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Abstract

We suggest an extension of the Hilbert Phase Space formalism, which appears to be naturally
suited for application to the dissipative (open) quantum systems, such as those described by the
non-stationary (time-dependent) Hamiltonians H(x, p, t). A notion of quantum differential is
introduced, highlighting the difference between the quantum and classical propagators. The equa-
tion of quantum dynamics of the generalisedWigner function in the extendedHilbert phase space
is derived, as well as its classical limit, which serves as the generalisation of the classical Liouville
equation for the domain of non-stationary Hamiltonian dynamical systems. This classical limit is
then studied at some length and it is shown that in the extended phase space the energy plays the
role of the coordinate and time that of the conjugated momentum and not the other way around,
as might be suggested by the covariant treatment of these quantities arising from the 4-coordinate
and 4-momentum in the relativistic context. Furthermore, the canonical form of the equation ob-
tained suggests that that which is perceived asmotion in the ordinary phase space is an equilibrium
configuration in the extended phase space.

I INTRODUCTION

QuantumMechanics has been formulated inmanyutterly different, butmathematically equiv-
alent, ways, such as:

• Heisenberg Matrix Mechanics

• Schrödinger Wave Mechanics

• Wigner Function

• Feynman’s Path Integrals
*tigran@quantuminfodynamics.com, aivazian.tigran@gmail.com, tigran@bibles.org.uk
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The Wigner function approach has many advantages both in the conceptual sense of pro-
viding a clear link to the classical dynamics and statistical physics and also in themore practical
sense of direct applications to quantum optics, chaos theory and many other areas. A system-
atic introduction to this approach together with the seminal papers which laid the founda-
tions thereof can be found in [1]. The central object of this approach, namely the Wigner
functionW (x, p, t), is defined on the space, whichmay seem in the “naive” approximation to
be identical with the phase space associated with the classical Hamiltonian dynamical system
under consideration. This function is manifestly real, but cannot be interpreted as a proba-
bility distribution in the classical sense, because it is not positive-semidefinite.

Historically, themaster equation forW (x, p, t)wasfirst obtainedbyWigner in1932 ([2])
on the quest for the quantum corrections to the classical Liouville equation for the distribu-
tion function f(x, p, t). However, a more elegant, symmetric and arguably more fundamen-
tal derivation of this equation is based on the connection to the concept of densitymatrix and
its master (vonNeumann’s) equation. This is done by introducing the notion ofHilbert Phase
Space and the 4-operator algebra (x̂, p̂, λ̂, θ̂) as follows. For a more thorough treatment see
[3] and, in a slightly different notation, the earlier papers [4] and [5].

We begin with theHeisenberg’s Principle of Uncertainty:

∆x∆p ⩾ ℏ
2

(1)

Here we have used the bold letters x and p to denote the quantum (i.e. not simultaneously
measurable) coordinate andmomentum, whichwill be distinguished from the purely classical
(i.e. simultaneously measurable) coordinate and momentum, which are henceforth denoted
by the lower-case letters x and p. The experimentally verified relation (1) suggests that the
coordinate and momentum in the “quantum world” can be represented mathematically by
the operators x̂ and p̂ obeying the following commutation relation:

[x̂, p̂] = iℏ (2)

On the abstract level the state of the system at themoment t is given by a ket-vector |ψ(t)⟩
obeying the Schrödinger equation:

iℏ
d

dt
|ψ(t)⟩ = H(x̂, p̂) |ψ(t)⟩ (3)

HereH(x̂, p̂) is the quantumHamiltonian corresponding to the classicalHamilton function
H(x, p). We could satisfy the rule (2) immediately by the following representation of x̂ and
p̂ as differential operators acting on a suitable domain of functions (e.g. L2):

x̂ = x (4)
p̂ = −iℏ∂x (5)
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This is known as the x-representation. In x-representation the state of the system is de-
scribed by a complex-valued square-integrable functionψ(x, t) (known aswave function) sat-
isfying the Schrödinger equation:

iℏ
∂ψ

∂t
= H(x,−iℏ∂x)ψ (6)

Another valid representation of x̂ and p̂ is:

x̂ = iℏ∂p (7)
p̂ = p (8)

Note the different sign before iℏ in (7) and (5) above. In p-representation the state of
the system is described by a complex-valued square-integrable function φ(p, t) satisfying the
Schrödinger equation:

iℏ
∂φ

∂t
= H(iℏ∂p,p)φ (9)

