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Statement of the Problem

The  direct  Shell  Theorem  was  proved  by  Isaac  Newton  in  his  Principia  (1687)  and

states that:

 The net gravitational force at any point inside the hollow sphere is zero.

 The gravitational force at any point outside the hollow sphere is the same as 
that produced by a point at the centre with the mass equal to the total mass
of the sphere.

We shall be more concerned with proving the inverse statement, namely these:

 If the net gravitational force at any point inside the hollow sphere is zero, 

then gravitation obeys the inverse square 1  r2 law.

 If the gravitational force at any point outside the hollow sphere is the same as 
that produced by a point at the centre with the mass equal to the total mass 

of the sphere, then gravitation obeys the inverse square 1  r2 law.

The same statements hold in the case of electrostatic Coulomb field with the obvious

difference that the masses are replaced with the electric charges.

Proof : 1. Point Inside the Shell

We begin by calculating the force δF  exerted by the infinitesemal charged element δq

of the sphere on a point at a distance r0  from the centre of the sphere, as shown on

the diagram below:
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For  convenience,  we  have  oriented  the  z-axis  of  our  coordinate  system  along  the

direction from the centre of the sphere to the point with the test charge +e. Then, we

can obtain the vector force acting at this charge by summing the contributions from

all the charges distributed along the surface of the sphere, as follows:

 R = r0 - r

 R2 = r0
2 + r2 - 2 r0 r cos θ

δF = e δq f (R) R

R

δq = Q

4 π r2 ⅆS

ⅆS = r2 sin θ ⅆθ ⅆφ

F = e Q
4 π ∫

0

2 π
ⅆφ ∫

0

π
f (R)

R
R sin θ ⅆθ

First let us prove that Fx = Fy = 0:

(R, ex) = (r0 - r, ex) = -(r, ex) = -r sin θ cos φ

Fx ∝ ∫
0

2 π
cos φ ⅆφ = 0

and likewise for Fy = 0. Further, we obtain the only non-vanishing component of the

force, viz. Fz:
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(R, ez) = (r0 - r, ez) = r0 - r cos θ, x = cos θ

Fz =
e Q r0

2 ∫
0

π
f (R)

R
1 - r cos θ

r0
 sin θ ⅆθ = e Q r0

2 ∫
-1

+1

1 - r x
r0
 f (R)

R
dx

Let  us  convert  integration  over  x  to  the  integration  over

R:

2 R ⅆR = -2 r0 r ⅆx

x = r0
2+r2-R2

2 r0 r

Fz =
e Q

4 r r0
2 ∫

r-r0

r+r0

r0
2 - r2 + R2 f (R) ⅆR

Note that the above formula for Fz  is only valid inside the sphere r0 < r. For the point

outside the sphere the formula would be:

Fz =
e Q

4 r r0
2 ∫

r0-r

r0+r

r0
2 - r2 + R2 f (R) ⅆR

Now we need to prove that if the above expression is equal to 0 for all the values of r0

and r , then the function f (R) necessarily has the form of inverse square law 1  r2 .

First  we  calculate  the  Taylor  series  of  the  integrand  near  the  point  R = r  up  to  the

sixth degree:

In[1]:= series = Series[(r0^2 - r^2 + R^2)*f[R], {R, r, 6}]

Out[1]= r02 f[r] + 2 r f[r] + r02 f′[r] (R - r) +

f[r] + 2 r f′[r] +
1

2
r02 f′′[r] (R - r)2 +

f′[r] + r f′′[r] +
1

6
r02 f(3)[r] (R - r)3 +

1

24
12 f′′[r] + 8 r f(3)[r] + r02 f(4)[r] (R - r)4 +

1

120
20 f(3)[r] + 10 r f(4)[r] + r02 f(5)[r] (R - r)5 +

1

720
30 f(4)[r] + 12 r f(5)[r] + r02 f(6)[r] (R - r)6 + O[R - r]7

Then  we  calculate  the  integral  with  the  assumption  that  the  point  lies  inside  the

sphere:
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In[2]:= int = Integrate[series, {R, r - r0, r + r0},

Assumptions → {r > r0 > 0}] // Normal

Out[2]=

1

2520

r03 6720 f[r] + 3360 r f′[r] + r02 1344 f′′[r] + 336 r f(3)[r] + r02

72 f(4)[r] + 12 r f(5)[r] + r02 f(6)[r]
We need to collect the coefficients corresponding to the powers of r0:

In[3]:= coef = CoefficientList[1/(r0^2)*int, r0] // Factor

Out[3]= 0, 4

3
(2 f[r] + r f′[r]), 0,

2

15
4 f′′[r] + r f(3)[r],

0,
1

210
6 f(4)[r] + r f(5)[r], 0,

f(6)[r]

2520


But  we  don’t  need  zeros,  so  we  tidy  up  the  above  list  (dropping  the  last  element,

because  it  belongs  to  the  elements  of  the  series  of  higher  degrees  than  we  allowed

(six):

In[4]:= coef = DeleteCases[coef // Factor // Most, 0]

Out[4]=  4
3

(2 f[r] + r f′[r]),

2

15
4 f′′[r] + r f(3)[r], 1

210
6 f(4)[r] + r f(5)[r]

Now we need to demand that all these coefficients are zero identically and solve the

corresponding differential equations, storing the solutions in the variable sols:

In[5]:= sols = Table[

f[r] /. Flatten@DSolve[Thread[# ⩵ 0 &@coef][[k]], f[r], r,

GeneratedParameters → (Subscript[c, #, k] &)], {k, 3}]

