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1 Introduction

This article describes my current research work in the area of Quantum Mechanics
and Nonlocal Statistical Mechanics in the spirit of the ideas of “nonlocalised parti-
cles”, first suggested by A.A. Vlasov back in 1950s. I would be grateful for any com-
ments and invite all who are able and willing to join this effort.

The classical (non-quantum) portion of the work I have mostly worked out
and got stuck on the quantum and, especially, the general-covariant (necessarily 5-
dimensional, to include the electric charge concept) form thereof. In the general-
covariant formwe need to deal with the horizontal lifts of connection to the tangent
bundle TM1 in the spirit of the excellent book [1]. This idea was partially explored
in a series of papers ([2],[3],[4]) by Oleg Fonarev in 1990s, where he constructed a
general-covariant Wigner function. However, we need to remain in the purely kine-
matic coordinate-velocity space (x, v), rather than the phase space (x, p), because
the latter has the concept of mass “hardcoded”.

2 Classical Mechanics

Let us go back to the times of Newton, or, better even, to Galileo’s. From the re-
sults of Galileo’s experiments it is well known that the movement of test particles in
a given gravitational field does not in the least depend on the masses of the parti-
cles. Mathematically, this is expressed in the equations of motions by the fact of the

1not the cotangent bundle T ∗M, because in this case the symplectic structure is not an asset, but
a liability.



2 CLASSICALMECHANICS

absence of massm therein:
dr

dt
= v (1)

dv

dt
= −∇φ (2)

The scalar function φ(r, t) describing the gravitational field obeys the following
equation (Poisson):

△φ = 4πGρ (3)

The role of the source of the gravitational field is played by an entity ρ(r, t), which
we call “density” and the concept of gravitational mass can be defined as the volume
integral of density. The gravitational constant G enters the stage merely because
we come to the field equation (3) with the preconception of “mass”. And whence
does this notion of mass come? Certainly from the consideration of phenomena,
connected with nongravitational interactions, such as the elasticity, friction, etc.,
i.e. rather complex inter-molecular and inter-atomic interactions of electromagnetic
origin. Logically, following the principle of “from simple to complex”, we ought to
have considered these after and not prior to the simple mass-independent motion in
the gravitational field. The natural unit of mass would be such a quantity of matter,
which imparts the acceleration of 1 m/s2 at a distance of 1 m, but because we already
defined a “convenient” unit of mass (1 kg), we have no choice but to introduce the
conversion coefficientG with such a low value.

Thus, we conclude that the only natural concept of mass is that of “gravitational
mass”, namely themass (or, more precisely, the density2) is themeasure of generation
of gravitational field and not a measure of reaction to this field by test particles. The
concept of “inertial mass” turns out to be superfluous, if we confine ourselves to the
domain of purely gravitational phenomena. And, likewise, the concept of “force” is
neither relevant nor necessary.

When gravitationwas represented by a curvature of spacetime inGR, the concept
of force was already discarded. But here we are proposing a framework somewhat
more general than that of GR and so I invite the reader to be patient.

2to wit, the density of any type of energy, but we will find that out 228 years later, with Einstein.
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3 NONLOCAL STATISTICALMECHANICS

3 Nonlocal Statistical Mechanics

3.1 Newtonian Gravitation

The situation with Newtonian gravity is quite clear — the dynamics of localised test
particles is given by the equations of motion (2), whereas the nonlocal variant is de-
scribed by the system known as Vlasov-Poisson. The equations are given below, for
the non-relativistic case:

∂f

∂t
+ v

∂f

∂r
−∇φ∂f

∂v
= 0 (4)

△φ = 4πG

∫
f (r,v, t) d3v (5)

Here it is rather important that the Poisson equation (5) does not contain the
“particle’s massm”, because we interpret (and normalise) the distribution function
f (r,v, t) not as a probability density (as in Vlasov’s works [5],[6],[7]), but as a den-
sity of real matter (or matter-energy in relativistic case), delocalised in the neigh-
bourhood of the point (r,v) at the moment of time t, according to the value of the
function f (r,v, t). We diverge from Vlasov’s interpretation of f (r,v, t), because
we have in mind the transition to the 5-dimensional Kaluza formalism, where the
mass (but not the total energy!) and electric charge are unified. This is a slightly sub-
tle point and so we emphasize it again: we do want to get rid of m as a parameter,
but we certainly do not desire to get rid of the total energy density — it just so hap-
pens that in the classical Newtonian gravity the integral of what would later become
“the total energy density” (or, more correctly, just the 00th component of the energy-
momentum tensor Tµν) happens to produce “mass”, when integrated over a spatial
volume.

By the way, the measure of integration d3v in the velocity subspace in relativistic
(but non-covariant) case looks somewhat more complex than the one shown above,
because the vector v cannot not take all the values from R3

v, but is restricted to a
disk (|v| ⩽ c) and the measure (as well as the corresponding metric) reflect this fact
by tending to infinity at the disk’s boundary as 1/(1 − v2/c2)5/2 when v → c. As
for the measure in the momentum subspace of the phase space (r,p), it is Euclidian
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3.2 Lorentz Acceleration 3 NONLOCAL STATISTICALMECHANICS

and has no “singularities”, because themomentump runs over the entireR3
p. Strictly

speaking, the natural measure in the phase space is symplectic, but this is irrelevant
here (it does become very much relevant during canonical quantisation!)