The connection between the wave functions ψ(x, t) and φ(p, t) is given by Fourier trans-
form:

ψ(x, t) = F [φ(ℏp, t)] (10)
φ(p, t) = ℏF−1[ψ(ℏx, t)] (11)

where the operatorF and its inverseF−1 are defined in the usual way:

F [f(x)] = 1

2π

∫
eikxf(x) dx ≡ f̃(k) (12)

F−1[f̃(k)] =
∫
e−ikxf̃(k) dk ≡ f(x) (13)

The formulas (10) and (11) can be rewritten in the more familiar form:

ψ(x, t) =
1

2πℏ

∫
e

ipx
ℏ φ(p, t) dp (14)

φ(p, t) =

∫
e−

ipx
ℏ ψ(x, t) dx (15)

II HILBERT PHASE SPACE ON ALGEBRA (x̂, p̂, λ̂, θ̂)

Let us represent the quantum operators of coordinate and momentum as the following lin-
ear combinations of four operators x̂, p̂, λ̂, θ̂, suggested by the change of variables necessary
to arrive from the usual (x, x′)-representation of the density matrix to the Wigner function
W (x, p, t) via Blokhintsev functionB(x, θ, t) as an intermediate step:

x̂ = x̂− ℏ
2
θ̂ (16)

p̂ = p̂+
ℏ
2
λ̂ (17)

3



Remember that these two operators x̂ and p̂must still satisfy the commutation relation (2).
This constraint will be automatically satisfied if the four operatiors x̂, p̂, λ̂, θ̂ obey the follow-
ing six commutation relations:

[x̂, p̂] = 0, [x̂, λ̂] = i, [x̂, θ̂] = 0 (18)

[p̂, λ̂] = 0, [p̂, θ̂] = i, [θ̂, λ̂] = 0 (19)

The above commutation relations suggest the following possible physical meaning of these
four operators:

1. The operators x̂ and p̂ commute, i.e. they correspond to the physical quantities which
can be measured simultaneously. We shall see later that they correspond to the classi-
cal coordinate and momentum in the sense that in the particular representation where
they act as multiplication by number (x̂ = x, p̂ = p), the equation for the density
matrix, which in this representation coincides with the well-known Moyal equation for
the Wigner function, corresponds to the classical Liouville equation for the positive-
semidefinite distribution function f(x, p, t).

2. The operator λ̂ acts as a momentum canonically conjugated to the “classical” coordinate
x̂.

3. Likewise, the operator θ̂ acts as a momentum canonically conjugated to the “classical”
momentum p̂. Therefore, the pair (λ, θ) acts as variables canonically conjugated to the
usual classical phase space coordinate and momentum (x, p) and thus form what may
be called a Reciprocal Phase Space ([6]).

4. The entity−ℏ
2 θ̂ can be considered a quantum correction to the coordinate and, likewise,

the entity ℏ
2 λ̂ can be thought of as a quantum correction to the momentum, both in the

operator-valued sense, naturally.

Just like the two different representations (x̂ and p̂) we had in the wavemechanics, we can
have four representations in which any of the four pairs (x̂, p̂), (x̂, θ̂), (λ̂, p̂) or (λ̂, θ̂)will be
reduced to multiplication by number. For example, in x− p-representation we have:

x̂ = x, p̂ = p, λ̂ = −i∂x, θ̂ = −i∂p (20)

Introducing these four operators helps to bring previously intractable problems within
reach of a modern desktop personal computer. Specifically, in the usual x− p representation
the Wigner function even in the non-relativistic case obeys the pseudo-differential equation,
which can also be recast in the form of an integral equation, but with a highly singular kernel.
However, switching to the x− θ representation turns this into a much less complex equation
in partial derivatives, as is shown in [3]. Also, the four-operator algebra (x̂, p̂, λ̂, θ̂) makes it
possible to solve Cachy problem forW (x, p, t) using the very successful spectral split propa-
gator technique. Again, all the details can be seen in [3], with one particular implementation
in Python (for 2D, 4D and even 6D phase spaces) by the author in [7].
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In order to write the von Neumann’s equation for the density matrix we need the mirror
algebra (x̂′, p̂′) defined as follows:

x̂′ = x̂+
ℏ
2
θ̂ (21)

p̂′ = p̂− ℏ
2
λ̂ (22)

