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Abstra
t

The purpose of this paper is to show that formulation of general-

relativisti
 kineti
 theory in Kaluza-Klein 
ontext leads to interpreta-

tion of the �fth dimension as proper time. The rest mass of a parti
le

is identi�ed with the momentum 
onjugated to the �fth 
oordinate.

It is shown that the mass shell 
onstraint is a dynami
al restri
tion

following from the form of total a
tion as a sum of the integral over

the base manifold and the integral over the 
otangent bundle. Based

on this form of a
tion the appli
ability of the di�erentiable manifold

model is also brie
y dis
ussed

1

.

1 Introdu
tion

The physi
al nature of the extra dimension introdu
ed in Kaluza-Klein uni-

�ed theory of ele
tromagnetism and gravitation has been the subje
t of in-

tensive resear
h sin
e the very introdu
tion of the theory. Numerous at-

tempts to explain why 
lassi
ally observed spa
etime is apparently four-

dimensional had to either invoke the 
ondition of 
ylindri
ity, due to Klein,

whi
h 
ompa
ti�ed the extra dimension down to the s
ale ina

essible to


lassi
al physi
s, or to abandon Einstein's 
on
eptual framework of General

Relativity repla
ing it with that of proje
tive geometry. In this paper we

shall not dis
uss various me
hanisms for 
ompa
ti�
ation, nor shall we de-

velop the proje
tive approa
h. It will suÆ
e to mention that most of the

diÆ
ulties here originated from attempts to give purely spatial or purely

temporal interpretation of the extra dimension. Instead, we shall take the

�fth dimension at its \fa
e value", i.e. pursue what is usually referred to as

1
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\non-
ompa
ti�ed approa
h", whereby all physi
al �elds are allowed to de-

pend expli
itly on the �fth 
oordinate x

4

and no assumption on the topology

of the manifold is made, ex
ept perhaps the usual requirement of it being

para
ompa
t to make useful operations su
h as integration meaningful.

It is assumed that the reader is familiar with the basi
 ideas of Kaluza's

me
hanism of uni�
ation of the gravitational and ele
tromagneti
 �elds in

a spa
etime with �ve dimensions. For the review of the 
urrent state of

Kaluza-Klein theory viewed in general-relativisti
 rather than parti
le physi
s


ontext, see [1℄ and referen
es therein.

The idea of the existen
e of deep 
onne
tion between rest mass and the

�fth dimension is due to Wesson and his 
ollaborators ([1℄). It is the main

purpose of this paper to provide 
on�rmation of this link as apparent in the

domain of kineti
 theory, naturally extended into the �ve-dimensional 
ase.

The �fth 
oordinate x

4

will be seen to map naturally to the proper time �

and the 
onjugated momentum p

4


orresponds to the rest mass m:

(x

4

; p

4

) 7! (�;m) (1)

In this aspe
t we radi
ally di�er from the original approa
h of Wesson et. al.

but nevertheless the fundamental 
onne
tion to the rest mass (proposed by

Wesson) is retained.

2 Dynami
s

Let us 
onsider dynami
s of a test parti
le in the 
ontext of Einstein's Gen-

eral Relativity. General-relativisti
 form of kineti
 theory is well-known

(see [6℄, [7℄, [8℄) and we shall only present here the main 
on
epts and

equations. By spa
etime one assumes a 
onne
ted four-dimensional time-

oriented Lorentzian manifold with 
ountable basis ([9℄, p. 51) denoted by

(M; g), where M is the set of events and g metri
 of Lorentzian signature

(�;+;+;+): g 2 Lor(M). The traje
tory of a parti
le is modelled by a

smooth 
urve: 
 : R

1

!M, obeying the equations of geodesi
s:

d

2

x

�

ds

2

+ �

�

��

dx

�

ds

dx

�

ds

= 0 (2)

or in 
ovariant form:

r

X

X = 0 (3)

whi
h 
an be obtained by varying the a
tion fun
tional of familiar form:

S[x

�

(�)℄ = �

�

B

Z

�

A

p

�g

��

_x

�

_x

�

d� (4)
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For our purposes it is more 
onvenient to rewrite this se
ond order system

of n equations as a �rst order system of 2n equations, by using natural


oordinates in the 
otangent bundle T

�

M:

dx

�

ds

=

1

m

g

��

p

�

dp

�

ds

= �

1

2m

�g

��

�x

�

p

�

p

�

(5)