3.2 Lorentz Acceleration

As the next step we introduce the reaction of test particles to the electromagnetic
field by means of the “Lorentz force”, which we prefer to treat in a purely kinematic
form as “Lorentz acceleration”. The equation of motion is easily obtained (see p. 49
of [9]):

v̇ =
e

m

√
1− v2

c2

{
E +

1

c
[vH ]− 1

c2
v(vE)

}
(6)

We need it in this form, rather than the more familiar one in terms of momentum or
generalised momentum (which includes the term e

cA in addition to the mechanical
momentum p). As we can see, there is no mass here either, but only the ratio of
charge tomass. In nonlocal case the concept of “particle” is generalised in the spirit of
the already citedworks of the Russian (Soviet) physicist A.A. Vlasov. Namely, we are
now dealing with a nonlocalised object described by the function f (r,v, t), which
in a particular special case (δ(x)-like3) behaves like an ordinary localised particle.

It should be noted here, that the description ofmatter in terms of the distribution
function f (r,v, t) is not only superior to the description by the notion of “particles”
(i.e. it contains all the information about “particles” as a particular solution), but it
is also superior to the hydrodynamics of liquids and gases, as well as the theory of
solids such as crystals. Namely, the distribution function f (r,v, t) obeying the ap-
propriate transport equation can describe the behaviour of fluids more accurately
than hydrodynamics (e.g. the latter cannot explain such phenomena as turbulence)

3The possibility of dynamical topological dimension of the support of distribution function is an
interesting subject in itself. In the classical case the Transport Theorem automatically implies that
the phase flow cannot change the dimension of any subspace. Moreover, the localised solution (in
the classical case) exist only for the divergence-free (solenoidal) vector fields, generating the phase
flow. However, in the quantum case the situation is far more complex and I suspect that dynamical
localisation and delocalisation is possible.
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3 NONLOCAL STATISTICALMECHANICS 3.3 Vlasov-Poisson-Maxwell System

and even predicts the emergence of spatially-periodic structures, such as those ap-
pearing in the phase transition from the liquid to the crystalline state. For more
information about the amazing power of this formalism (even in the purely classical
domain) please consult the three monographs of A.A. Vlasov already cited above.

3.3 Vlasov-Poisson-Maxwell System

Toobtain the fundamental systemof equations we act in the followingway. First, we
consider the 1-parametric semigroup (in the general non-autonomous case) of local
diffeomorphisms constituting the phase flow, defined in the usual manner:

G ⊆ R3
r ×R3

v (7)
gt(r(0),v(0)) = (r(t),v(t)) (8)

Then, we postulate dynamical invariance of the following integral (“the law of con-
servation of information” in the traditional interpretation of f (r,v, t) or “the law
of conservation of mass-energy” in our interpretation):

MG(t) =

∫
gt(G)

f (r,v, t)
d3r d3v
(1− v2

c2
)
5
2

(9)

ṀG(t) = 0 (10)

Making use of the Transport Theorem we transform the conservation law from the
form (10) to the following partial differential equation for the function f (r,v, t):

∂f

∂t
+ v

∂f

∂r
+
∂f

∂v

(
−∇φ +

e

m

√
1− v2

c2

{
E +

1

c
[vH ]− 1

c2
v(vE)

})
= 0

(11)
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3.4 Inertial Mass 3 NONLOCAL STATISTICALMECHANICS

Wealso need towrite the equations of gravitational and electromagentic fields in the
self-consistent form, i.e. with sources and currents, based on the function f (r,v, t):

△φ = 4πG

∫
f (r,v, t)

d3v
(1− v2

c2
)
5
2

(12)

rotE = −1
c

∂H

∂t
(13)

rotH =
4π

c

e

m

∫
vf (r,v, t)

d3v
(1− v2

c2
)
5
2

+
1

c

∂E

∂t
(14)

divE = 4π
e

m

∫
f (r,v, t)

d3v
(1− v2

c2
)
5
2

(15)

divH = 0 (16)

The Poisson equation (12) is somewhat skewed here, for its RHS is fully relativis-
tic, whereas the LHS is not. We can, however, replace the Laplacian with the
d’Alembertian, assuming that gravitational interactions propagate at the speed of
light, which is consistent with what we know from the linearization of Einstein’s
equations in GR. We note here, that both fields act as an intermedieary between the
elementary volumes of the “cloud”4, i.e. there is no external field here.

I highlighted with red colour the fact, that the electric charge e and the massm
do not enter the equations by themselves, but only in the formof the ratio e/m. This
ratio I suggest to call “electric charge proper”, i.e. it is an explicit (in the kinematic
sense) reaction of the test particle to the given electromagnetic field. And this quan-
tity serves as a parameter only within the boundaries of 4-dimensional formalism,
but in the full 5-dimensional framework it becomes apparent that is is not a param-
eter at all, but a quantity, connected with motion in the 5th dimension.

3.4 Inertial Mass

As for the inertial properties of matter (the so-called “inertial mass”), we should be
able to derive them in the spirit of electronic theory of Lorentz, whereby the prob-
lems with the divergence of energy will probably disappear by replacing the local

4or, in the particular δ(x)-like case, between the individual particles.
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3 NONLOCAL STATISTICALMECHANICS 3.5 Vlasov Equation and Lagrange Function

Coulomb’s potential with a nonlocal potential of self-interaction of the “cloud”:

U(r, t) =

∫
d3r′K(|r − r′|)

∫
f (r′,v′, t)

d3v′

(1− v2

c2
)
5
2

(17)

In any case, this issue is really optional, i.e. not an important one at all. We don’t really
need to introduce any concept of inertial mass, except for historical comparisonwith
the “old, legacy physics”.