[x̂′, p̂′] = −iℏ (23)

Note the different sign in (23) compared to (2). It is straightforward to verify that (23) is
automatically satisfied by virtue of the six commutation relations (18-19). The equation for
the density matrix now reads:

iℏ∂tρ =
[
H(x̂, p̂)−H(x̂′, p̂′)

]
ρ =

[
H

(
x̂− ℏ

2
θ̂, p̂+

ℏ
2
λ̂

)
−H

(
x̂+

ℏ
2
θ̂, p̂− ℏ

2
λ̂

)]
ρ

(24)
Inx−p representationwe immediately recognise the famousMoyal equation for theWigner
functionW (x, p, t):

iℏ∂tW =

[
H

(
x+

iℏ
2
∂p, p−

iℏ
2
∂x

)
−H

(
x− iℏ

2
∂p, p+

iℏ
2
∂x

)]
W (25)

Of course, instead ofwriting vonNeumann’s equation for the densitymatrixwe could have
started with the Schrödinger wave equation, which, for example in the x− p-representation
has the following form:

iℏ∂tΨ(x, p, t) = H

(
x+

iℏ
2
∂p, p−

iℏ
2
∂x

)
Ψ(x, p, t) (26)

Using the probability amplitude Ψ(x, p, t) we can construct a positive-semidefinite prob-
ability distribution function O(x, p, t) = Ψ∗(x, p, t)Ψ(x, p, t), which we suggest to call
Olavo function, because it was shown in [9] that at least for the non-relativistic form of the
Hamiltonian, the energy calculated in classical terms by means ofO(x, p, t) coincides with
the quantum expression constructed fromΨ(x, p, t):

Ē =

∫ (
p2

2m
+ U(x)

)
O(x, p, t) dx dp =

∫
Ψ∗(x, t)

(
− ℏ2

2m

∂2

∂x2
+ U(x)

)
Ψ(x, t) dx

(27)
It would seem interesting to compare the dynamical evolution of both the Wigner function
W (x, p, t) andOlavo functionO(x, p, t) in the relativistic case starting from the same initial
conditions and calculate the expectations of energy in both formalisms, but this is beyond the
scope of the present paper.

Frequently, the HamiltonianH(x, p) decomposes into a sum of the kinetic and potential
energy termsH(x, p) = T (p)+U(x). In this case we can rewrite theMoyal equation in the
more compact form:

∂tW =
(
d̃T (p̂,−iλ̂) + d̃U(x̂, iθ̂)

)
W (28)
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where we have defined a new concept of a quantum differential of a function f(x) at a point
x on the infinitesemal (in our case, actually operator-valued) increment dx as follows:

d̃f(x, dx) =
1

iℏ

[
f

(
x+

iℏ
2
dx

)
− f

(
x− iℏ

2
dx

)]
(29)

Note that reduced Planck’s constant ℏ enters the dynamics only via these quantum differ-
entials, which in the classical limit (ℏ→ 0) coincidewith the classical differentialsdf(x, dx) ≡
f ′(x)dx. Introduction of quantum differentials suggests that the same four-operator algebra
(x̂, p̂, λ̂, θ̂) and, therefore, the same spectral split propagator method (in this case referred to
as “symplectic propagator”), can be used in the classical regime, i.e. for solving the Liouville
equation for the classical distribution function f(x, p, t), which has exactly the same form as
(28), except that the quantum differential operator d̃ should be substituted with the ordinary
differential d.

The geometrical meaning of the quantum differential is as follows: when one calculates
the classical (or ordinary) differential, the function is evaluated “horizontally”, i.e. its val-
ues are compared along the axis x on which the function is defined. But for calculating the
quantum differential of a function f(x) of real argument xwe must first perform an analytic
continuation thereof (in a suitable “complexified” neighbourhood of the point x) and then
compare the values “vertically”, i.e. ℏ

2 units above and ℏ
2 units below the point in question.