The base phase spa
e of the system is the 
otangent bundle T

�

M over

Lorentz manifold (M; g). The phase manifold T

�

M has a natural symple
ti


stru
ture that allows us to write the geodesi
 equations in hamiltonian form:

dx

�

ds

=

�H

�p

�

dp

�

ds

= �

�H

�x

�

(6)

with the Hamiltonian fun
tion represented by:

H(x; p) =

(

1

2m

g

��

(x)p

�

p

�

+

m

2

m > 0;

1

2

g

��

(x)p

�

p

�

m = 0

(7)

The submanifold (sometimes 
alled unit sphere):

�

m

(M) =

�

(x; p) 2 T

�

M j g(p; p) +m

2

= 0

	

= �

+

m

(M) [ �

�

m

(M) (8)

is 
alled a mass shell and is dynami
ally invariant with respe
t to the one-

parametri
 Lie group of lo
al di�eomorphisms of the base phase spa
e gen-

erated by the phase 
ow. This means that if initial position (x; p) lies on

�

m

(M) then the whole traje
tory lies on �

m

(M). Moreover, the above state-

ment is true if �

m

(M) is repla
ed by upper or lower 
onne
ted 
omponent

�

�

m

(M) respe
tively. Interpreting, the obje
ts moving on �

�

m

(M) as antipar-

ti
les we 
an say that dynami
al invarian
e of ea
h 
onne
ted 
omponent of

the mass shell means that there 
an be no transitions between parti
les and

antiparti
les (in 
lassi
al regime, this 
hanges when Wigner fun
tions 
ome

into play in quantum regime).

Matter is des
ribed by a real-valued smooth fun
tion de�ned on a 
otan-

gent bundle f : T

�

M! R whi
h satis�es kineti
 equation.

g

��

p

�

�f

�x

�

=

1

2

�g

��

�x

�

p

�

p

�

�f

�p

�

(9)
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It is interesting to note that dynami
al equations for g

��

(x) and f(x; p)


an be derived from the a
tion S = S[g

��

(x); f(x; p)℄:

S =

1

8�

Z

M

(R�2�)

p

�g d

n

x�

Z

M

p

�g d

n

x

Z

T

�

x

M

d

n

p

p

�g

f(x; p)g

��

(x)p

�

p

�

(10)

This 
an also be written in the form of a sum of the purely geometri
 a
tion

S

H

[g

��

(x)℄ (Hilbert a
tion) and 
ontribution of the matter S

M

[g

��

(x); f(x; p)℄:

S[g

��

(x)℄ = S

H

[g

��

(x)℄ + S

M

[g

��

(x); f(x; p)℄ (11)

where ea
h of the 
ontributions is 
onsidered as a fun
tional in the appropri-

ate domain:

S

H

: Lor(M)! R (12)

S

M

: Lor(M)� F(T

�

M)! R (13)

where by F(T

�

M) we have denoted the algebra of smooth fun
tions de�ned

on the 
otangent bundle over M and Lor(M) is the 
lass of all smooth

Lorentzian metri
s on a given di�erentiable manifoldM. It is worth noting

that the expression for a
tion fun
tional is a sum of the integral over the base

manifoldM and of the integral over the 
otangent bundle T

�

M. Due to non-


ompa
tness of the 
otangent bundle one 
annot transform the Hilbert a
tion

into the integral over T

�

M - the problem is also known as the ultraviolet

divergen
e. Perhaps this is an indi
ation of the limitation of the manifold

model for representing the spa
etime. Indeed, di�erentiable manifold x 2 M

\lo
ally looks" like R

n

whi
h means the 
otangent spa
e T

�

x

(M) at ea
h point

x 2 M is an n-dimensional ve
tor spa
e and thus isomorphi
 to R

n

, in whi
h

arbitrarily large values of 
oordinates are allowed. Physi
ally, this is rather

unrealisti
 be
ause in�nite values of energy, momentum and proper mass

(whi
h 
orrespond to the 
oordinates in T

�

x

(M)) are una
hievable. When one

a

elerates a parti
le to larger and larger values of the energy the stru
ture

of the manifold itself will be a�e
ted by the 
urvature produ
ed by su
h

energies. In other words, a \test parti
le with in�nite energy" is no longer a

\test parti
le". Looks like we need to repla
e the manifold with something

better suited as a model of physi
al spa
etime.