By the way, here we see the correct relativistic measure instead of d3r d3v. This is
essential, because the Lorentz force expressed in the kinematic space (r,v) is non-
solenoidal, i.e. divv F lor(r,v, t) ̸= 0. And so we must multiply the Euclidean
d3r d3v by the factor 1

(1−v2

c2
)
5
2

in order to make it dynamically-invariant. Then the

equation for f (r,v, t) will not contain f , but only its first partial derivatives.

3.5 Vlasov Equation and Lagrange Function

The equation of the type (11) can be written for arbitrary Lagrange function
L(r,v, t), as long as the matrix of mixed derivatives by generalised velocities (Hes-
sian ofL) is non-singular:

det
[
∂2L(r,v, t)

∂vi∂vk

]
̸= 0 (18)

This is necessary, in order for the generalised accelerations to be expressible in terms
of the generalised coordinates and velocities by means of Euler-Lagrange equation.
This is the same condition that is imposed on the Legendre transformation, where it
is required for the generalised velocities to be expressible via canonicalmomenta.

If we write the latter in the usual form (for simplicity, for one degree of freedom):

∂L

∂x
=
d

dt

∂L

∂v
(19)

and then perform the differentiation over time explicitly (denoting all differentia-
tions by lower indices):

Lx = Lvvv̇ + Lvxv + Lvt (20)
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3.6 Extended Lagrange and Hamilton Functions 3 NONLOCAL STATISTICALMECHANICS

The main dynamical system of ordinary differential equation (with one degree of
freedom) is:

ẋ = v (21)

v̇ =
Lx − Lvxv − Lvt

Lvv
(22)

The dynamically-invariant measure is dx dp = Lvv dx dv and so the equation for
the distribution function f (x, v, t) can be written directly in terms of the Lagrange
function:

∂f

∂t
+ v

∂f

∂x
+
Lx − Lvxv − Lvt

Lvv

∂f

∂v
= 0 (23)

The equation (23) corresponds to the conservation of the following integral:

MG(t) =

∫
gt(G)

f (x, v, t)Lvv dx dv (24)

Strictly speaking, the conservation of MG(t) implies the following equation on
f (x, v, t):

∂(Lvvf )

∂t
+
∂(vLvvf )

∂x
+
∂(f (Lx − Lvxv − Lvt))

∂v
= 0 (25)

However, simple algebaric transformation turns (25) into (23).
It is easy to generalise to the case ofmany degrees of freedom. Then, instead of the

factor (1/Lvv) we will have the matrix, inverse to the Hessian (18).
The phase flow generated by the vector field with components {v, Lx−Lvxv−Lvt

Lvv
}

preserves the volume of the kinematic space
∫

gt(G)

Lvv(x, v, t) dx dv.

3.6 Extended Lagrange and Hamilton Functions

It is well known (see, e.g. [8], p. 355), that given a Hamilton functionH(x, p, t) and
considering the canonical coordinate andmomentumpair as coordinates: y = (x, p)

the entire information about the dynamics is contained in the extended Lagrange
function given by the following formula:

L̃(y, ẏ, t) = pẋ−H(x, p, t) (26)
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Indeed, the Euler-Lagrange equation for L̃ is:

∂L̃

∂y
=
d

dt

∂L̃

∂ẏ
(27)

splits into the following two components:

∂L̃

∂x
= −∂H

∂x
= ṗ (28)

∂L̃

∂p
= ẋ− ∂H

∂p
= 0 (29)

Likewise, for a given Lagrange functionL(x, v, t)we can consider the coordinate
and velocity pair as a coordinate in the extended configuration space y = (x, v) and
construct an extended Hamilton function H̃(y, π, t):

H̃(y, π, t) = πẏ − L(x, v, t) (30)

The canonical momentum π, conjugated to the “coordinate” y, is obtained in the
usual way:

π =
∂L

∂ẏ
=

(
∂L

∂ẋ
,
∂L

∂v̇

)
=

(
∂L

∂v
, 0

)
(31)

Here, the difficulty is thatwe cannot express the generalised velocity ẏ via the canon-
ical momentumπ because, according to (31), the latter depends only on the coordi-
nate y. Because of this, the first of the pair of canonical equations is a trivial identity
ẏ ≡ ẏ, but the second one yields the usual Euler-Lagrange equation:

π̇ = −∂H̃
∂y

=⇒ d

dt

∂L

∂v
= − ∂

∂x
(−L) (32)

Thequestion is: couldwe use this symmetry to obtain a quantumdynamics equa-
tion (beginning with Schrödinger equation, but ultimately arriving at the equation
for the density matrix which we are after)? The problem with the ẏ being not resolv-
able could, perhaps, be fixed by plugging in the classical expression thereof from (22),
at least in the first exploratory and necessarily rough approximation? It can be easily
shown, that the canonical quantisation with the Hamiltonian derived from the clas-
sical function (30) leads to a “pseudo-Schrödinger equation” which turns out to be
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4 QUANTUMTHEORY

nothing other than the usual Liouville-Vlasov equation, augmented with the extra
“quantum term” proportional to the Lagrange functionL:

∂ψ(x, v, t)

∂t
+ v

∂ψ

∂x
+ v̇

∂ψ

∂v
+
L(x, v, t)

iℏ ψ = 0 (33)

Here, v̇ is assumed to be taken from (22). What is the meaning of this equation?