This highlights the key difference between the quantum and classical dynamics, namely: in
the classical case the evolution of a system’s state is entirely determined by the shape of the
real-valued functions T (p) and U(x) of real arguments p and x respectively, whereas in the
quantum case the arguments of these two functions (for the purposes of determining the evo-
lution in time) must be considered as complex-valued. Furthermore, in classical dynamics
both the kinetic and potential energy are assumed to be smooth functions of their respective
arguments and their derivatives enter the expression for the exponential propagator. But in
quantum dynamics, these derivatives are replaced by the symmetric finite differences, taken at
points ℏ units apart. Herein lies a subtle point: the previous sentence may have conveyed the
impression of discretisation of phase space with the step equal to ℏ, but this is not quite so. If
the step is forced to be a number inx-subspace, then it becomes operator-valued in p-subspace
and vice versa. This is a direct consequence of Heisenberg’s Uncertainty Principle.

For the sake of completeness, we also present the equation (25) in the more traditional
form which emphasizes its connection to the classical Liouville Equation for the distribution
function f(x, p, t):

∂tf = {H, f} (30)

{A,B} = A(x, p)(
←
∂x
→
∂p −

←
∂p
→
∂x)B(x, p) (31)

In order to recast (25) in this form we need to replace the classical Poisson brackets {, } with
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their quantum counterpart [, ] by introducing Moyal ⋆-product as follows:

[A,B] ≡ 1

iℏ
(A ⋆ B −B ⋆ A) (32)

⋆ ≡ exp
{
iℏ
2
(
←
∂x
→
∂p −

←
∂p
→
∂x)

}
(33)

{A,B} 7→ [A,B] (34)
∂tW = [H,W ] (35)

III HILBERT PHASE SPACE ON ALGEBRA (t̂, τ̂ , Ω̂, Ê, x̂, p̂, λ̂, θ̂)

Now we are well equiped to describe the suggested extension of the four-operator algebra to
be applied in the case of time-dependent Hamiltonian H(x, p, t). But before we do so, let
us recall that even dissipative systems can often be described by a Hamiltonian, albeit a non-
stationary one, i.e. explicitly containing time (see [11]). For example, consider the following
class of dynamical systems:

ẍ+ αẋ+
1

m

∂U

∂x
= 0 (36)

It can be described in either Lagrangian or Hamiltonian terms:

L(x, ẋ, t) = eαt
(
mẋ2

2
− U(x)

)
(37)

H(x, p, t) = e−αt
p2

2m
+ eαtU(x) (38)

However, in this case the mechanical energy of the system does not coincide withH(x, p, t):
the former dissipates, but the latter is conserved along the phase trajectories. Likewise, what
has been denoted by p above is not the same as the mechanical momentum (the latter being
mẋ), butmerely the canonical momentum, i.e. a suitable coordinate conjugated to the spatial
coordinatex (this one is a real coordinate—at least something is!) in the symplecticmanifold
corresponding to the dynamical system under consideration.

It is well known that the roles played in physical reality by a spatial coordinate and the
corresponding projection of momentum are reciprocal to those of the time and energy re-
spectively. For example, even the Uncertainty Principle has a reciprocal formulation which
can be roughly written as ∆t∆E ⩾ ℏ

2 . (The more strict form thereof, known as the Man-
delshtam and Tamm time-energy uncertainty relation is given in [12], but we shall not need
it here.) In Einstein’s Special Theory of Relativity, where time and space are unified into a
single differentiable manifold, the momentum and energy are, likewise, unified into a single
4-vector of momentum pµ.

Let us explore the possibility that, just like the pair of quantum coordinate x̂ and p̂ can
be decomposed into a linear combination with very fruitful consequences, so can the pair of
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quantum time t̂ energy Ê operators, together with their mirror counterparts t̂
′
and Ê

′
:

t̂ = t̂+
ℏ
2
τ̂ (39)

Ê = Ω̂− ℏ
2
Ê (40)

t̂
′
= t̂− ℏ

2
τ̂ (41)

Ê
′
= Ω̂ +

ℏ
2
Ê (42)

We need to satisfy the following commutation relations:

[t̂, Ê] = −iℏ (43)

[t̂
′
, Ê
′
] = iℏ (44)

It is easy to see that these are satisfied if we impose the six relations identical to (18-19):

[t̂, Ω̂] = 0, [t̂, Ê] = i, [t̂, τ̂ ] = 0 (45)

[Ω̂, Ê] = 0, [Ω̂, τ̂ ] = i, [τ̂ , Ê] = 0 (46)

Here, again, we note that t̂ and Ω̂ commute, so we can interpret them as corresponding to our
classical notions of time and energy, with τ̂ and Ê giving some kind of “quantum corrections”
to these. And, just like before, we can choose a representation, e.g. in t − Ω-representation,
we have:

t̂ = t (47)

Ω̂ = Ω (48)
τ̂ = −i∂Ω (49)

Ê = −i∂t (50)

Let us pose this question: What does this proposed scheme do to the master equation
(24)?