Out[5]=  c1,1
r2

,
c1,2

6 r2
+ c2,2 + r c3,2,

c1,3

120 r2
+ c2,3 + r c3,3 + r

2 c4,3 + r
3 c5,3

We can use Mathematica’s function SolveAlways[] to find the set of integration con-

stants which make the above three solutions coincide:

In[6]:= solset = sols /. SolveAlways[Equal @@@ Subsets[sols, {2}], r]

Out[6]=  c1,3

120 r2
,

c1,3

120 r2
,

c1,3

120 r2


We see already that we have proved what we wanted, but we can further tidy up the

result  cosmetically,  by  getting  rid  of  duplicates  and  renaming  the  constant  of
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integration:

In[7]:= Union @@@ solset /. Subscript[c, 1, 3]/120 → c

Out[7]=  c

r2


Thus  we  have  proved  the  first  part  of  the  Inverse  Shell  Theorem,  namely  we  have

established that only the inverse square law has the property of vanishing gravitation-

al/electrostatic field inside the hollow sphere.

Let us verify this proof by substituting this function in the main integral – we expect

to obtain zero as a result:

In[8]:= Integrate[(r0^2 - r^2 + R^2)*c/R^2,

{R, r - r0, r + r0}, Assumptions → {r > r0 > 0}]

Out[8]= 0

Proof : 2. Point Outside the Shell

We  already  have  the  expression  for  the  force  acting  at  a  point  outside  the

sphere:

Fz =
e Q

4 r r0
2 ∫

r0-r

r0+r

r0
2 - r2 + R2 f (R) ⅆR

we demand that this is equal to the usual Coulomb force originating from the centre

with the total charge Q:

Fz =
e Q

r0
2

leading to the following non-homogeneous integral equation for f (R):

∫
r0-r

r0+r

r0
2 - r2 + R2 f (R) ⅆR = 4 r

Now we begin by calculating the series of the integrand in the neighbourhood of the

point R = r0:
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In[9]:= series2 = Series[(r0^2 - r^2 + R^2)*f[R], {R, r0, 6}]

Out[9]= -r2 f[r0] + 2 r02 f[r0] +

2 r0 f[r0] - r2 f′[r0] + 2 r02 f′[r0] (R - r0) +

f[r0] + 2 r0 f′[r0] -
1

2
r2 f′′[r0] + r02 f′′[r0] (R - r0)2 +

f′[r0] + r0 f′′[r0] -
1

6
r2 f(3)[r0] +

1

3
r02 f(3)[r0] (R - r0)3 +

1

24

12 f′′[r0] + 8 r0 f(3)[r0] - r2 f(4)[r0] + 2 r02 f(4)[r0] (R - r0)4 +

1

120
20 f(3)[r0] + 10 r0 f(4)[r0] - r2 f(5)[r0] + 2 r02 f(5)[r0]

(R - r0)5 +

1

720
30 f(4)[r0] + 12 r0 f(5)[r0] - r2 f(6)[r0] + 2 r02 f(6)[r0]

(R - r0)6 + O[R - r0]7

As before, we proceed to calculate the integral:

In[10]:= int2 = Integrate[series2, {R, r0 - r, r0 + r},

Assumptions → {r0 > r > 0}] // Normal

Out[10]= -
4

3
r3 - 3 r r02 f[r0] +

1

2520

r3 3360 r0 f′[r0] - 336 r2 - 5 r02 f′′[r0] +

r2 336 r0 f(3)[r0] - 12 r2 - 7 r02 f(4)[r0] +

r2 12 r0 f(5)[r0] - r2 - 2 r02 f(6)[r0]
And then calculate and tidy up the coefficients at the power of r:

In[11]:= coef2 = CoefficientList[int2 - 4*r, r]

Out[11]= 0, -4 + 4 r02 f[r0], 0, -
4 f[r0]

3
+
4

3
r0 f′[r0] +

2

3
r02 f′′[r0],

0, -
2

15
f′′[r0] +

2

15
r0 f(3)[r0] +

1

30
r02 f(4)[r0], 0,

-
1

210
f(4)[r0] +

1

210
r0 f(5)[r0] +

r02 f(6)[r0]

1260
, 0, -

f(6)[r0]

2520

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In[12]:= coef2 = DeleteCases[coef2 // Factor // Most, 0]

Out[12]= 4 -1 + r02 f[r0], -
2

3
2 f[r0] - 2 r0 f′[r0] - r02 f′′[r0],

1

30
-4 f′′[r0] + 4 r0 f(3)[r0] + r02 f(4)[r0],

-6 f(4)[r0] + 6 r0 f(5)[r0] + r02 f(6)[r0]

1260


In[13]:= sols2 = Table[f[r0] /.

Flatten@DSolve[Thread[# ⩵ 0 &@coef2][[k]], f[r0], r0,

GeneratedParameters → (Subscript[c, #, k] &)], {k, 3}]

Out[13]=  1

r02
, r0 c1,2 +

c2,2

r02
,
1

6
r03 c1,3 + c2,3

r02
 + c3,3 + r0 c4,3

In[14]:= solset =

sols2 /. SolveAlways[Equal @@@ Subsets[sols2, {2}], r0]

Out[14]=  1

r02
,

1

r02
,

1

r02


Finally, we get rid of duplicates by calling Union[]:

In[15]:= Union[solset[[1]]]

Out[15]=  1

r02


Now  we  have  to  verify  our  solution  by  direct  substitution  into  the  original  integral

expression:

In[16]:= Integrate[(r0^2 - r^2 + R^2)*1/R^2,

{R, r0 - r, r0 + r}, Assumptions → {r0 > r > 0}] - 4*r

Out[16]= 0

Thus we have proved both statements of the Inverse Shell Theorem.
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