4 Quantum Theory

Now I am posing the main question of this article:

What is the quantum equivalent of the equation (23)?

4.1 Legendre Transformation (x, v) 7→ (x, p)

Beforewe try to answer this question, let us first consider the corresponding situation
in the ordinary phase space. We perform the Legendre transformation to go from
the Lagrange functionL(x, v, t) to the Hamilton’s functionH(x, p, t):

p =
∂L

∂v
=⇒ v = v(x, p, t), (x, v) 7→ (x, p) (34)

H(x, p, t) = pv(x, p, t)− L(x, v(x, p, t), t) (35)

Then theEuler-Lagrange equation (19) turns into theHamiltonian systemof canon-
ical equations:

ẋ =
∂H

∂p
(36)

ṗ = −∂H
∂x

(37)

The main equation for the distribution function f (x, p, t) takes especially com-
pact form in terms of Poisson brackets:

{A,B} ≡ ∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x
(38)

∂f

∂t
= {H, f} (39)

10



4 QUANTUMTHEORY 4.2 Deformation Quantisation

Theself-consistent field equation are analoguous to the ones given above, except that
the dynamically-invariant integration measure in the phase space (x, p) has the par-
ticularly simple form: dx dp.

4.2 Deformation Quantisation

Quantisation is performed as in [13],[14], i.e. by means of a 1-parametric asso-
ciative (but non-commutative) deformation of Poisson algebra, so that the inverse
Weyle’s Correspondence maps the Hermitian operators to the ordinary c-number
phase space functions. Then, the composition of operators is mapped to the Moyal
⋆-product of c-number functions:

⋆ ≡ exp
{
iℏ
2
(
←
∂x
→
∂p −

←
∂p
→
∂x)

}
(40)

A ⋆ B =
1

iℏ
1

(πℏ)2

∫
A(τ, σ)B(ξ, η) exp

2i

ℏ

∣∣∣∣∣∣∣
1 x p

1 τ σ

1 ξ η

∣∣∣∣∣∣∣
 dτ dσ dξ dη (41)

[A,B] ≡ 1

iℏ(A ⋆ B −B ⋆ A) (42)

[A,B] =
2

ℏ
1

(πℏ)2

∫
A(τ, σ)B(ξ, η) sin

2

ℏ

∣∣∣∣∣∣∣
1 x p

1 τ σ

1 ξ η

∣∣∣∣∣∣∣
 dτ dσ dξ dη (43)

{A,B} 7→ [A,B] (44)

∂tW = [H,W ] ≡ 1

iℏ(H ⋆W −W ⋆H) =
2

ℏH sin
[
ℏ
2
(
←
∂x
→
∂p −

←
∂p
→
∂x)

]
W

(45)

The last equation can be rewritten more explicitly:

iℏ∂tW =

[
H

(
x +

iℏ
2
∂p, p−

iℏ
2
∂x

)
−H

(
x− iℏ

2
∂p, p +

iℏ
2
∂x

)]
W (46)

Here I have denoted the distribution function asW (x, p, t) because it is in fact the
well known Wigner function ([11]).
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4.2 Deformation Quantisation 4 QUANTUMTHEORY

We note that, using the Moyal ⋆-product, the Wigner functionW (x, p, t) can be
expressed in terms of the wave function in the phase spaceΨ(x, p, t) as follows:

W (x, p, t) = Ψ(x, p, t) ∗ Ψ(x, p, t)† (47)

Here, the involution operation coincides with the ordinary complex conjugation:
Ψ† ≡ Ψ̄. Making use of the obvious identity (A ⋆B)† = B† ⋆ A† we can derive the
equation (45) from the Schrödinger equation forΨ in the phase space:

iℏ∂Ψ
∂t

= H ⋆ Ψ = H

(
x +

iℏ
2
∂p, p−

iℏ
2
∂x

)
Ψ(x, p, t) (48)

The connection (47) between the Wigner function and the wave function in the
phase space explains why the Olavo distribution, which is constructed by using the
pointwise product rather than the ⋆-product O(x, p, t) = |Ψ(x, p, t)|2, cannot be
used as candidate for the “physically-meaningfull distribution function in the phase
space”, despite the obvious quality of its being positive-definite. It is shown in [18],
that the classical limit of the Olavo distribution “lags behind” the Liouville distribu-
tion function f (x, p, t), which is probably connected to the t

2 feature described at
the end of the current section.