First, let us consider the case of a stationary hamiltonianH(x̂, p̂). As this operator plays
the role of energy and sodoes the operator Ê, it is natural to assume that the physically realised
states must annul the difference betweenH(x̂, p̂)− Ê andH(x̂′, p̂′)− Ê

′
, so we obtain:(

H(x̂, p̂)−H(x̂′, p̂′)
)
ρ =

(
Ê − Ê

′)
ρ (51)

But from (39-42) we have:

−ℏÊρ =
(
H(x̂, p̂)−H(x̂′, p̂′)

)
ρ (52)

which, in t− E representation of q̂ becomes:

iℏ∂tρ =
(
H(x̂, p̂)−H(x̂′, p̂′)

)
ρ (53)

8



which proves that we have recovered the original von Neumann’s master equation. This sug-
gests that we are on the right track.

Now, let us consider non-stationary HamiltonianH(x̂, p̂, t̂) and derive the master equa-
tion for ρ along the same lines as above:(

H(x̂, p̂, t̂)−H(x̂′, p̂′, t̂
′
)
)
ρ =

(
Ê − Ê

′)
ρ (54)

Substituting the expressions for the quantum time, coordinate, momentum and energy oper-
ators, we obtain:

−ℏÊρ =
(
H(x̂− ℏ

2
θ̂, p̂+

ℏ
2
λ̂, t̂+

ℏ
2
τ̂)−H(x̂+

ℏ
2
θ̂, p̂− ℏ

2
λ̂, t̂− ℏ

2
τ̂)

)
ρ (55)

Now we have to be careful about the quantum operators of time t̂ in the lhs of (54). In
(t−Ω, x− p)-representation we can further reduce (55) to the equation for the generalised
Wigner functionW (t, x,Ω, p):

iℏ∂tW =

(
H(x+

iℏ
2
∂x, p−

iℏ
2
∂p, t−

iℏ
2
∂Ω)−H(x− iℏ

2
∂x, p+

iℏ
2
∂p, t+

iℏ
2
∂Ω)

)
W

(56)
Note that this new Wigner function depends on the “classical” energy variable Ω as well,
which makes the matter of its physical interpretation substantially more complicated. But,
as we have already mentioned above, in the case of non-stationary Hamiltonians one cannot
so easily ascertain what is meant by the “physical momentum” or by the “physical energy” —
all one has a priori is the canonical momentum and canonical (and therefore automatically
conserved) energy.

Now let us assume that the non-stationary Hamiltonian is decomposed into the sum of
kinetic and potential energy terms:

H(x̂, p̂, t̂) = T (p̂, t̂) + U(x̂, t̂) (57)

Then, we can rewrite the equation (56)more compactly in terms of the quantumdifferentials,
just like we have done with the stationary Hamiltonian in (28):

∂tW =
(
d̃T (p̂,−iλ̂, t̂,−iτ̂) + d̃U(x̂, iθ̂, t̂,−iτ̂)

)
W (58)

Using the quantumdifferentials highlights the fact that the quantumcorrection of time enters
with a sign opposite to that of the quantum correction to the main argument of the kinetic
and potential energy functions (i.e. λ and θ respectively). This is a general reflection of the
duality or (inNiels Bohr’s terminology) complementarity of coordinate and momentumwith
respect to their contribution to the evolution in time.

IV THE CLASSICAL LIMIT

Having the equation (58) in the form containing quantum differentials is also convenient for
obtaining the classical limit by simply replacing them with the ordinary differentials. This
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leads to the generalisation of the classical Liouville equation for the distribution function
f(x, p, t,Ω) defined on the extended phase space:

∂tf =
(
dT (p̂,−iλ̂, t̂,−iτ̂) + dU(x̂, iθ̂, t̂,−iτ̂)

)
f =

(dT (p,−∂x, t,−∂Ω) + dU(x, ∂p, t,−∂Ω)) f =

∂pT∂xf − ∂tT∂Ωf + ∂xU∂pf − ∂tU∂Ωf (59)

The final form of the equation for the distribution function f(x, p, t,Ω) becomes:

∂tf = {H, f} − ∂tH∂Ωf (60)

We notice here that the explicit dependence on time in the Hamiltonian adds the extra term
−∂tH∂Ωf to the rhs of the standard Liouville equation ∂tf = {H, f}. Thus, the equa-
tion (60) can be considered the generalisation of the Liouville equation to the time-energy-
extended classical phase space for non-stationary Hamiltonian dynamical systems.

