3 × 1011 K for protons) the matter enters such a state, where its
distribution of velocities becomes highly anomalous (e.g. the integral over the velocity
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space diverges) and an exponentially rapid self-accelerating spatial expansion occurs —
an explosion.

This process is not related to either molecular, atomic or nuclear transformations and
is, as a result, not even sensitive to the actual mechanism of interaction, i.e. rather myste-
riously, has a purely “metric” origin.

The present framework allows us to predict the beginning of the explosion, but we can-
not say when (or if !) the explosion ends. This is directly related to the fact that we are
modelling the spacetime as a differentiablemanifold, thus allowing arbitrarily high values
of momenta. In the process of explosion the particles’ momenta would grow indefinitely
as the non-compact cotangent space T ∗

xM contains no inherent structural restriction
that would prevent such infinite growth and thus terminate the explosion at some point.
Finslerian spacetime, on the other hand (see [9]) contains the possibility for restricting
proper acceleration (and possibly the proper velocity) and therefore should be consid-
ered a most promising candidate for treating the abovementioned explosive process both
more completely (i.e. not just “setting off ”, but also the finite dynamics and termination)
and with greater accuracy (e.g. better estimates of the critical temperature for various
matter models, including the massless case of a possible “photonic bomb”).
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