It is noteworthy, that the energy constructed from the phase space wave function
Ψ(x, p, t) and from the Wigner functionW (x, p, t) coincide if these two are con-
nected via formula (47):

EΨ =

∫
Ψ† ⋆ H ⋆ Ψ dx dp ≡

∫
H ⋆ Ψ ⋆ Ψ† dx dp (49)

EW =

∫
WH dx dp (50)

W = Ψ ⋆ Ψ† ⇒ EΨ ≡ EW = const (51)

Moreover, the energy thus defined for an arbitrary wave functionΨ(x, p, t) is always

12



4 QUANTUMTHEORY 4.2 Deformation Quantisation

conserved (assuming ∂tH ≡ 0):

ĖΨ =
d

dt

∫
Ψ† ⋆ H ⋆ Ψ dx dp =∫ (

∂Ψ†

∂t
⋆ H ⋆ Ψ + Ψ† ⋆ H ⋆

∂Ψ

∂t

)
dx dp =

i

ℏ

∫
(Ψ† ⋆ H ⋆ H ⋆ Ψ− Ψ† ⋆ H ⋆ H ⋆ Ψ) dx dp = 0 (52)

It is very important that for an arbitraryW (x, p, t) the energy EW is likewise con-
served:

iℏĖW =

∫
(H ⋆ H ⋆W −H ⋆W ⋆ H) dx dp =∫

{(H ⋆ H)W −H(W ⋆H)} dx dp =∫
{(H ⋆ H)W − (W ⋆H) ⋆ H} dx dp =∫
{(H ⋆ H)W −W ⋆ (H ⋆ H)} dx dp =∫

{(H ⋆ H)W −W (H ⋆ H)} dx dp = 0 (53)

The general solution in Cauchy form for either Ψ(x, p, t) or W (x, p, t) can be
formally given using ⋆-exponential which was first introduced in ([13]):

Ψ(x, p, t) = Exp∗

(
−itHℏ

)
⋆ Ψ0(x, p) (54)

W (x, p, t) = Exp∗

(
−itHℏ

)
⋆ W0(x, p)Exp∗

(
itH

ℏ

)
(55)

Exp∗

(
itH(x, p)

ℏ

)
≡

∞∑
n=0

(
it

ℏ

)n

H(x, p) ⋆ . . . ⋆ H(x, p)︸ ︷︷ ︸
n times

(56)

This is similar to the well-known formula for the evolution of the density matrix,
where Hamiltonian Ĥ is an operator:

ρ(t) = e−
itĤ
ℏ ρ(0)e

itĤ
ℏ (57)
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4.2 Deformation Quantisation 4 QUANTUMTHEORY

Note that whereas the equation for the Wigner function (45) has as the classical
analog the Liouville equation (39), the phase space Schrödinger equation (48) has
no classical analog (i.e., no limit as ℏ → 0). Nevertheless, let us make the following
substitution:

Ψ(x, p, t) = exp
(
−itℏH(x, p)

)
Φ

(
x, p,

t

2

)
(58)

Note here the factor 1
2 by which time t is multiplied. Further, let us take the linear

approximation of ⋆-product in powers of ℏ:

A ⋆ B ≈ AB +
iℏ
2
{A,B} (59)

we obtain the approximate equation forΨ:
∂Ψ

∂t
≈ − iℏHΨ +

1

2
{H,Ψ} (60)

Making the substitution (58) and using the identity {A, f (A)B} = f (A){A,B},
we obtain the equation forΦ(x, p, t):

∂Φ

∂t
= {H,Φ} (61)

which, rather unexpectedly, coincides with the classical equation (39), with only one
very important difference: for the function Φ(x, p, t) the time t flows at half the
rate compared to the time t for the distribution functionW (x, p, t) or the classical
distribution function f (x, p, t).

As was noted by Baker in 1958 ([12]), the formulation in terms of Wigner func-
tion has the considerable advantage compared to the formulation by means of the
wave function and Schrödinger equation, because it does not depend on the two su-
perfluous elements: the arbitrary phase factor and the additive constant in the clas-
sical potential energy. What is curious here is that in the phase space formulation
in terms of the wave function Ψ(x, p, t) the classical limit, as was just shown, has
the two features: the equation is real (and so the main function can be considered
real-valued) and it does not depend on the additive constant of the potential en-
ergy U(x), because the latter enters the equation by means of the Poisson brackets
{H,Φ}.
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4 QUANTUMTHEORY 4.3 QuantumDifferential

4.3 Quantum Differential

The connection between the classical Vlasov equation (39) for f (x, p, t) and the
quantum equation (45) is seen clearly by introduction of the concept of a quantum
differential of a function f (x) at a point x on the infinitesemal (in our case, actually
operator-valued) increment dx as follows:

d̃f (x, dx) =
1

iℏ

[
f

(
x +

iℏ
2

dx
)
− f

(
x− iℏ

2
dx
)]

(62)

Then, as long as the HamiltonianH(x, p, t) decomposes into a sum of the kinetic
andpotential energy termsH(x, p, t) = T (p, t)+U(x, t), we can rewrite theMoyal
equation in the more compact form:

∂tW =
(
d̃T (p̂,−iλ̂) + d̃U(x̂, iθ̂)

)
W (63)

The reduced Planck constant ℏ enters the dynamical equation only by means of the
quantum differential d̃ and the classical limit is obtained by simply replacing the
quantum differential operator d̃ with the ordinary differential d:

ℏ→ 0 =⇒ d̃→ d (64)

4.4 Hilbert Phase Space

It turns out that it is rather hard to work with the functions of coordinate-
momentumpair, because, as is seen from the formof the equation (46), theHamilto-
nian can be non-polynomial on any (or both) of its variables and then this equation
turns out to be pseudo-differential5, which is rather unfortunate for anyone who at-
tempts to apply it to concrete problems.