Let us now seek to understand the meaning of this purely classical equation. But what
exactly is meant here by the word meaning? The meaning of a differential equation is best
understood when it is cast into the form of an integral principle, like that of some conserva-
tion law or an extremum of some functional calculated along the dynamical trajectory. To
make matters more explicit we shall devote the following subsection as a summary of known
facts related to themeaning of the distribution function f(x, p, t) in the ordinary phase space
constructed for an autonomous hamiltonian dynamical system.

For the rest of this paper we rename Ω by E so as to use the familiar notation from the
classical physics. This cannot cause confusion or ambiguity as we shall not henceforth discuss
the quantum operators of energy or time introduced earlier.

IV.1 Autonomous Hamiltonian Systems

Let us consider an autonomous hamiltonian dynamical system generated by the function
H(x, p) (for simplicity the phase space is assumed to be the entireRn

x × Rn
p):

ẋi = {xi, H} ≡ ∂piH (61)
ṗi = {pi, H} ≡ −∂xi

H (62)

Henceforth we denote x = (x1, . . . , xn), p = (p1, . . . , pn) and omit indices. The system
(61-62) generates the phase flow {gt}, i.e. a one-parametric group of diffeomorphisms of the
phase space, defined in terms of solutions of this system in Cauchy form x(t, y) as follows:

gt(y) = x(t, y) (63)
x(0, y) = y (64)
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Given some domain G ⊆ Rn × Rn and an arbitrary non-negative function f(x, p, t) on
gt(G) we can construct the following quantities:

PG(t) =

∫
gt(G)

f(x, p, t) dx dp (65)

SG(t) = −
∫

gt(G)

f(x, p, t) ln f(x, p, t) dx dp (66)

It is straightforward to prove that for a sufficiently smooth f(x, p, t) these quantities obey the
following identities:

ṖG(t) =

∫
gt(G)

(∂tf + {f,H}) dx dp (67)

ṠG(t) = −
∫

gt(G)

(1 + ln f(x, p, t)(∂tf + {f,H}) dx dp (68)

Therefore, if the function f(x, p, t) obeys the Liouville equation, then the quantities PG(t)
and SG(t) are conserved:

∂tf = {H, f} ⇒ PG(t) = const, SG(t) = const (69)

And this is exactly what is meant by themeaning of the Liouville equation: it allows to inter-
pret the quantities PG(t) and SG(t) as the probability and the enthropy respectively of the
system occupying the domain gt(G) of the phase space at the moment of time t. The con-
servation of the first of this quantities reflects the fundamental expectation that if the system
was initially (t = 0) found somewhere in the domain G, then at a subsequent moment of
time t > 0 it can only be found somewhere within the image gt(G) of this domain under the
phase flow gt. It can only reach where the dynamical trajectories of the system (61-62) take
it to and thus cannot escape out of this domain and neither can anything extraneous appear
within it— the probability flows like a liquid and a far-reaching similarity with hydrodynam-
ics can be observed in both the configuration and the momentum “subspaces” respectively
(see [8]). Moreover, from the fact that such function f(x, p, t) is conserved along the trajec-
tories of the original dynamical system (df(x, p, t)/dt = 0) it follows that if this function is
semi-positive-definite initially, then it remains so at all times. This makes the enthropy SG(t)
well-defined always.

In the following subsection we shall see if it is possible to arrive at a similarly formulated
meaning of the differential equation (60) by means of some integral principle.

IV.2 Non-autonomous Hamiltonian Systems

As before, we consider the hamiltonian dynamical system (61-62), but nowwe allow the gen-
erating function to depend on time explicitly: H = H(x, p, t).
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Let us consider the extended phase space Rn
x × Rn

p × RE × Rt which differs from the
ordinary phase space by the addition of two extra dimensions labelled as E and t. Now, our
test functions have the form f̃(x, p, E, t) and the reason for this ordering of variables (E
corresponding to x and t corresponding to p) shall be clear from what follows.