Varying S[g

��

(x); f(x; p)℄ over g

��

(x) and over f(x; p) independently we

obtain:

ÆS

Æg

��

(x)

=

1

8�

(R

��

�

1

2

Rg

��

+ �g

��

)�

Z

T

�

x

M

d

n

p

p

�g

f(x; p)p

�

p

�

(14)
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ÆS

Æf(x; p)

= �g

��

(x)p

�

p

�

(15)

So, varying over the metri
 g

��

yields Einstein equations (in n dimensions)

and varying over the distribution fun
tion f(x; p) di
tates that all physi
al

variables are to be supported on the null mass shell p

2

= 0. If we set n = 4

we obtain Lorentzian manifold �lled with massless m = 0 gas in the 
ontext

of Einstein's General Relativity. If we set n = 5 we obtain Kaluza-Klein

generalization whi
h in
ludes ele
tromagneti
 (U(1) gauge) and s
alar �eld.

Furthermore, we interpret the �fth dimension 
oordinate and momentum as

proper time and the rest mass of the non-geometri
 substrate des
ribed by

distribution fun
tion f(x; p):

(x

4

; p

4

) 7! (�;m) (16)

To see that su
h interpretation is indeed possible all one needs to do is to

write down the geodesi
 equation in this framework and see how it maps

naturally to equations (5) when the 4 + 1 split is made. Su
h te
hni
ality is

left as a simple exer
ise to the 
urious reader.

3 Future Developments

Several limitations are immediately apparent in the framework des
ribed

above. First of all, even in four-dimensional spa
etime it is well-known how to

obtain quantum kineti
 theory. One uses Wigner fun
tion and the formalism

of 
otangent bundles and is able to 
al
ulate expli
itly quantum 
orre
tions

to the 
lassi
al distribution fun
tion to any order of ~. This formalism is

des
ribed in [2℄-[5℄. It is not entirely obvious how to �t this formalism into

the �ve-dimensional framework of Kaluza-Klein.

Also, we are reminded that the fundamental ingredient missing from the

General Relativity of 1915 is still missing in the uni�ed �eld theory of Kaluza-

Klein. Namely, we have �xed the details of metri
 
hara
terization of the

manifold but left the topology almost entirely arbitrary. By \almost entirely"

I mean that, of 
ourse, the very existen
e of Lorentzian metri
 implies 
ertain

restri
tions of topologi
al 
hara
ter but there is no me
hanism of sele
tion

of a preferred topology 
ompatible with a given metri
 g

��

.

What would be most interesting is to generalize the form of the a
tion

fun
tional (4) on arbitrary �bre bundle or, alternatively, �nd a way to 
ontrol

the 
hange of topology ofM by imposing some additional stru
ture on T

�

M

and modify the form of a
tion a

ordingly, i.e. as an invariant with respe
t

to su
h new stru
ture.

5



Referen
es

[1℄ Overduin J.M. and Wesson P.S. Kaluza-Klein Gravity (gr-q
/9805018)

[2℄ Fonarev O.A. 1993 Wigner Fun
tion and Quantum Kineti
 Theory in

Curved Spa
e-Time and External Fields (gr-q
/9309005)

[3℄ Fonarev O.A. 1993Wigner Fun
tions in Curved Spa
e-Time and Quan-

tum Corre
tions to Thermal Equilibrium (gr-q
/9311018)

[4℄ Fonarev O.A. 1993 Quantum Kineti
 Equations and Cosmology (gr-

q
/9312019)

[5℄ Fonarev O.A. 1994 Conformal Transformations of the Wigner Fun
-

tion and Solutions of the Quantum Corre
ted Vlasov Equation (gr-

q
/9402015)

[6℄ Rein G. 1994 Cosmologi
al solutions of the Vlasov-Einstein system with

spheri
al, plane and hyperboli
 symmetry (gr-q
/9409041)

[7℄ Rendall A.D. 1995 Solutions of the Einstein equations with matter (gr-

q
/9510009)

[8℄ Rendall A.D. 1996 An introdu
tion to the Einstein-Vlasov system (gr-

q
/9604001)

[9℄ Beem J.K., Ehrli
h P.E., Easley K.L. 1996 Global Lorentzian Geometry

(Mar
el Dekker, In
)

6