Luckily (see [10]), it turns out that instead of the algebra generated by the two op-
erators (x̂, p̂), one canworkwith the algebra based on the four operators (x̂, p̂, θ̂, λ̂),

5It can be transformed into an integro-differential equation.
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4.4 Hilbert Phase Space 4 QUANTUMTHEORY

related to (x̂, p̂) in the following way:

x̂ = x̂− ℏ
2
θ̂ (65)

p̂ = p̂ +
ℏ
2
λ̂ (66)

and obeying the following six commutation relations, which guarantee that the or-
dinary commutation relation [x̂, p̂] = iℏ) holds:

[x̂, p̂] = 0, [x̂, λ̂] = i, [x̂, θ̂] = 0 (67)
[p̂, λ̂] = 0, [p̂, θ̂] = i, [θ̂, λ̂] = 0 (68)

If we introduce the “mirror version” of the coordinate and momentum opera-
tors x̂′ and p̂′, obeying [x̂, p̂] = −iℏ, then they will relate to the four operators
(x̂, p̂, θ̂, λ̂) by:

x̂′ = x̂ +
ℏ
2
θ̂ (69)

p̂′ = p̂− ℏ
2
λ̂ (70)

Then we can rewrite (46) in the more familiar form of the von-Neumann master
equation for the density matrix ρ(x,x′, t):

iℏ∂ρ
∂t

= {H(x,−iℏ∇x)−H(x′, iℏ∇x′)} ρ(x,x′, t) (71)

The advantage comes from the fact that now we can choose any representation in
which any of the four commuting pairs act as multiplication by a number, turning
the other pair into differentiation operators, namely:

• (x, p)—theordinaryWigner functionW (x, p, t) representation (Cauchy data
is usually given in this form)

• (x, θ)— Blokhintsev function representation

• (p, λ)— double-momentum representation

• (θ, λ) — representation of quantum corrections (known as “ambiguity func-
tion” in signal processing)
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4 QUANTUMTHEORY 4.5 Nonidentical Particles

Choosing the most convenient (depending on the problem’s Hamiltonian) rep-
resentation we can solve previously intractable problems (e.g. simulating molecules
with Morse potential or even more complex ones).

Conversion between representations is given by the Fourier transform, like so:

W (x, p, t) =
1

2π

∫
B(x, θ, t)eipθ dθ ≡ Fθ→p[B(x, θ, t)] (72)

B(x, θ, t) =

∫
W (x, p, t)e−ipθ dp ≡ F−1p→θ[W (x, p, t)] (73)

For example, the equation for the nonrelativistic Hamiltonian is much simpler
in terms of Blokhintsev function B(x, θ, t), than the equation (46) for the Wigner
functionW (x, p, t):

x̂ = x, θ̂ = θ, λ̂ = −i∂x, p̂ = i∂θ (74)

Ĥ = H

(
x̂− ℏ

2
θ̂, p̂ +

ℏ
2
λ̂

)
−H

(
x̂ +

ℏ
2
θ̂, p̂− ℏ

2
λ̂

)
(75)

iℏ∂B
∂t

=

{
ℏ
m

∂2

∂θ∂x
+ U

(
x− ℏ

2
θ

)
− U

(
x +

ℏ
2
θ

)}
B (76)

The equation (76) is a partial differential equation, whereas the equation (46) —
pseudo-differential, i.e. using the power expansion series of potential energy we get
arbitrarily high order derivatives over momentum ofW (x, p, t). Note, that substi-
tuting the Wigner function for a pure stateψ(x, t) of the form (80) into the formula
(73) we obtain a very simple form of the Blokhintsev function:

B(x, θ, t) = ψ∗
(
x +

ℏ
2
θ, t

)
ψ

(
x− ℏ

2
θ, t

)
(77)

4.5 Nonidentical Particles

As the reader probably guessed by now, the “trick of missing mass” in the classical
equations given in the previous sections is only possible for the case of identical par-
ticles (or “nonlocalised cloud-particles”). To describe different types of particles one
normally has to choose between the following two options:
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4.6 Feynman’s Integrals 4 QUANTUMTHEORY

• Introduce a separate distribution function for each type of particle. This is how
this problem is normally solved in plasma physics, beginning from the works of
L. Landau and A.A. Vlasov.

• Go over to the 5-dimensional formalism of Kaluza6. Then, our “generally
nonlocalised liquid”, continuously flowing in the kinematic coordinate-velocity
space can be localised in different “points” of 5-velocity, corresponding to differ-
ent values of the ratio of electric charge to proper mass. In this way it is possible
to use a single distribution function to describe particles of different kinds.

Let us now go back to themain question: how do we obtain the quantum equiva-
lent of the equation (23), or, in other words, howdowe translate theMoyal equation
(46) from the language of the phase space (x, p) to the language of the purely kine-
matic coordinate-velocity space (x, v)?