Let us consider the extended hamilton function H̃ defined as follows:

H̃(x, p, E, t) = H(x, p, t)− E (70)

We can also define the extended Poisson brackets {A,B}∗ on smooth functionsA(x, p, E, t)
andB(x, p, E, t):

{A,B}∗ = {A,B}+ ∂A

∂E

∂B

∂t
− ∂A

∂t

∂B

∂E
(71)

Now we can ask what is the exact form of the equations of motion generated by H̃ :

ẋ = {x,H}∗ = ∂pH̃ = ∂pH = {x,H} (72)

ṗ = {p,H}∗ = −∂xH̃ = −∂xH = {p,H} (73)

Ė = {E,H}∗ = ∂tH̃ = ∂tH (74)

ṫ = {t,H}∗ = −∂EH̃ = 1 (75)

In the system(72-75)we recover theoriginal dynamical system(61-62)plus the two equations
for the coordinateE(s) and its conjugatedmomentum t(s). Moreover, the equation (75) can
be immediately integrated to give:

t(s) = s+ const (76)

i.e. the time t itself can be taken (up to an additive constant) as a parameter labelling the
trajectory in the extended phase space.

Let us now write out the Liouville equation corresponding to the system (72-75), which
is obeyed by the distribution function f̃(x, p, E, t). As before, we begin by constructing the
integral quantity P̃G̃(s):

P̃G̃(s) =

∫
g̃s(G̃)

f(x, p, E, t) dx dp dE dt (77)

Its constancy implies the following equation:

{f̃ , H̃}∗ = 0 (78)

Let us expand this equation using the definition (71) of the extended Poisson brackets:

{f̃ , H̃}∗ = {f̃ , H̃}+ ∂f̃

∂E

∂H̃

∂t
− ∂f̃

∂t

∂H̃

∂E
= ∂tf̃ + {f̃ , H}+ ∂E f̃∂tH = 0 (79)

Namely, we have come back all the way to where we started, i.e. the equation (60).
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Note that the equation (78) is formally the same as the ordinary Liouville equation for the
equilibriumdistribution {f,H} = 0 and this fact can be used to provide the general solution
in the canonical or Gibbs form:

f̃(x, p, E, t) =
1

Z
exp

(
−βH̃(x, p, E, t)

)
=

1

Z
exp (−β(H(x, p, t)− E)) (80)

Just as in the case of the ordinary phase space, the above distribution function f̃ could
be derived as an extremum of the extended energy functional subject to the normalisation
and enthropy extremum constraints. We see that studying the dynamics in the ordinary phase
space has been cast into the study of equilibrium configuration in the extended phase space,
which proves the assertion of the last section of this paper. It should be noted here that the
divergence of P̃G̃ when calculated over the entire extended phase space does not necessarily
imply any problemor inconsistency of thewhole approach, butmerely indicates that thenaive
constructionof the extendedphase by the additionofnon-compactmanifoldsRE andRt must
be modified by replacing these with spaces of non-trivial topology (such as S1), as suggested
both by themodernKaluza-Klein type theories and also by the little-known statements made
by an ancient teacher in his “Discourse on Space and Time” delivered in Carthage in A.D. 23
(see [10] at 130:7.5).

Final Remark

After the sections I–III of this paper were already written, the author became aware of
the recent paper [13], which contains the same formalism of extended Hilbert phase space
(named there Implicitly Covariant Hilbert Phase Space) and, as a result, it was decided that
our paper’s notations should be updated tomatch those used in [13], with the only difference
being the opposite sign before τ̂ in our definitions of t̂ and t̂

′
, see (39) and (41). The reason

why we decided to keep our original choice of this sign was to make obvious the difference
between the (time,energy) and (space,momentum)pairs, rather thanhiding it one stepdeeper,
i.e. behind the difference in the sign before i in the secondary commutators (45-46).

Note that here we havemade no formal or explicit reference to the relativity or general co-
variance. We have simply introduced the quantum operators for time and energy in the same
way as those of the coordinate and momentum and arrived at a generalisation of quantum
Moyal and classical Liouville equations for the non-stationary Hamiltonians, which was the
scope of this paper.
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