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Abstrat

The purpose of this paper is to show that formulation of general-

relativisti kineti theory in Kaluza-Klein ontext leads to interpreta-

tion of the �fth dimension as proper time. The rest mass of a partile

is identi�ed with the momentum onjugated to the �fth oordinate.

It is shown that the mass shell onstraint is a dynamial restrition

following from the form of total ation as a sum of the integral over

the base manifold and the integral over the otangent bundle. Based

on this form of ation the appliability of the di�erentiable manifold

model is also briey disussed

1

.

1 Introdution

The physial nature of the extra dimension introdued in Kaluza-Klein uni-

�ed theory of eletromagnetism and gravitation has been the subjet of in-

tensive researh sine the very introdution of the theory. Numerous at-

tempts to explain why lassially observed spaetime is apparently four-

dimensional had to either invoke the ondition of ylindriity, due to Klein,

whih ompati�ed the extra dimension down to the sale inaessible to

lassial physis, or to abandon Einstein's oneptual framework of General

Relativity replaing it with that of projetive geometry. In this paper we

shall not disuss various mehanisms for ompati�ation, nor shall we de-

velop the projetive approah. It will suÆe to mention that most of the

diÆulties here originated from attempts to give purely spatial or purely

temporal interpretation of the extra dimension. Instead, we shall take the

�fth dimension at its \fae value", i.e. pursue what is usually referred to as
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\non-ompati�ed approah", whereby all physial �elds are allowed to de-

pend expliitly on the �fth oordinate x

4

and no assumption on the topology

of the manifold is made, exept perhaps the usual requirement of it being

paraompat to make useful operations suh as integration meaningful.

It is assumed that the reader is familiar with the basi ideas of Kaluza's

mehanism of uni�ation of the gravitational and eletromagneti �elds in

a spaetime with �ve dimensions. For the review of the urrent state of

Kaluza-Klein theory viewed in general-relativisti rather than partile physis

ontext, see [1℄ and referenes therein.

The idea of the existene of deep onnetion between rest mass and the

�fth dimension is due to Wesson and his ollaborators ([1℄). It is the main

purpose of this paper to provide on�rmation of this link as apparent in the

domain of kineti theory, naturally extended into the �ve-dimensional ase.

The �fth oordinate x

4

will be seen to map naturally to the proper time �

and the onjugated momentum p

4

orresponds to the rest mass m:

(x

4

; p

4

) 7! (�;m) (1)

In this aspet we radially di�er from the original approah of Wesson et. al.

but nevertheless the fundamental onnetion to the rest mass (proposed by

Wesson) is retained.

2 Dynamis

Let us onsider dynamis of a test partile in the ontext of Einstein's Gen-

eral Relativity. General-relativisti form of kineti theory is well-known

(see [6℄, [7℄, [8℄) and we shall only present here the main onepts and

equations. By spaetime one assumes a onneted four-dimensional time-

oriented Lorentzian manifold with ountable basis ([9℄, p. 51) denoted by

(M; g), where M is the set of events and g metri of Lorentzian signature

(�;+;+;+): g 2 Lor(M). The trajetory of a partile is modelled by a

smooth urve:  : R

1

!M, obeying the equations of geodesis:

d

2

x

�

ds

2

+ �

�

��

dx

�

ds

dx

�

ds

= 0 (2)

or in ovariant form:

r

X

X = 0 (3)

whih an be obtained by varying the ation funtional of familiar form:

S[x

�

(�)℄ = �

�

B

Z

�

A

p

�g

��

_x

�

_x

�

d� (4)
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For our purposes it is more onvenient to rewrite this seond order system

of n equations as a �rst order system of 2n equations, by using natural

oordinates in the otangent bundle T

�

M:

dx

�

ds

=

1

m

g

��

p

�

dp

�

ds

= �

1

2m

�g

��

�x

�

p

�

p

�

(5)

The base phase spae of the system is the otangent bundle T

�

M over

Lorentz manifold (M; g). The phase manifold T

�

M has a natural sympleti

struture that allows us to write the geodesi equations in hamiltonian form:

dx

�

ds

=

�H

�p

�

dp

�

ds

= �

�H

�x

�

(6)

with the Hamiltonian funtion represented by:

H(x; p) =

(

1

2m

g

��

(x)p

�

p

�

+

m

2

m > 0;

1

2

g

��

(x)p

�

p

�

m = 0

(7)

The submanifold (sometimes alled unit sphere):

�

m

(M) =

�

(x; p) 2 T

�

M j g(p; p) +m

2

= 0

	

= �

+

m

(M) [ �

�

m

(M) (8)

is alled a mass shell and is dynamially invariant with respet to the one-

parametri Lie group of loal di�eomorphisms of the base phase spae gen-

erated by the phase ow. This means that if initial position (x; p) lies on

�

m

(M) then the whole trajetory lies on �

m

(M). Moreover, the above state-

ment is true if �

m

(M) is replaed by upper or lower onneted omponent

�

�

m

(M) respetively. Interpreting, the objets moving on �

�

m

(M) as antipar-

tiles we an say that dynamial invariane of eah onneted omponent of

the mass shell means that there an be no transitions between partiles and

antipartiles (in lassial regime, this hanges when Wigner funtions ome

into play in quantum regime).