4.6 Feynman’s Integrals

I made the following attempt. In Feynman’s book on path integrals the Schrödinger
equation is derived from the asymptotic behaviour of the formula for the evolution
of ψ(x, t):

ψ(x, t + ϵ) =

∞∫
−∞

1

A
exp
[
ϵ
i

ℏL
(x + y

2
,
x− y
ϵ

)]
ψ(y, t) dy (78)

If, in the equation (78) we substitute the simplest Lagrange function of the form:
L = mv2/2 − U(x, t), then direct calculation leads to the Schrödinger equation
satisfied by ψ(x, t). However, attempting to follow the same path for arbitrary La-
grange function L(x, v, t) does not lead to the goal. If it did, then we would obtain
Schrödinger’s equation purely in terms ofL (just like we did for f in (23)) and then
substitute its formal solution into the auto-correlation form for W (x, p, t) (valid,

6I do not say Kaluza-Klein, because Klein’s idea of compactification which has led to all the mon-
strosities of the modern physics is not only unnecessary, but is very misleading.
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albeit, only for the pure states):

W (x, p, t) =
1

2π

+∞∫
−∞

e−iypψ∗
(
x− ℏ

2
y, t

)
ψ

(
x +

ℏ
2
y, t

)
dy (79)

=
1

πℏ

+∞∫
−∞

exp
(
2iyp

ℏ

)
ψ∗ (x + y, t)ψ (x− y, t) dy (80)

and then attempt to derive the equation forW (x, p, t) (more correctly, for the cor-
responding Ω(x, v, t)) in terms of the arbitrary Lagrange function L(x, v, t) and
valid for arbitrary (not necessarily pure) states.

Furthermore, the general-covariant attempts encounter mathematical problems
already mentioned in the Introduction. In any case, before attacking the problems
of proper differentiation on the tangent bundles we really ought to have a reasonably
clear picture in the domain of special-relativistic phenomena...

4.7 Weyl’s Quantisation and “Kinematic Quantum Mechanics”

Since the above section was written, I have made some more progress (but kept the
text of the previous section, just in case).

Let us recallWeyl’sCorrespondence formula [11], whichmaps a classical function
A(x, p) on the phase space to the quantum operator Â:

Â =

∫
A(x, p) exp

(
i

ℏ[ξ(x− x̂) + η(p− p̂)]

)
dx dη

dξ dp
(2πℏ)2 (81)

In this formalism the action of the operatior Â corresponding to the classical ob-
servableA(x, p) on the pure stateψ(x, t) can be expressed via kernelKA(x, y) given
by:

KA(x, y) =

∫
A
(x + y

2
, p
)

exp
(
ip

ℏ (x− y)
)

dp
2πℏ (82)

This kernel can also be expressed in terms of the Fourier-image of the classical ob-
servable:

KA(x, y) =
1

ℏÃ
(x + y

2
,
x− y
ℏ

)
(83)
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Here the Fourier-image Ã(x, k) is defined in the usual way:

Ã(x, k) = Fp→k[A(x, p)] =
1

2π

∫
A(x, p)eipk dp (84)

So, when we consider a quantum transport of energy from the spatial point x to
another spatial point y we are led to consider the values of x+y2 (i.e., the midpoint
between x and y) and x−y

ℏ .
Compare the formula (82) with the similar one in the phase space:

Âψ(x, p) = A(x, p) ⋆ ψ(x, p) =

∫
K̃A(x, p;x

′′, p′′)ψ(x′′, p′′) dx′′ dp′′ (85)

K̃A(x, p;x
′′, p′′) =

e−
2i
ℏ [p

′′x−px′′]

(πℏ)2

∫
A(x′, p′)e−

2i
ℏ [x

′(p−p′′)+p′(x′′−x)] dx′ dp′ (86)

Taking the classical Hamilton functionH(x, p) and applying to the wave func-
tion ψ(x, t) (and using Baker-Campbell-Hausdorff formula, taking into account
that [x̂, p̂] = iℏ) we obtain the Schrödinger equation in the “Weyl’s Quantisation”
form:

iℏ∂ψ(x, t)
∂t

=

∫ ∫
H
(x + y

2
, p
)
e

ip
ℏ (x−y)ψ(y, t)

dy dp
2πℏ (87)

Now, we can simply substitute H by the Legendre transformation formula and go
over from integration over (y, p) plane to that over (y, v)- plane:

H(x, p) = v
∂L

∂v
− L (88)

∂(y, p)

∂(y, v)
=
∂2L(y, v)

∂v2
≡ Lvv (89)

And now we can obtain the integro-differential form of the Schrödinger equation
in terms of the Lagrange functionL(x, v, t):

iℏ∂ψ
∂t

=

∫ ∫ {
v
∂L+

∂v
− L+

}
exp
(
i

ℏ(x− y)
∂L(y, v)

∂v

)
ψ(y, t)Lvv

dy dv
2πℏ

(90)
whereL+ is defined by:

L+ ≡ L
(x + y

2
, v
)

(91)
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Now we need to manipulate this equation in the same manner as is usually done
to obtain the master equation for the Wigner functionW (x, p, t), i.e. multiply it by
ψ∗ (and likewise for the conjugated equation), integrate and so on, eventually ob-
taining the master equation for the quantum quasiprobability distribution function
purely in terms of the kinematic variablesW (x, v, t). Basically, we need to find the
expression similar to (80) but in terms of the lagrangian coordinates (x, v), instead
of the canonical hamiltonian coordinates (x, p).

4.8 Concluding Remarks

We can anticipate the following criticisms from the reader:

“And what exactly is wrong with the Hamiltonian canonical quantisation
procedure? Why do we need to bother with finding the Lagrangian equiv-
alent thereof ? Besides, did you not know that Feynman (and Dirac be-
fore him, back in 1932) already posed this very problem and discovered
path integrals as a result? The famous formula which Feynman obtained
for the probability amplitude as an integral over all paths of the expression
exp(iS/ℏ) is in fact the official solution to this problem!”

Yes, indeed, I have readDirac’s paper [15], as well as Feynman’s book on path integral
formulation of Quantum Mechanics [16] and have the following considerations in
response to these questions:

First, even if Feynman posed some problem and as a result discovered something
very interesting and useful (such as the path integrals formalism) it does not neces-
sarily imply thatwhat he found is the solution to the original problem. It is well known
(see [17]) that he often posed one problem and found the solution of a different one.

Second, I think that the fact that the proper mass can be eliminated from the
fundamental equations of physics, beginning from classical Newtonian gravity and
ending with classical electrodynamics, is not a coincidence, but a fundamental in-
dication that our “orthodox” treatment of dynamics of particles and fields requires
some revision.

21



REFERENCES REFERENCES

Confining oneself within the bounds of Hamiltonian formalism automatically
annuls this possibility because of the “hardcoding” the notion of mass directly in the
structure of the phase space, in such a way that it cannot be eliminated. Lagrangian
formalism, on the other hand, appeals only to the quantities which have direct and
intuitively obvious kinemаtic significance, such as the generalised coordinates, ve-
locities, accelerations and so on. Here, Cartain’s results about the connection on the
space of contact elements are probably very relevant and important. We may have
to drop the restriction of the first order of contact and go over to the coordinate-
velocity-acceleration space (r, ṙ, r̈) or even infinite order of contact7, eventually.

I submit that henceforth, mass by itself, and electric charge by itself, are doomed
to fade away into mere shadows, and only a kind of union of the two (to wit, the
ratio) will preserve an independent reality.

References

[1] Kentaro Yano, Shigeru Ishihara. Tangent and Cotangent Bundles. Marcel
Dekker, Inc. New York, 1973.

[2] Oleg Fonarev. Wigner Functions in Curved Space-Time and Quantum Cor-
rections to Thermal Equilibrium. https://arxiv.org/abs/gr-qc/9311018

[3] Oleg Fonarev. Wigner function and quantum kinetic theory in curved space-
time and external fields. https://arxiv.org/abs/gr-qc/9309005, 1994.

[4] Oleg Fonarev. ConformalTransformations of theWigner Function and Solu-
tions of the Quantum Corrected Vlasov Equation. https://arxiv.org/abs/gr-
qc/9402015, 1994.

[5] A.A. Vlasov. Theory of Many Particles (in Russian). Moscow, 1950.

[6] A.A. Vlasov. Statistical Distribution Functions (in Russian). Moscow, 1966.

[7] A.A. Vlasov. Nonlocal Statistical Mechanics (in Russian). Moscow, 1978.
7The presence of arbitrary order derivatives over p in the equation forW (x, p, t) may be inter-

preted as suggesting such a possibility.

22



REFERENCES REFERENCES

[8] B.A.Dubrovin, A.T. Fomenko, S.P. Novikov.ModernGeometry—Methods
and Applications, Part I. The Geometry of Surfaces, Transformation Groups,
and Fields. Springer, 1992.

[9] L.D. Landau, E.M. Lifshitz. The Classical Theory of Fields. Butterworth,
Heinemann, 1996.

[10] Renan Cabrera, Denys I. Bondar, Kurt Jacobs, Herschel A. Rabitz. Efficient
method to generate time evolution of theWigner function for open quantum
systems. Phys. Rev. A, 92:042122, Oct 2015.

[11] CosmasK.Zachos,DavidB. Fairlie,ThomasLCurtright.QuantumMechan-
ics in Phase Space: An Overview with Selected Papers.World Scientific, 2005.

[12] GeorgeA.Baker, Jr. FormulationofQuantumMechanicsBasedon theQuasi-
Probability Distribution Induced on Phase Space Physical Review, Vol. 109,
No.6, 1958.

[13] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer. Deforma-
tionTheory andQuantisation. I.Deformations of Symplectic Structures. An-
nals of Physics, 111, 61-110, 1978.

[14] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer. Deforma-
tion Theory and Quantisation. II. Physical Applications. Annals of Physics,
110, 111-151, 1978.

[15] P.A.M. Dirac. The Lagrangian in Quantum Mechanics. Physikalische
Zeitschrift der Sowjet union, Band 3, Heft 1, 1933.

[16] Richard P. Feynman, Albert R. Hibbs. Quantum Mechanics and Path Inte-
grals. Dover Publications, 1965.

[17] Stephen Wolfram. Idea Makers. Personal Perspectives on the Lives & Ideas of
Some Notable People. Wolfram Media, Inc., 2016.

[18] Quantum Infodynamics Website, sectionQuantum Infodynamics, Olavo Rep-
resentation. htttp://quantuminfodynamics.com. By Tigran Aivazian, 2018.

23


	Introduction
	Classical Mechanics
	Nonlocal Statistical Mechanics
	Newtonian Gravitation
	Lorentz Acceleration
	Vlasov-Poisson-Maxwell System
	Inertial Mass
	Vlasov Equation and Lagrange Function
	Extended Lagrange and Hamilton Functions

	Quantum Theory
	Legendre Transformation (x,v)(x,p)
	Deformation Quantisation
	Quantum Differential
	Hilbert Phase Space
	Nonidentical Particles
	Feynman's Integrals
	Weyl's Quantisation and ``Kinematic Quantum Mechanics''
	Concluding Remarks