Matter is desribed by a real-valued smooth funtion de�ned on a otan-

gent bundle f : T

�

M! R whih satis�es kineti equation.

g

��

p

�

�f

�x

�

=

1

2

�g

��

�x

�

p

�

p

�

�f

�p

�

(9)
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It is interesting to note that dynamial equations for g

��

(x) and f(x; p)

an be derived from the ation S = S[g

��

(x); f(x; p)℄:

S =

1

8�

Z

M

(R�2�)

p

�g d

n

x�

Z

M

p

�g d

n

x

Z

T

�

x

M

d

n

p

p

�g

f(x; p)g

��

(x)p

�

p

�

(10)

This an also be written in the form of a sum of the purely geometri ation

S

H

[g

��

(x)℄ (Hilbert ation) and ontribution of the matter S

M

[g

��

(x); f(x; p)℄:

S[g

��

(x)℄ = S

H

[g

��

(x)℄ + S

M

[g

��

(x); f(x; p)℄ (11)

where eah of the ontributions is onsidered as a funtional in the appropri-

ate domain:

S

H

: Lor(M)! R (12)

S

M

: Lor(M)� F(T

�

M)! R (13)

where by F(T

�

M) we have denoted the algebra of smooth funtions de�ned

on the otangent bundle over M and Lor(M) is the lass of all smooth

Lorentzian metris on a given di�erentiable manifoldM. It is worth noting

that the expression for ation funtional is a sum of the integral over the base

manifoldM and of the integral over the otangent bundle T

�

M. Due to non-

ompatness of the otangent bundle one annot transform the Hilbert ation

into the integral over T

�

M - the problem is also known as the ultraviolet

divergene. Perhaps this is an indiation of the limitation of the manifold

model for representing the spaetime. Indeed, di�erentiable manifold x 2 M

\loally looks" like R

n

whih means the otangent spae T

�

x

(M) at eah point

x 2 M is an n-dimensional vetor spae and thus isomorphi to R

n

, in whih

arbitrarily large values of oordinates are allowed. Physially, this is rather

unrealisti beause in�nite values of energy, momentum and proper mass

(whih orrespond to the oordinates in T

�

x

(M)) are unahievable. When one

aelerates a partile to larger and larger values of the energy the struture

of the manifold itself will be a�eted by the urvature produed by suh

energies. In other words, a \test partile with in�nite energy" is no longer a

\test partile". Looks like we need to replae the manifold with something

better suited as a model of physial spaetime.

Varying S[g

��

(x); f(x; p)℄ over g

��

(x) and over f(x; p) independently we

obtain:

ÆS

Æg

��

(x)

=

1

8�

(R

��

�

1

2

Rg

��

+ �g

��

)�

Z

T

�

x

M

d

n

p

p

�g

f(x; p)p

�

p

�

(14)
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ÆS

Æf(x; p)

= �g

��

(x)p

�

p

�

(15)

So, varying over the metri g

��

yields Einstein equations (in n dimensions)

and varying over the distribution funtion f(x; p) ditates that all physial

variables are to be supported on the null mass shell p

2

= 0. If we set n = 4

we obtain Lorentzian manifold �lled with massless m = 0 gas in the ontext

of Einstein's General Relativity. If we set n = 5 we obtain Kaluza-Klein

generalization whih inludes eletromagneti (U(1) gauge) and salar �eld.

Furthermore, we interpret the �fth dimension oordinate and momentum as

proper time and the rest mass of the non-geometri substrate desribed by

distribution funtion f(x; p):

(x

4

; p

4

) 7! (�;m) (16)

To see that suh interpretation is indeed possible all one needs to do is to

write down the geodesi equation in this framework and see how it maps

naturally to equations (5) when the 4 + 1 split is made. Suh tehniality is

left as a simple exerise to the urious reader.

3 Future Developments

Several limitations are immediately apparent in the framework desribed

above. First of all, even in four-dimensional spaetime it is well-known how to

obtain quantum kineti theory. One uses Wigner funtion and the formalism

of otangent bundles and is able to alulate expliitly quantum orretions

to the lassial distribution funtion to any order of ~. This formalism is

desribed in [2℄-[5℄. It is not entirely obvious how to �t this formalism into

the �ve-dimensional framework of Kaluza-Klein.

Also, we are reminded that the fundamental ingredient missing from the

General Relativity of 1915 is still missing in the uni�ed �eld theory of Kaluza-

Klein. Namely, we have �xed the details of metri haraterization of the

manifold but left the topology almost entirely arbitrary. By \almost entirely"

I mean that, of ourse, the very existene of Lorentzian metri implies ertain

restritions of topologial harater but there is no mehanism of seletion

of a preferred topology ompatible with a given metri g

��

.

What would be most interesting is to generalize the form of the ation

funtional (4) on arbitrary �bre bundle or, alternatively, �nd a way to ontrol

the hange of topology ofM by imposing some additional struture on T

�

M

and modify the form of ation aordingly, i.e. as an invariant with respet

to suh new struture.
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